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Let two systems of differential equations
(a) x' = F(t,x)
and
(b) Y =G(ty)

be given. Suppose that F and G are such that they guarantee the existence of solutions
of (a) and (b), respectively, on the infinite interval <0, c0).

Definition 1. Let /(1) be a positive continuous function on an interval {f,, ) and let
p > 0. We shall say that two systems (a) and (b) are (y, p)-integral equivalent on
{to, oc) iff for each solution x() of (a) there exists a solution y(r) of (b) such that

(c) () [x(0) = ¥(1)] € Ly(to, )
and conversely, for each solution y(t) of (b) there exists a solution x(t) of (a) such that
(c) holds.

By restricted (Y, p)-integral equivalence between (a) and (b) we shall mean that the
relation (c) is satisfied for some subsets of solutions of (a) and (b), e.g. for the bounded
solutions.

We will say that a function z(r) is y-bounded on the interval {to, o) iff

sup [y~ 1(1) =(1)| < .
t=to

Next we will consider special systems

1) x' = A(t)x + f(t, x)
and
@ Y =A()y,

where A(t) is an n x n matrix-function defined on {ty, ©) whose elements are in-
tegrable on compact subsets of <t,, 00); x and y are n-dimensional vectors and f(z, x)
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is an n-dimensional vector-function defined on (fy, ) x E,.
venient matrix (vector) norm.

In order to obtain first information about conditions which guarantee (y/, p)-
integral equivalence between (1) and (2) let us consider at first a simpler case f(t, x) =
= (p(t), i.e., we will consider systems

(1) x' = A(f)x + qp(t)
and
2) ¥y =A@)y.

Using the property that each solution of (1’) can be represented in the form

x(1) = y(1) + xo(1) »
where x,(t) is any given solution of (1’) and y(f) a suitable solution of (2'), we im-
mediately obtain the following theorem:

Theorem 1. The systems (1') and (2') are (Y, p)-integral equivalent iff there
exists (at least one) solution xo(t) of (1) such that

Y (1) xo(1) € L(to, ) -
Our next problem, therefore, is to find sufficient conditions for the existence of
a solution x,(f) of (1) which has the property that

U0 o) € L0 0)

Suppose that A(r) = A is a constant matrix and has the Jordan canonical form.
Let py < pp < ... < p, = 4 be the distinct real parts of the eigenvalues 1,(4) of 4
and let m; be the maximum order of those blocks in A which correspond to the
eigenvalues with the real part ;. Denote m; = m. Let u be a real number. Let I = m;
if u, = pandlet I = 1if no yu; equals .

" Suppose that A4 = diag (A4, A,), where A, and A, are square matrices such that
Re A,(A;) < p, Re A(A4,) = p for all i. Then

Y(1) = diag (", ")

is the fundamental matrix of (2) with Y(0) = I (I-identity matrix).

Let

Y,(1) = diag ("', 0), Y,(r) = diag (0, e"*?).
Then
G) YO =710+ %0, YOY ()= Y)Y () + %) ¥(s),
Y(O) Y7 (s)=Y(t—s), i=12,

and there exist two constants ¢; > 0 and ¢, > 0 such that
4 [Yi(0)] < e e 1(1).,

[V()| = |Yao(—1)] S cae™ 5(t) for 120,
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where —6 = max [Re 1(4,) — p] < 0, m*

m; if y; — p = —§ and

t" =1
w=1 " o<i<1.
We shall need the following results in our considerations

Lemma 1. Let ¢ be a positive constant and let g(1) = 0, g(1) € L,(0, o). Then

t
J e 709 g(s)dse L (0, ), p=1.
0o
Proof. Observe first that our hypotheses imply that

lim J. e "9 g(s)ds = 0 (see Brauer [1]).
= Jo

Let now p = 1. Then for T > 0 we get

([ amJe[- