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GENERALIZED VOLTERRA INTEGRAL EQUATIONS 

STEFAN SCHWABIK, Praha 

(Received December 5, 1980) 

In this paper the basic theory of Volterra integral equations is developed in the 
case when the generahzed Perron integral is used. The generalized Perron integral 
was introduced in 1957 by J. Kurzweil in his fundamental paper [6] and it was used 
in the theory of ordinary differential equations, especially for considerations con
cerning continuous dependence of solutions of an ordinary differential equation 
on a parameter. The concept of a generalized ordinary differential equation was 
also useful for deriving results from topological dynamics (see e.g. the paper [2] 
of Z. Artstein). Generalized ordinary differential equations are used for the descrip
tion of systems with discontinuous solutions, systems with impulses, etc. 

In the present work we define the concept of a generahzed nonhnear Volterra 
integral equation. The way in which this is done follows the original work of J. Kurzweil. 
The results concern basic equations as existence of solutions, continuous dependence, 
connectedness of the solution funnel, conditions for uniqueness. The results are 
compared with recent ones for the classical theory as they are presented in the works 
of R. K. Miller [10], W. G. Kelley [5], Z. Artstein [ l] . 

We are interested in Volterra integral equations having continuous solutions 
although it is possible to obtain results also for discontinuous solutions similarly 
as in the case of ordinary differential equations. 

1. THE GENERALIZED PERRON INTEGRAL 

In this section we give a short survey of the generahzed Perron integral which will 
be used for our theory of Volterra integral equations. This concept of integral was 
developed by J. Kurzweil to a great extent in the middle of fifties in connection with 
his theory of generalized ordinary differential equations. The Kurzweil theory of 
integral is very interesting also from the viewpoint of integration theory. It represents 
a self-contained theory of a simply defined general integral. 

This type of integral was discovered independently by R. Henstock (see [4]). It 
was used e.g. by J. Mawhin in his university course of analysis [9] and by many others. 

The results needed for our purposes are mostly contained in the original paper 
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of Kurzweil [6] and in his recent book [8]. A short treatise of this integral is given 
also in the paper [2] by Z. Artstein. 

Let a, b e й, —со < a ^ b < +co Ы given. A decomposition of the interval 
[a, b] is a finite sequence 

^ = {ao^ö-^ai,..., afc„i,a-̂ t, a j 
such that 

a = ŒQ < a^ < ... < â  = Ь , aj_^ S CTJ S oij , j = 1, ..., к . 

An arbitrary positive function ô : [a, fe] -^ (0, + oo) is a gauge on [a, b]. The decom
position Л = («0, ö-j, a j , . . . , а^_1, 0"̂ ,̂ «jt) is subordinate to the gauge ô (shortly 
we write A e Л(рУ) if 

Assume that 17 : [a, fe] x [a, b] -> ^^. Given a decomposition A = {CCQ, (Т ,̂ a ,̂ ... 
..., ajt_i, o"fc, «It} ^^ [̂ ? ^] we associate with A the integral sum 

S{A) = i[U{aj,aj)-U{aj.,,aj)]. 

The function Ï7 is integrable over [a, b] if there exists I G R^ such that for every 
e > 0 there exists a gauge ô : [a, b] -> (0, + oo) such that for every decomposition A 
subordinate to ô[A e А{оУ) the inequality 

\8{А)-1\<е 

holds. I 6 jR̂  is called the generahzed Perron integral of U over [a, b] and will be 
denoted by JJ DI/(T, S). 

If Ĵ  DI/(T, S) exists we define J? DL/(T, 5) = - Ĵ  DI/(T, 5) and we set Ĵ  DL/(T, S) = 
= 0 if a = b. 

The set of all functions U integrable over [a, b] in the above sense is denoted by 
K{[a,b-]). 

Remark. For the definition of the integral J„ D[/(T, S) it is not necessary to have 
the function U defined on the whole square [fl, fc] x [<з, b]. It is sufficient to know 
the values of U{T, S) close to the diagonal т = 5. Let us mention that if the function U 
is of the form С/(т, s) = /(s) g(r) where g e BV(\^a, b]), / : [a, Ь] -> ̂  then the in
tegral Ĵ  D(7(T, S) exists if and only if the Perron-Stieltjes integral Ja/^ö' exists and 
both the integrals have the same value (see [6]). 

We give a fist of fundamental properties of this concept of integral. The reader 
can find them in [6] or in the book [8]. 

(LI) / / UeK{[a, b]), ß e R then ßU e K{[a, b]) and 

^D[ßU{T,s)-]=ß('DU{T,s). 
' Ja 
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(1.2) / / и, VEK{[a, Ь]) then U + VeK{[a, b]) and 

I D(t/ + V) (T, S)=\ DU{T, S) + I ВГ(т, s) . 

(1.3) / / I/ G K([ö, b]) then и G К([с, J]) /o r et;er>; [с, d] ^ [a, b], 

(1.4) If ce {a, b), UeK{la,c]), ( 7 G X ( [ C , b]) Гйеп [ / сК( [а , Ь]) аис/ 

\'DU{T, 5) + I Dt/(T, 5) = I DU{x, s). 

(1.5) / / и : [a, b] x [a, b] -> ^ ^ is such that UeK{[a, c]) for every ce {a, b) 
and the limit 

lim I D[/(z, s) - U{c, b) + U{b, b)\=L 

exist, then U e K{[a, bj) and J* D{7(T, S) = L . 

(1.6) If UeK{[a,b']), ce[a,b], then 

lim j D17(T, S) - C/(T, C) + U{c, c) = DC/(T, S) . 
a-*c LJa Ja 

аб[«,Ь] 
For some estimates of the integral the following result is useful (see [7]). 

(1.7) Let U:la,b] x [a, b]-> й^ be such that JJ Dt/(T, 5) exists and let V: 
: \_a, b] X [a, bJi -^ R be a real function for which Ĵ  D F ( T , 5) exists. If for 
every s G \a, Ь] there is è{s) > 0 such that |т •- 5| |{7(т, s) — U(s, s)\ ^ 
^ (5 - T) (F (T , S) - 7(5, s)) /o r T G [a, b] n [5 ~ ^(s), s + ^(5)], then 

If* I f ' ' 
D I 7 ( T , S ) ^ D F ( T , 5 ) . 

IJa I Ja 
A fundamental statement used in the theory of generahzed nonhnear Volterra 

integral equations is the following theorem which replaces the well-known Lebesgue 
dominated convergence theorem in the case of generahzed Perron integral. For the 
proof see [8]. 

(1.8) (Dominated convergence theorem.) Assume that Ui, / = 1, 2 , . . . are such real 
functions that î7^GX([a, Ь]) and that there exist functions V, WEK(\_a, bJ) 
such that 

F(T„ S) - F(T,, S) й U,{T2, S) - [/,(TI, S) S W{T2. S) - W{T,, S) 

for every / = 1, 2,. . . , 5 G [a, b] and [т^, T2] «= [̂  — ^(5), s + S(s)], т̂  ^ 5 ^ 
^ T2 where ö : [a, fo] -^ (0, +00) is a suitable gauge on [0, b]. Let U : 
: [fl, b] X [a, b] -> î  be such a function that for every г > 0 there exists 
a nondecreasing function fi : [a, b^ -^ R, a gauge ^ : [0, b] -> (0, + 00) and 
]? : [fl, b] -^ /V (/V stands for the natural numbers 1,2,...) such that 
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^̂ (Ь) - > ( a ) < 8 

and |U,(T2, S) - t/((Ti, s) - U{x2, s) + 1/(TI, S)| g ^{z^) - > ( T I ) 

/ o r Ti ^ s ̂  T2, [TI , T2] 6 [s - ^(s), s + фУ\, I ̂  p(s). 
T/ien UeK{[a,b']) and 

fb rb 
DU{x,s) = lim D L / , ( T , S ) . . 

J a l-*ao J a 

2. GENERALIZED VOLTERRA INTEGRAL EQUATIONS. EXISTENCE 
OF SOLUTIONS AND THEIR CONTINUATION 

We consider the nonhnear Volterra integral equation 

(V) x{t)=f{t)+[DG{t,x,x{s)), 

where t e I = [0, c), 0 < с ̂  +00, the values of x , / , G belong to the iV-dimensional 
Euclidean space R^ and the integral occuring in (V) is the generalized Perron integral. 

We assume that the function/is continuous and our effort is directed to obtaining 
results for continuous solutions of the equation (V). 

The function G : I x I x R^ -^ R^ satisfies the following assumptions. 
(Gl) G{t, 0, x) = 0 for every (t, x)el x R^. If (r, т,х)е1 x I x R^ and x > t, 

then G(t, T, x) — G(t, t, x). 
(G2) For each bel and each К > 0 there exists M : [0, fc] x [0, b] -^ R, M{t, •) 

nondecreasing in [0, ?] such that 
\G{t, T2, x) - G{t, Ti, x)\ й M{t, T2) - M{t, Ti) 

for X 6 R^, \x\ й К and 0 й T:I S Г2 й t S b, 
(G3) For every bel, K> 0 and г > 0 there is a function /^(^ т), ju(r, •) non-

decreasing in [0, r], fi(t, t) — ii{t, 0) < e and Q{t) > 0, te [0, Ь] such that 

\G{t, T2, x) - G{t, Ti, x) - G{t, T2, y) + G{t, Ti, y)\ S 

й pit, T2) - fi{t, Ti) 

provided 0 u^i u^2Ut üb, \x\uK, \y\ й K, \x - y\ < Q{t). 

The first question which has to be dealt with is the question of the existence of the 
integral J^ DG(r, т, x(s)) from (V) when some information about the function x : 
: [0, r] -» R^ is available. In order to be able to solve (V) in the space of continuous 
functions we need the existence of this integral for continuous functions x : [0, /] -> 

2Л. Proposition. Suppose that G:I x I x R^ -> R^ satisfies the assumptions 
(Gl), (G2) and (G3). Let tel be given and assume that the sequence of functions 
(PJ, : [0, t]-^ R^, k= 1,2,,., is such that \cpk{s)\ SK, se [0, f], /с = 1, 2 , . . . for 
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some К > О and 
l im Çi,{s) = (p(s) e R^ 
k-*oo 

for all se [0, f], i.e. the sequence of functions Çf^ converges on [0, ^] pointwise to 
a function Ç : [0, ^] -^ R^. Assume further that Jo DG(t, т, (Pk{s)) exists for every 
к = 1,2,... . Then the integral JQ DG(t, т, <p(s)) exists and the equality 

hm I DG(t, T, (p,{s)) = I DG(r, t, (p{s)) 
k-^oo J o J o 

Proof. By (G2) for every component Gi of G we have 

^{M{t, T2) - M(f, Ti)) ^ G^(^ T2, (p,(s)) - G,{t, T„ cp,{s)) й 

^ M{t, T2) ~ M{t, Ti) 

for any se[0,t], к = 1, 2 , . . . , 0 й "^i й'^i й t and the integral Jo DM{t, т) = 
= M{t, t) — M{t, 0) evidently exists. Let e > 0 be given. Let us mention that for 
every s e [0, r] we have \(p{s)\ й К and that there exists p(s) e N such that for every 
ke N, к ^ p(s) we have \(Pk{^) — (p{s)\ < Q(t) where Q(t) > 0 is given by (G3). By 
(G3) there exists ß : [0, r] x [0, t] -^ R, ii{t, •) nondecreasing in [0, f], }i{t, t) -
— fi[t, 0) < 8 such that 

\G{t, Ъ, cpk{s)) - G{t, T„ (PJ,{S)) - G{t, T2, ф)) + G{t, т„ ф))\ й 

S li{t, T2) - ii{t, Ti) 

for every s e [0, î ] , 0 g r^ ^ T2 ^ t and к ^ p{s). 
Ail the assumptions of the dominated convergence theorem (L8) being satisfied 

for the integral Jo DG(^, т, (p{s)), we immediately get the result stated in the Proposi
tion. 

2.2. Corollary. If G satisfies the assumptions (Gj), (Gj) and (G3), tel is given 
and the function cp : [0, f] -> R^ is the limit of a sequence of uniformly bounded 
piecewise constant functions on [0, t] , then the integral Jo DG(t, т, (p{s)) exists. 

Proof. By Proposition 2.1 it is sufficient to show that the integral JQ I>G{t, т, il/{s)) 
exists for any piecewise constant function ф : [0, f] -» R^. If ij/ : [T^, T2] -> R^, 
0 g Ti ^ T2 ^ ris such a function that \l/{s) = ce Retorse {Т^ Гз) then by defini
tion the integral 

DG{t, T, ily{s)) = G{t, t2, c) - G{t, t„ c) ï: 1 ti 

exists for every t^, Г2 such that T^ < t^ S t2 < T2 
Since the limit 

lim I I ' DG{t, T, 1̂ (5)) ~ G(f, ^2, iA(T2)) + G(t, T2, Ф{Т2))\ 
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= G{t, Т^-,с)- G{t, to, с) + G{t, T„ ЦТг)) - G{t, T^-, XIJ{T^)) 

exists for every fixed fo e {Tu Tj) and similarly 

lim Г Г" DG(r, t, ^(5)) - G{t, t,, ф{Т,)) - G(t, T,, ф{Т,))\ = 

= G{t, to, c) - G{t, T,+,c)+ G{t, T,+, ф{Т,)) - G{t, T„ ./.(Т,)) 

r 
Jr 

exists for 0̂ e (Ti, Г2) we can use (1.5) and the additivity of the integral (1.4) for 
obtaining the existence of the integral Ĵ J DG(t, r, 1/̂ (5)) and also the equality 

DG(t, T, il/{s)) = G{t, T2~.c)-- G{U Ti + , c) + G{u T ,̂ ^̂ (7̂ 2)) -

- G{U T2-, HTi)) + G{t, Ti + , ф{Т,)) - G(r, T,, ф{Т,)). 

Using again the additivity of the integral (1.4), we get immediately the existence of 
the integral Jo T>G{t, т, i/̂ (s)) for every piecewise continuous function ф : [0, t] ~» R^. 
Let us mention that the existence of the limits used above easily follows from (G2). 

2.3. Corollary. / / G satisfies (Gi), (G2) and (G3), tel and ф : [0, t] -^ R^ is 
continuous, then the integral Jo DG( ,̂ t, î (s)) exists. 

Proof, The result follows immediately from Corollary 2.2 and from the well-
known fact that every continuous function on a closed interval can be uniformly 
approximated by piecewise constant functions which are uniformly bounded. 

Remark. Corollary 2.3 makes it possible to consider the generalized Volterra 
integral equation in the space of continuous functions on [0, b] <=z I since under 
the conditions (Gj), (G2) and (G3) the existence of the integral Jo DG( ,̂ r, x(s)) for 
every tel and every continuous x : [0, ?] -> R^ is ensured. On the other hand Corol
lary 2.2 shows that the integral Jo T>G(t, т, (p{s)) exists for every function cp : [0, tj -^ 
-^ R^ which is the (pointwise) limit of piecewise constant and uniformly bounded 
functions; this property has e.g. any bounded regulated function and in this way 
also the consideration of Volterra integral equations for such functions is possible. 

Now we introduce an additional assumption, which is essential for the forth
coming considerations. 
(G4) For each bel and К > 0 the expression 

rb (*b 

sup 
д;еС([0,Ь]) 
\\х\\сйК 

Ф ЛЬ 
DG(?, T, x{s)) ~ DG(^o, ^, Ф)) 

0 Jo 

tends to zero for t -^ tg provided tQeL 
We are naturally forced to introduce this assumption by the requirement of con

tinuity of solutions of the equation (V). The integrals occuring in (G4) exist by Corol
lary 2,3 provided the assumptions (Gi)~~(G3) are satisfied. 

Summarizing these preliminary results we can conclude that if the function G, 
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G:I X I X R^ -^ R^, satisfies (Gi)-(G4) and the function/ :I - R^i^ continuous 
then we can ask for continuous solutions of the generahzed Volterra integral equation 
(V). 

2.4. Theorem. (Existence of a continuous local solution.) If f \I -^ ^ '̂  conti
nuous and if G :I X I X R^ -^ R^ satisfies the assumptions (Gi)-(G4) then there 
exists a positive number del and a continuous function x : [0, J] ~̂  ^ which 
for every t e [0, d] satisfies the equation 

x{t) = f{t) + DG{t, T, x(5)). 
Jo 

Proof. The basic tool for proving this theorem is the known Schauder-Tichonov 
fixed point theorem. 

Let b e (0, c) be given. Denote K^ = sup \f{t)\ and set X = iĈ  + 1. Since by 
(G4) we have f6[0,fe] 

lim sup 
t-*0 xeC([0,b]) 

WxWcuK 

DG{t,T,x(s)) DG(0, T, x{s))\ = 

= lim sup 
t-*0 xeC([0,b]) 

I l ^ l l c ^ X 

DG(r, T, x{s))\ = 0 , 

there exists d e (0, b] such that for any t e [0, J] the inequaUty 

(2.1) DG{t, T, x{s)) < 1 

holds for every x e C([0, b]), \x\c S K. 

Denote 
Л = {хеС([0,^]); |jx -/Цс^о.^п ^ 1} ; 

A is evidently a closed convex subset of the convex F-space €([0, J]). For xe A and 
t e [0, (i] define the mapping 

Tx{t) = f{t) + I DG(r, T, x(s)) . 

Since / is continuous on [0, J] and by (G4) the function 

t e [0, t̂ ] i~> DG(r, T, x(s)) € 1?̂  

is also continuous for every x e Л we conclude that Гх(г) is a continuous function, 
i.e. Tx e C([0, dJ). If x 6 Л then 

||x|ic^ | | / | |c+ | i x - / | | c ^ X , + 1 = X . 
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Hence by (2.1) 

\Tx{t)^f{t)\ = DG{t, T, x(s) = DG(r, T, x(s)) 
Jo I iJo 

< 1 

for every t e [0, J] , i.e. we have Tx e Ä for every XG Ä or T(Ä) с ^ and moreover 
|Tx(r)| й | / (0 | + 1 ^ i^i + 1 = i^ for every x e Л and ï e [0, d]. This means that 
the set Т(Л) consists of equibounded functions belonging to C([0, d~\). Since for every 
h^h^ [Ö, ̂ ] and X e Л we have 

\Tx(t2)~Tx{t,)\ ^ | / ( r , ) - / ( r , ) | + 

+ DG{t2. T, x(s)) ^ I ' DG{t„ T, x(5)) 

1 / ( ^ 2 ) - / M + г DG(r2, T, x ( s ) ) -
IJo 

DG(ri, T, x(s)) 

^ | / Ы - / 0 1 ) | + sup 
jceC([0,b]) 

WxWcuK 

\ DG(r2, T, x(s)) - I DG{t,, T, x(s)) 

we obtain that all functions belonging to T(Ä) are equicontinuous. Hence the set 
T{Ä) is precompact in C([0, dj). It remains to show that T: Ä -^ Ä is a, continuous 
mapping. Assume that x̂^ e A, к = 1, 2, . . . and x̂  -> x in C([0, J]) for к -^ 00. 
Since A is closed we have xe A and by Proposition 2.1 we have 

rt rt 
DG{t,T,Xk{s))-^ DG(f, T, x(s)) 

Jo Jo 

for every /G [0, d] if /c ~> 00. Since all the functions belonging to T(A) are equi
continuous and Txj,(t) --> Tx{t), fc ~> 00 for any t e [0, d], we conclude that lim Txj^ = 

k-*ao 

= Tx in C([0, d]) and the mapping T : ̂  -> Л is continuous. AH the assumptions of 
the Schauder-Tichonov theorem being satisfied, we obtain that there exists at least 
one x e A such that x = Tx, i.e. 

x(t) = f{t) + DG(r, T, x(s)) 

for all t e [0, J] and this is the result stated in the theorem. 

2.5. Theorem. (Continuation of bounded solutions.) Let f :I -^ R^ be a conti
nuous function and let G : I X I X R^ -> R^ satisfy the assumptions (Gi) —(G4). 
/ / X : [0, d) -> R^, 0 < d < с is a bounded (continuous) solution of the equation 
(V) then X can be extended to a continuous solution of the equation (V) on an interval 
[0, 3] where ä > d. 

Proof. Assume that |x(t)| ^ К for every ^e [0, d). Let t,^, к = 1, 2 , . . . be an 
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arbitrary sequence such that tj, e [0, d), tj^+i ^ tj, and lim t^ = d. Since x is a solution 
of (V) we have for m ^ n, m, n e A/ ^""^ 

\x{Q-x{t„)\u\AQ-m\ + 
+ г DG(f„, T, x{s)) - " DG(r„, T, x(s)) = 

= 1 / ( 0 - / ( 0 1 + I Г DG(I„, T, x{s)) - ['" DG(f,„ T, x{s)i й 
iJo Jo 1 

й | / ( g - / ( 0 1 + sup I г DG(;„, T, Ф)) - Г DG(f„, T, cp{s)) 
«p6C([0,d]) IJo Jo 
Ikllc^ii: 

Using (G4) we obtain from this inequahty \x(t^) — x(t„)\ -> 0 for m, n -^ со. (it is 
apparent that the assumption of monotonicity of the sequence tj,, к = 1,2, . . . is 
done for technical reasons only.) This means that the hmit hm x{t) exists. If we 

define x(d) = lim x(t) we obtain a continuous function x(t) defined on the closed 
t-*d-

interval [0, (i], which satisfies equation (V) on the closed interval [0, J ] . 
Using the continuity of / and (G4) we obtain that the function 

te[0,c - d) \-^f{t + d) Л- \ T>G{t + d, т, x(s)) 

is continuous on [0, с — d). 

It is a matter of routine to show that the function G(t, т, x) = G(t + d, т + d, x) 
defined for (t, т, x) e [0, с — d) x [0, с — d) x R^ satisfies the assumptions 
(G|)~(G4). Hence by Theorem 2.4 for h :\0, с ~ d) -^ R^ continuous there exists 
a local solution of the Volterra integral equation 

(2.2) y{t) = h{t) + D6(r, T, y{s)) , 

i.e. we can find d^ G (0, с — d) such that on [0, d^ there exists a solution y of the 
equation (2.2) where h[t) = f{t + J) + Jo BG{t + d, т, x{s)). Let usputd = d + do 
(evidently d < d < c) and set x(s) = y(s — d) for s e (d, d]. This gives a continuous 
extension of the function x : [0, d^ --> ^^ onto the interval [0, d] with 0 < d < d < 
< c. 

For t G [0, d] the function x{t) satisfies (V). For t e [d, d\ we have for the extension 

(̂0 

x{t) = y{t -d)= f{t) + г DG(f, T, x{s)) + Г ' DS(t - d, X, y{s)) = 

= / ( 0 + I DG(J, T, x{s)) + \ DG((, T + d, y{s)) = 
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/•d Çt-d 

= f{t) + DG(r, T, x{s)) + DG(r, r + d, x{s + J)) -

= f{t) + I DG(r, T, x(s)) -f Г DG(f, T, x(s)) = / ( 0 + Г DG( ,̂ i, x(s)) . 

Hence the extended function x : [О, <i] -> ^^ satisfies the equation (V) and the state
ment is proved. 

2.6. Corollary. If X : [0, b) -> R^ is a continuous solution of(y) which cannot be 
extended, then either b = с or 

lim sup \x{t)\ = + 00 . 
t-*b-

3. COMPARISON OF THE GENERALIZED VOLTERRA INTEGRAL 
EQUATION WITH THE CLASSICAL ONE 

We consider the classical Volterra equation 

(3.1) x{t) = / ( 0 + I g{t, s, x{s))ds , tel =[0,c) 
Jo 

where the function g will be assumed to satisfy the following assumptions: 
(gl) The function g{t, %x) is measurable for every {t,x)el x R^, the function 

g{t, s, •) is continuous for every (t, s)el x I and g(t, s, x) = 0 if t < s. 
(g2) For every bel and К > 0 there is a function m.(t, 5), m{t, •) Lebesgue in-

tegrable for every tel such that 
\g{t, 5, x)\ S. m{t, s) 

if \x\ й К and 0 й t й b. 
(gj) For every bel and К > 0 the expression 

sup {g{t, s, x{s)) - g{to, s, x{s))) ds 
:(Co,b]) IJo хеСЦО 

\\x\\câK 

tends to zero when t tends to t^, tg e I. 

The assumptions (gi)-'(g3) are the basic assumptions under which the equation 
(3.1) was studied by Arstein in [1]. In [1] Artstein gives also a comparison of these 
assumptions with the assumptions given by R. K, Miller in the book [10]. 

Let us define 

(3.2) G(r, T, x) = g{t, 5, x) ds 

for (r, T, х ) б / X / X R^. 
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The measurabiîity of g{t, % x) stated in (g^) and ($2) ensures that the function G 
can be defined in this way. 

For {t, x)el X й^ we clearly have G{t, 0, x) = 0. If т > t then G{t, т, x) = 
= Jo Ö̂ (̂ v5, x) ds = G(r, Î, x) since g{t, s,x) = 0 for s > t. Hence G satisfies the 
assumption (Gj). 

Let b e/ , X > 0. Using (g^) we have for te[ö, b), 0 ^ т̂  ^ T2 ^ b, î i = ^ 

\G{t, T2, x) - G{t, Ti, x)| = ö̂ (r, s, x) ds\ ^ 
! J ^ i I 

й ' |б̂ (̂ , 5, x)| ds ^ I m(r, s) ds = M{t, T2) ~ M(f, Ti) 

where M(t, т) = Jo m{t, s) ds, M{t, •) is nondecreasing in [0, t] and M( ,̂ r) — 
- M{t, 0) = Jo m{t, s) ds < 00. 

Hence G satisfies the assumption (G2). 
Let us prove that the function G given by (3.2) satisfies the assumption (G3). Let 

b e / , К > 0 and e > 0 be given. By (gz) there is a function m(t, s) : [0, b] x 
X [0, b] •-> [0, + 00) such that m{t, •) is integrable and \g{t, s, x)| ^ m{t, s) provided 
|x| < K + 1, r, S G [ 0 , b]. 

For keN, t,se [0, b] define 

;̂,(r, s) = sup \g{t, s, x) - g{t, s, 3;)] ; 
\x\^K,\y-x\ul/k 

for every fixed ?G [0, b] the functions О̂ /̂ (̂ , •) are measurable, gk+i{t^ ^) S 9k{U ^) 
and 0 ^ gj,{t, s) ^ 2m(r, s) for fe G /V. Since for every fixed (f, s) G / x / the function 
g[t, s, x) is uniformly continuous on compact sets in the third variable x, we have 
lim gjj, s) = 0 for every î, se [О, b]. Hence by the Lebesgue dominated convergence 

theorem for every t e [0, b] we get Hm Jo gk{t, s) ds = 0 and consequently there 
k-^00 

exists kgG N (depending on t) such that Jo gkjij, s) ds < s. 
Let us set Q = IjkQ and fi{t, т) = Jo gkoi^^ ^) ̂ ^- For у e R^, jj; — x| < ^, 0 ^ 

g Tj ^ T2 ^ ^ ̂  b we have 

\G{t, T̂2. }̂ ) "- G{t, T:U y) - G{t, т ,̂ x) -f G{t, x^ x)| = 

{9{U s, y) - g{t, s, x)) ds S \9{t, s, j;) - g{t, s, x)| ds й 

g^Xu s) ds = n{t, T2) - /i(?, Ti). 

Since by definition we have ̂ (f, t) — /г(^ 0) < sail the requirements of the assumption 
(G3) are satisfied for the function G. In this way we have obtained the following result: 

3.1. Proposition. Assume that the function g :I x I x IR^ -^ R^ satisfies (g^), 
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(ga)- If the function G : I x I x R^ -^ R^ is defined by the relation (3.2) then it 
satisfies the assumptions (G^), (G2) and (G3). 

Further, let us prove the following statement. 

3.2. Proposition. Assume that the function g :I x I x R^ -^ R^ satisfies (g^), 
(g2); let G:I X I X R^ --^ R^ be defined by (3.2). If tel and cp: [0, ]̂ -> R^ is 
a continuous function, then both the integrals Jo g{t, s, ^(s)) ds, Jo DG(f, т, ^(5)) 
ex/s^ and /zai;̂  the same value. 

Proof. Since the function cp is uniformly continuous on [0, t\ there exists a se
quence of piecewise constant functions cp^^ : [0, r] -^ Я^ such that lim ç?̂ (s) = <5£)(s) 

fc-> CO 

uniformly on [0, r]. Evidently the integrals Jo g{t, s, (Pk(s)) ds and Jo DG(t, т, (Pk{s)) 
exist and are equal for every ke N, 

It is easy to check that if (g^) and (g2) hold, then the sequence of functions 
g[t, s, (pk{s)) satisfies all the required assumptions of the Lebesgue dominated con
vergence theorem; the sequence G(t, т, (Pk{s)) similarly satisfies the assumptions 
of the theorem (1.8). Hence the integrals Jo g{t, s, (p(s))ds, Jo DG{t, т, ^(s)) exist 
by the corresponding convergence theorems and by the same theorems they equal 
each other. 

Now we can state the following simple result. 

3.3. Proposition. If g :I X I X R^ -^ R^ satisfies (gi), (g2) and (g^) then the 
function G :I X I X R^ -^ R^ defined by (3.2) satisfies (G4). Moreover, every 
solution x{s) of the equation (3.1) is also a solution of the generalized Volterra 
integral equation 

(V) x{t) = f{t) + Г DG{t, T, x{s)) 

and vice versa. 

Proof. The condition (G4) for G follows immediately from (gj) and from the fact 
stated in Proposition 3.2. Since every solution of (3.1) and (V) is a continuous function 
(this is apparent in the case of (3.1) and can be shown in the case of (V) by an approxi
mation argument and by the convergence theorem 1.8), we obtain the required equi
valence of the equations again by Proposition 3.2. 

In this way we obtain that the classical theory of Volterra integral equations (3,1) 
with g satisfying the (probably weakest) conditions (gi)--(g3) is covered by the theory 
of generalized Volterra integral equations described in this note. 

In particular, by Theorem 2.4 we obtain the local existence of solutions of the 
equation (3.1) and the existence of maximal solutions of this equation together with 
their properties described by Theorem 2.5 and Corollary 2.6. 
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4. CONTINUOUS DEPENDENCE RESULTS 

In this section we will consider the dependence of solutions of the equation (V) 
on the functions / and G, where / belongs to C(/) — the space of continuous ^^-
valued functions on / equipped with the usual topology of uniform convergence on 
compact sets and G :I x I x R^ -^ R^ satisfies the assumptions (Gi) —(G4). 

The main result is an Artstein-type theorem which was stated for the classical case 
in [1]. In the same way as Artstein did, we restrict our considerations to a subspace 
of functions G satisfying (Gi) —(G3) and a uniform version of (G4). 

Let U{t, to, b, K) be a function defined on / x / x / x (O, + 00) with values in 
(0, +00) such that 

lim U{t, to, b,K) = 0, 
t-^to 

The set ^(U) associated with the function U consists of all functions G :I x I x 
X R^ -^ R^ that satisfy (Gi ) - (G3) and 

(G4, U)If xe C([0, b]), ||x||c([o,b)] й К then 
гь 

iJo 
D[G{t, T, x{s)) - G{to, T, x{s))] uU{t,to,b,K) 

(The function U(t, to, b, K) represents a common "modulus of continuity" for all 
functions of the type 

te / f-̂  Г DG(f, T, x{s)) e R"" 

where x G C ( [ 0 , b]), Ц̂ Цс ^ i^ and G e ^(U). 
A topology ^ on ^( l / ) is called jointly continuous if for every fixed tel the 

mapping 

(G, x) e Ци) X C([0, t]) ^ I DG{t, т, x{s)) e R"^ 

is continuous with respect to the product topology on ^(U) x C([0, tJ) given by ^ 
and the sup — norm topology on C([0, tJ). 

Let ^ be and arbitrary topology on ^(U). Let us define the property of continuous 
dependence (C) for ^(U) with the topology ^ . 
(C) Suppose that the net G^ converges to G in the topology 3f. Then for every 

netfk converging tofin C(/) the following assertion holds. Let Xjf^t) be a maxi
mally defined solution of 

(V,) х(0=Л(0.+ ГЕ>С,0,Т,Х(5)). 

Then there exists a maximally defined solution x(t) of 

(V) x{t)=f{t)+{'^BG{t,^,x{s)) 
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with domain [0, a) and a subnet x^ of the net x̂^ such that x^ converges to x 
uniformly on compact subintervals of [0, a). (In particular if [O, a„,) is the 
domain of x^n and 0 < d < oc then for m sufficiently large we have d g a^.) 

The main result is the following 

4.1.a. Theorem. (Artstein's continuous dependence theorem.) Let ^ be a topology 
on ^{U)' Then ^ has the property (C) if and only if it is jointly continuous. 

The detailed proof of this theorem is given in [1] by Artstein for the classical 
Volterra equation and it can be used with slight changes for our case too. 

Let us mention that if we are speaking generally about a topology ^ , then general
ized sequences (nets) with the Moore-Smith concept of convergence are to be used. 

Here we give a weaker sequential form of Artstein's theorem where we are speaking 
about convergence of ordinary sequences instead of topologies. 

For an (ordinary) sequence Ĝ t, /c = 1, 2 , . . . of functions in ^((7) we say that it 
converges jointly to a function G G ^(U) for fe -> OO if for every fixed tel and every 
uniformly convergent sequence cpi^ e C([0, r]), (pf^-^ cp in C([0, ?]) for /c ~> oo we 
have 

lim DG,(r, T, cp^{s)) = DG(r, t, (p{s)) . 
k-+oo J o J o 

4.1.b. Theorem. Suppose that the sequence Gĵ , fc = 1,2,... converges in some 
sense to G for к -^ oo (G, G},e ^{U), /c = 1, 2,...). Then the following property 
(Cs) holds if and only if G^ converges jointly to G for к -^ oo. 
(Cs) For every fj^e C(l), к = 1, 2,...,/^t "^ / ^^ ^(^) the following assertion holds. 

If Xj, is a maximally defined continuous solution of the equation (Yj,) then 
there exists a maximally defined solution x of the equation (V) with domain 
[0, a) and a subsequence x^ of x^ such that x^ converges to x uniformly on 
compact subintervals of [0, a). 

Proof. Sufficiency. Let us define a by 

a = sup {d; x̂ . are defined and equicontinuous on [0, J] for к sufficiently large} . 

Let bel. Since Л -^ / for /c -> oo in C([0, b]) there is К > 0 such that \fj,{t)\ й К 
for re [0, b] andfk are equicontinuous on [0, b]. Assume that d > 0 is such that 
U(t, 0, b, К + 1) < 1 for ^e [0, d]. The solutions x^ exist on [0, d} and |х^(г)| ^ 
^ К •+• 1 fox te [0, d]. Assume that [0, a^) с [0, d^. If we assume that the estimate 
\xk{tj\ < К + 1 does not hold, then there exists a ô e [O, а^^) such that \xjt)\ ^ 
^ ^ + 1 for / e [0, ô) and \x(tQ)\ = К -h I. In this case we get a contradictory 
inequality 

h{to)\ s \fk{to)\ •+ Ij^ DG(r йк + u{to, o,b,K + i)<K + i.. 
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< 

Hence \xk{t)\ < X + 1 for а1И G [О, â ) cz [0, d] and this contradicts by Theorem 
2.5 and Corollary 2.6 the maximality of x .̂ This implies d < oc^. 

By (G4, K) we get further 

^ |ш(г) - œ(to)\ + U{t, Го, d,N + 1) . 

where со is the modulus of continuity for the sequence/̂ ^ on [0, b]. Hence the sequence 
X)^ is equicontinuous on [0, J] . This yields a > 0. 

Assume that a < с (/ = [O, c)). We prove the following statement: 
(S) There exists a subsequence {xi} of {x̂ } such that either for every I the function 

X| IS not defined on [0, a] or no subsequence of {xi} is equicontinuous on [O, a]. 

Assume that this statement is false, i.e. Xj, is defined on [0, a] for every к and Xj, 
are equicontinuous functions on [0, a]. Since /^ are equibounded and Х/,(0) = Л(0), 
the sequence {xj^} is bounded by a constant К > 0. Let b e (a, c); we can assume that 
\fk(t)\ < К for te[0, b]. Let de{oc, b) be such that U{t, a, b, 3K + 1) < 1 for 
t e [a, d\. 

In the same way as above we can show that x (̂r) is defined on [0, d\ and \xk{t)\ < 
< 3K + 1 for te [0, d]. If we assume that there is a value ô ^ {^^ d\ such that 
\xjlt)\ < 3K + 1 for te [a, t^) and \xjltQ)\ == ЪК + I then 

|^.Ы - ч{^)\ й \fk{to) -AWI + 

+ I D^Gfc(̂  T, x,(s)) - G,{oc, T. x,(5))] ̂ 2K + 7̂(̂ 0, a, b, 3i^ + 1) < 2iC + 1 

and we get a contradiction |х;̂ (]Го)| < \^k{^)\ + 2i^ + 1 ^ 3i^ + L The boundedness 
of Xk(t) on [0, d] implies by (G4, U) the equicontinuity of the sequence {xk{t)} on 
[0, d~\ and by the definition of a we sould have d ^ a which would contradict d e 
e (a, b). Hence the statement (S) holds. 

Let now {xi{t)} be a sequence with the properties given in (S). For every d e (0, a) 
the sequence {xj is bounded and equicontinuous on [0, d]. Let us assume J^ --> a —. 
Let {xf̂ (r)} be a subsequence of {xi{t)} which converges uniformly on [0, dj] to 
a certain x(t); let further {xi^(t)} be a subsequence of {xi^(t)] which converges 
uniformly to x(t) on [0, (̂ 2]. Continuing in this way we get by the usual diagonahza-
tion a subsequence {x^} of (x j which uniformly converges on every compact ititerval 
[0, d] cz [0, a) to a function x{t) defined on [0, a). 

For t e [0, a) we have 

^m(0 = fm{t) + [ ^G^{t. t, X^{s)) . 
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Since x„ -» X in C([0, (]) and G„-^ G jointly we obtain 

lim I DG„(/, T, xj^s)) = I DG(f, x, x{s)) 
m-^oo JO J o 

and consequently — passing to the limit m -> oo — x(f) is a solution of (V) for every 
t e [0, a) because / ^ -^ / in C([0, t]). 

Finally we have to show that the solution x(t) cannot be continued to a solution 
on [0, j9] where ß > a. Assume that a < с (if a = с then x is a maximal solution 
and we have nothing to prove). Let us suppose that the solution x(t) of (V) can be 
continued to [0, ß] with ß > a. Then \x{t)\ S К for te [О, a) and let also |/^(f)| ^ К 
hold for te [0, a] . Further, let ô < a be such that for te [to, a] we have 

U{t, to, a, 3K + 3) < 1 . 

For sufficiently large m we have \x^[t)\ < К + 1 for te [0, fo)- % definition of 
a solution we have 

\^m{t) - ^m(^o)| S 
I Л а ' • 

й \Mt) - fm{to)\ + 1 ^[Gm{t. T, X ^ 5 ) ) - G^{to, T, X ^ 5 ) ) ] | 

for t > to. Assume that there exists a te (to, a] such that s e [0, t) => |x^(s)| < 
< 3i^ + 3 and |хДг)| = 3iC + 3 then 

1^.(0 - ^m{to)\ S 2K + U{t, to, a,3K + 3)<2K + l 

and |хД?)| < 3X + 2. This contradiction yields \x^{t)\ < 3K + 2 for every te 
б [ 0 , а ] . 

Hence 
1^.(0 - x„{to)\ й \Ш - fn,{to)\ + U(t, to, ОС, 3K + 3) 

for t, to e [0, a] and consequently {x„^} is equicontinuous on [0, a] since the sequence 
{f^] is equicontinuous on [0, a] . But this contradicts the property of the sequence 
{x^} stated in (S). 

Necess i ty . Assume that there exists tel and a sequence cpj,e C([0, tj) such that 
(Pf^-^ (pin C([0, tJ) and such that Jo T>Gf,{t, т, (Pk{s)) does not tend to Jo T>G{t, т, (p(s)) 
for /c -» 00, i.e. we assume that the sequence G^ e ^{U), к = 1,2, ... does not con
verge jointly to the function G e ^(U). This means that there exists a fixed e > 0 
and a subsequence {Gi] of {G^} such that 

( + ) Г DG^(^ T, cpi{s)) ~ I DG{t, T, Ф)) 
IJ 0 Jo 

> e, 

Let us set 
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for г G [о, t]. Evidently fi e C([0, î]). It can be easily shown that the sequence {/J 
is bounded and equicontinuous on [0, r] (to this end (G4, U) and the uniform con
vergence of (pi to (p is used together with the equahty //(0) = (Pi{0)). Hence there 
exists a subsequence {/^} of {/,} which converges uniformly on [0, t] to a certain 
function/. The functions ç^ are solutions of the equation (V^) and by the continuous 
dependence property (C) there exists a subsequence of (p^ which converges uniformly 
to a solution of equation (V). Hence ^ is a solution of (V), but by ( + ) we get 

\(p{t)-f{t)--{' DG(t,T,cp{s))\ = 
I Jo I 

= Hm \(p^{t) - f^{t) - DG(^ T, (p{s))\ = 
m->oo 1 J o I 

= l im I DG„(( , T, cp„{s)) - I DG{t, r, cp{s))\ ^ e, 
m-+oo IJ 0 J o I 

i.e., (p cannot be a solution of (V) and this is a contradiction. The property (C) does 
not hold under these circumstances. 

In the general case of assumptions given for the validity of Artstein's theorem 4.1.a 
it is not easy to give suitable sufficient conditions for the joint continuity of the topo
logy ^ on the space ^(l / ) . 

If the assumption (G3) is replaced by its "uniform" version which will be exactly 
formulated below, then the topology of uniform convergence on compact sets in 
the space of functions G is jointly continuous. 

Let fi{t, T, b, K, e) : I X I X I X (0, + 00) X (0, -\- 00) -> IR be such a function 
that jLi(t, %b,K, s) is nondecreasing in [0, ^] and ß{t, t, b, K, s) — fi{t, 0, b, X, e) < 
< e. 

The set ^{U, ß) associated with this function ц consists of all functions from ^{U) 
that satisfy the condition (G3) with the given function ii and with the same Q{t) 
from (G3). 

On ^((7, ji) let us define the well-known topology ^^ of uniform convergence on 
compact sets. This topology is given by the following seminorms. 

For each Ь e / , К > 0 let 

p(G; b,K) = sup [\G{U T, X)|; 0 ^ t ^ b, 0 ^ T ^ fe, |X| ^ K } . 

The collection of sets s{s; b, K) = {G; p(G; b, K) < г] defines a subbasis of neigh
bourhoods of the origin. It is known that if we set b„ -^ c —, K„ -> +00 and define 
Pn{G) = p(G; fo„, JRL„), then the countable subsets 5„(s) = s(s', b„, K„) generate the 
same topology and the space in question is a metric space. 

4.2. Proposition. The topology ^^ {of uniform convergence on compact sets) 
is jontly continuous on ^{U, fi). 
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Proof. By definition we have to show that for every f e / the mapping 

{G, x)h^\ DG(r, T, x(s)) 

from ^{U, n) X C([0, {]) into й^ is continuous with respect to the product topology 
of ^i and the sup-norm topology on C([0, tJ). Let ^ e / be fixed. Assume that 
(G„, x„) -^ (Go, XQ) with respect to the product topology on ^(U, ß) x C([0, r]). 

Let us consider the difference 

i: 
j DG„(r, T, x,(s)) - Г DGo(f, T, ^0(5)) = 

D[G„{t, T, x„(s)) - G„(r, T, Xo(s))] + 

+ I D[G„(r, T, Xo(s)) ~ Go(^ T, Xo(s))] = /1 + /2 . 

Since-lim ^„(s) = Xo(s) uniformly on [0, f], there exists К > 0 such that \x„(s)\ g К 
п->оо 

for every и = 0 , 1 , . . . . 
Let e > 0 be given and let Q{t) > 0 correspond to this e > 0 by the assumption 

(G3). To this Q(t) > 0 there is HQG N such that for n > UQWQ have \xj(s) — XQ{S)\ < 
< Q(t) for S € [0, î]. By (G3) used for n > HQ WQ get for every s e [0, t] and 0 ^ 
g Ti ^ T2 ^ ^the inequality 

|^»(^. T^z. ^n{s)) - G„{t, Ti, x„(s)) - G„(r, T2, Xo(s)) + G„(r, TI, XO(S))| ^ 

S f^{t,T2,t,K,B) - fi{t,Ti,t,K,e). 

Hence for и > MQ we get by (1.7) the inequality 

\h\ufi{t,t,t,K,8)-pL{t,0,t,K,s)<s, 

Since XQ : [0, r] -» Я*̂  is uniformly continuous, there exists a piecewise constant 
function (p : [0, r] -> i?̂ ^ such that [^(s) — Xo(s)| < ^(f) for every se [0, r]. Using 
(G3) we have 

| G „ ( ? , T 2 , (p{s)) ~ G„(r, T i , ф(5)) - G„{t, T2, Xo(s)) + G„{t, T i , Xo(5)) | ^ 

^ /i(r, T 2 , . . . ) - /г(г, T j , . . . ) 

for every s e [0, r], 0 ^ TI ^ T2 g f, n = 0,1, ••. • 
Hence 

If D{G„{t, T, Xo(s)) - G„{t, X, (p{s))) < £ 
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for n = о, 1, and this yields 
in 

l/^l = D'G„{t, T, Xo(s)) ~ Go(r, T, Xo(s))] 
IJo 

If 
^ 2e + D[G„(r, T, (p{s)) ~ Go(f, т, (?)(s))] 

IJo 
Since (p : [0, r] -> J^^ is piecewise constant, the last term (by definition of the 

integral) is a finite sum of terms of the form Gn{t,T, c) — Go(t, т, с), G„(t, т + , с) — 
- Go(f, т + , с) or G„(r, т ~ , с) - Go(r, т - , с) where О ^ т ^ ? and с е Я ^ |с| ^ К 
for а suitably chosen constant К. 

Since G„ -^ Go in the topology ^^ of uniform convergence on compact sets, there 
is an Wi e /V such that for n > n^ we have 

If 
IJo 

D[G„{t, T, (p{s)) - Go{t, T, ф))] < e. 

In this way we have shown that for every e > 0 there is an ^2 e Д/ («2 = max («o, n^)) 
such that for n > «2 we have 

If 
IJo 

jy\Glt, T, x„(s)) - Go{t, T, Xo(s))] g | / i | + |/2| < e + 3e = 4e, 

i.e., the topology ^^ on ^{U, jj) is jointly continuous. 

5. SOME RESULTS WITH A LIPSCHITZ-TYPE CONDITION 

For functions G :I X Î X R^ -^ R^ determining the integral term in the equation 
(V) the assumptions (Gi) —(G4) played an essential role for deriving basic results 
concerning the solutions of (V). 

In the assumption (G3) the type of continuity of the differences G(t, T2, x) — 
~ G(t, Ti, x) in the variable x is specified. Let us now replace the condition (G3) 
by a stronger condition which reads as follows. 

(G3+) For every bel, K> 0 there exists a bounded function L(t,T), L(t, •) 
nondecreasing in [0, t\ such that 

\G{t, T2, x) - G{t, Ti, x) - G{t, T2, y) - G{t, Ti, y)\ й 

й \ х - y\ {L{t, T2) - L{t, Ti)) 
whenever 

{t, Ti, x), {t, T2, x), {t, Ti, y), {t, T2, y) e [0, fe] X [0, b] x R^ 

such that 0 й T:I й '^i й t й b and jx|, \y\ g К. 

It is easy to see that (G3 + ) implies (G3). 
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Remark. If a function g :I x I x R^ -^ IR^ satisfies (gi), (gz) given in Section 3 
and the Lipschitz condition: 

for every bel, К > 0 there exists a real valued function l{t, s) defined for 
0 S s ^ t S b, l{t, •) integrable on [0, r] such that 

\g{t, s, x) - g{t, s, y)\ й 1{U s) \x - y\ 

ifOusutSb, \xl\y\uK, 

then the function G : I x I x R^ ~-^ R^ сшЫ defined by 

G{t, T, x) = g(t, s, x) ds 

and it can be easily shown that the function G satisfies (G3+) with the function 
L[t, T) given by 

L(r,T)= \\t,s)ds. 

A fundamental result using (G3 + ) is a uniqueness result for the equation (V). 

5Л. Theorem. If f:I -^ R^ is continuous and if G :I x I x R^ -^ R^ satisfies 
the assumptions (Gi),(G2),(G3+),(G4),w/iere the function L from (G3+) satisfies 

(5.1) Hm [L{t + Kt -h h)- L{t + h, t)] = 0 

for every t e [0, b], then the integral equation (V) has a uniquely determined 
continuous solution. 

Proof. The existence of a continuous solution of the equation (V) is an immediate 
consequence of Theorem 2.4. Assume that we have two continuous solutions x, y 
of the equation (V) both defined on the interval [0, d). Let us define 

â = sup {t 6 [0, d); x{s) = y{s) for s ^ t} 

and assume that â < d. Evidently 5 ^ 0 since x(0) = y{Ö) = /(0) by definition of 
a solution. From the continuity of solutions y, x we have x{t) = y(t) for every 
16 [0, Й], Further we have also 

x{t) ^ y(t) = Г D[G(r, T, x{s)) - G{t, T, y{s)y] =• 

= rD[G(^T,x(s))-G(^T,y(5))] 

for telâ,â -h h], h > О, ä + h < d. 
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Using (G3 +) and the estimate (1.7) we get 

(5.2) \x{t) - y{i)\ й I Г E>[<̂ (̂ ' ̂ ' <')) - ^(^ '̂ У Ш \ ^ 

й sup \x{s) - y{s)\ DL{U T) - ||x - y||c([a.a-f/,]) {L{t, t) - L{t, â)) 
se[a,a+/i] Ja 

for te[â,d-i- h]. 
By (5.1) we can assume that /i > 0 is such that L(f, t) ~~ L{t, â) < ^ for every 

îE[â, â -^ h]. By (5.2) we obtain 

IF ~ y\\caä,ä+h}) < i p ~ }̂ ||c([a,a+ft]) • 

Hence ^(5) = y(s) for s e\_â, â + h], consequently â = d and the theorem is proved. 

Remark. Theorem 5.1 generalizes the known classical uniqueness result for 
Volterra integral equations as stated e.g. in Miller's book [10]. 

Tn fact if we restrict ourselves to the classical Volterra equation 

x{t) = f{t) + g(t, 5, x{s)) ds 

then by the above remark the additional condition (5.1) has the form 

rt + h 

lim l(t + h, s) ds = 0 
h-*0 J t 

for t e [0, b], i.e., we obtain exactly the condition for uniqueness stated in [10] by 
R. K. Miller. 

Let ^(U) be the space given in Section 4. Let ^{U, L) be the subspace of functions 
belonging to ^(U) which satisfy (G3 + ) with a given function L{t, т, b, K). Then in 
the considerations in Sec. 4 the subspace ^{U, ц) can be replaced by ^{U, L). 

Moreover, in a similar way as Artstein did in [1], it can be shown that a topology ^ 
on ^((7, L) is jointly continuous if and only if for every t and every continuous func
tion X : [0, t] -» IR^ the expression 

DG(r, T, x(s)) 

is continuous in G, 

6. A KNESER-TYPE THEOREM FOR GENERALIZED VOLTERRA EQUATIONS 

In the paper [5] W. G. Kelley has shown that for the solution funnel of the classical 
Volterra integral equation the Kneser theorem holds. Here we prove the same theo
rem for generalized Volterra integral equation (V). 

For any [a, b^ a I let JB([Ö, Ь]) be the m*etric space of bounded functions x : 
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: [a, b] -> ^^ with the supremal metric 

Q{X, y) = sup \x{t) - y{t)\ for x,ye Б([а, b]), 
tela,b-\ 

\\x\\s = snp\x{t)\ for xeB{[a,b]), 
tela,b} 

' 5c([a, bj) will denote the subspace of piecewise constant functions belonging to 
B{[a, b]). Clearly, C([a, b]) is a subspace of J3([a, b]). 

Let us observe the following. If a function G:I x I x R^ -^ R^ satisfies (Gi) —(G4) 
then for each bel and К > 0 the expression 

sup D[G{t, T, ф(5)) - G{to, T, (p(5))] 
:Bc([a,b]) J 0 

\\<Р\\ваК 

tends to zero for î -^ to provided ô e / . 
This can be shown as follows. Let b e /, i^ > 0 be given. By (G4) for every e > 0, 

to el there exists ô > 0 such that 
(*b I 

D[G{t, T, x{s)) - G{to. T, x(s))] < e If 
for \t - to\ < Ô, xe C([0, b]), ||x||c ^ iC. 

Let an arbitrary (p e Bc{[0, b]), ||<р||д ^ iC be given. Then there exists a sequence 
x„ G C([0, b]), ||x„||c ^ i^ such that lim x„(s) = ^(s) for every s e [0, b]. 

n-*oo 

By (Gl) —(G3) we obtain that for the functions G(t, т, x^s)), G(?, т, (p(s)) the as
sumptions of the convergence theorem (L8) are satisfied. Hence for every tel 
we have 

lim DG{t,T,x„{s))= \ DG{t,T,(p{s)), 
n-*ao J o J o 

If to, tel are fixed and such that |̂  — ^o| < ^ then 

I BG{t, T, cp{s)) ~ Г DG(to, T, (p{s))\ S \ I D[G(r, r, ф)) - G(r, т, x„(.))] + 
IJo Jo I 'Jo I 

Ifb . * I I P I 
+ B[G{to, T, (p{s) - G(ro, T, x„(s))] + D[G(r, т, x„(5)) - G(fo, т, x„(5))] ^ 

IJo I IJo I 

^ e + I D[G(^ T, (p(s)) - G(^ T, х„{зЩ + | D[G(^o, ,̂ ф)) ~ G{to, т, x„{s))i й 2e 

if we choose a sufficiently large n. This yields our statement. Let us mention that the 
integral Jo DG{t, т, x(s)) exists for every t e B^(lO, b]). This can be verified easily 
by the definition of the generalized Perron integral (see the proof of Corollary 2.2). 

Now we prove the generalized Kneser theorem for integral equations of the form 
(V). 
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6.1. Theorem. Assume that G : I x I x IR^-^ R^ satisfies (Gi) - (G4) . Let 
f : I -> й^ be continuous. Suppose all solutions of 

(V) x{t)==f{t)+ l' BG{t,r,x(s)) 

exist on [0, J ] , where del. Denote 

S = {x G C([0, dj); X is a continuous solution o/(V) on [0, dj]. 

Then S is compact and connected in B([0, d]). 

Proof, a) There is a X > 0 such that \x(s)\ S К for every xe S and s e [0, d~\, i.e., 
S is uniformly bounded. Assume that this statement does not hold. Then there exists 
a sequence x„eS, n = 1,2,. . . such that sup \x„(t)\ > n. Using the continuous 

fe[0,d] 

dependence theorem 4.1.b in this special case we obtain that there exists a sub
sequence {x^} of { x j which converges uniformly on [0, (i] to a solution XQ of (V); 
the continuous function XQ is defined on [0, J ] , hence {x^} is a bounded sequence 
but this contradicts the properties of the sequence {x„}. 

Let us set 
U{t,,t2) = U{t,,t,,K) = 

rd 

sup 
xeC([0,d])ußc([0,d]) 

I D[G(?i, T, x(5)) - G{t2, T, x{s))] 

for ?i, 2̂ ̂  [P> ^] where К > 0 is the uniform bound for S. 
Let X e 5 be arbitrary. Then by the definition of a solution of (V) we have 

\x{t,) - X{t,)\ й \f{t2) - f{tl)\ + 

+ I D[G{t2, T, x(s)) - G{t,, T, x(s))] U\f{t2)~f{tl)\ + U{t2,t,). 

Hence S is a set of equicontinuous functions. 
Let x„ e 5, /Î = 1, 2, ... be such a sequence that x„ -> XQ in J5([0, dj). Evidently 

Xo 6 C([0, d]) and by Proposition 2.1 we have 

DG(r, T, x,{s)) = Г DG{t, T, Xo{s)) hm 

for every r e [ 0 , J ] . Using this and the equality x„(r) = / ( 0 + Jo E)^(^'^» «̂C'̂ )) 
which holds for every n =̂  1,2,. . . and t e [0, rf] we obtain that XQ is a solution of (V) 
and consequently Xo e S. This yields the closedness of S in B([0, dj) and also in 
C([0, d]). Hence 5 is compact in Б([0, J]). 

b) Let us prove that S is connected in B([0, (i]). Without loss of generahty we can 
assume that 

G{t,r,x)=:GUT,^\ 
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for X G R^, \x\ > к because any solution x E S remains in the ball |x| ^ K, and the 
values of G for |x| > X do not aifect the solutions of (V) belonging to 5. 

By (G2) we obtain the existence of M : [0, d] x [0, d] -> R, M(t, •) nondecreasing 
in [0, / ] , such that 

\G{t, T2, x) - G{t, Ti, x)\ S M{t, T2) ~ M(r, Ti) 

for every x e R^ and 0 ^ т^ < T2 ^ t ^ d. Similarly, by (G3) we have for every 
e > 0 a function ß(t, т), in(t, •) nondecreasing in [0, f], /i(f, t) — pi{t, 0) < e, and 
Q{t) > 0, r G [0, J ] such that 

\G{t, T2, x) " G(r, Ti, x) ~ G(f, T2, y) - G{t, Ti, j^)| S 

for all X, }̂  e R^, \x - y\ < Q{t) and 0 ^ t^ ^ T2 ^ Г ^ J. 
Assume that S is not connected in B{[0, dj). Then S = ÄKJ В where A, В e 

G В([0, J]) are nonempty compact sets such that Q(A, B) = у > 0. For x e B([0, dJ) 
we define 

F{x) = ^(x, Л) - Q{X, B) ; 

F is a continuous real valued function. Let x^e A and Xß G Б. Then F(xß) ^ у, 

For /с = 1, 2, ... we define ^̂ .̂ = jdjk, j = 0,1,..., к and define x^ ^ * [0, d] -> R^ 
by the relations 

^5.л(0 = ^ßihj) for ^€ {tk., tk.^J , j = 0, 1, ..., fe - I , 

WO) = x^(0)=/(0), 

and similarly for x^ ̂  : [0, d] -> ^^. 
Evidently x^^ -» x^ and x^^ -> x^ in J5([0, d]). 
For и € [0,1] and к = 1,2,... define further 

^«,.(0)=/(0), 

+ (1 - w) [G(f,̂ , T, Xß(s)) - G(r,., T, XB,,(5))] + 

+ M[G(rfc., T, x^(s)) - G(r̂ t., T, x ,̂;̂ (s))]} 

for tE{tk., tkj^J, ; = 0, 1 , . . . , fe - L 

By definition we have х^д, x^д, x„/t ^ ^c([0, d]) for every /c = l , 2 , . . . and 
w G [0,1]. It can be easily checked that the equalities XQ^ = Xß^j, ^^^ ^i,k = ^A,k 
hold for every fc = 1, 2 , . . . . 

By an induction argument using Proposition 2.1 we can show that if Ui -> UQ, 
/ -> 00 is a sequence of points in [0,1] then x„j ^̂  "̂  M̂o.fc' ^ "~*" ^ uniformly on 
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[о, d] for every fixed /c = 1, 2, . . . . Hence the function -F(x„ fe) : [0, 1] -> Я is a con
tinuous function of и for every fixed k. 

Since Xo,fe ~> Xß and Хц̂  -^ ^л ^^ ^(L^^ ^]) ^̂ ^ /c -> oo and ^(x^) ^ у > 0, 
F(X^) ^ — 7 < 0, there is feo e /V such that for /c > /CQ we have Jp(xo,fc) > 0 and 
F(xi^) < 0. By the continuity of F{x^j,) for every к > ко there exists м̂  e (0, 1) 
such that F(x„^ fc) = 0. 

Let us now define 

(*) ^^(0 = / ( 0 + [ D{G(?, T, x„,,,(s)) + 

+ (1 - щ) [G{t, T, xs{s)) ~ G(^ T, X5,fc(s))] + 

+ M,[G(r, T, x^(s)) - G{t, T, x ,̂fc(s))]} 
for t e [0, J] and к > /CQ. 

Since х„,̂ д, Xj3 fc, x f̂c, x^, x^ e C([0, (i]) u Б^([0, dj) and all these functions are 
bounded by the constant К > 0, we obtain the inequaHty 

(*, *) 1̂ .(̂ 2) - x,{t,)\ й \f{t2) - fiti)\ + 3U{t,, t,) 

for every к > k^ and ^1, 2̂ ^ [0̂  d\. Since lim (7(̂ 2, ̂ 1) = 0 the functions Xj, : [0, i ] -> 

-> ^^ are equicontinuous. We have x̂ Ĉ̂ ) =/(O) for every к = 1,2,... and this 
yields by (*, *) 

MOI^ 1/(0)1+ 1/(0-/(0)1+ 3i/(r,o)^ 
й |/(0)| + sup {|/(0 - /(0)1 + 3[/(r, 0)} , 

f6[0,d] 

i.e., the functions X/, are equibounded. 
Hence there exists a subsequence of {x̂ }̂ which uniformly converges to a function x 

on [0, d\ We denote this subsequence again by {x^}. 
Further Xfc(O) = x„^^(0) and for t e {t^j, t^j^,] we have 

WO"-^u.,.(OI^|/(0-/(y + 
1 г hj I 

DG{t, T, x„,.,(s)) -- DG(f,^., T, x„,,,(s)) + 
IJo Jo I 

If 
(1 - t/,) D[G{t, T, X5(5)) ~ G(r, T, X5,,(s))] ~ 

IJo 

D[G(r,^, T, X5(s)) - G(r,^, T, X5^(s))] 

if M, D[G(r, T, x^(s)) - G(r, T, x^,,(s))] 
IJo 

+ 

+ 

-f 

+ 

'D[G(r,^, T, x^(s)) - G{t,^, T, x^,,(s))] ^ | / (0 ^ f{t,)\ + 3U{t, t,) 
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and this yields easily lim ||х^ ~- х^^^^Цд^^о^}) ~ ö- Hence x„,̂ ^ -> x in B([0, dj) and 
Ic-*CX) 

F{x) = 0 because F(x„^^) == 0 and F is continuous in B([0, J]). Passing to the limit 
Ic -> 00 in (*) and using Proposition 2.1 we obtain that the function x belongs to S but 
at the same time x ф S because F(x) = 0. Hence S is connected and the theorem is 
proved.. 
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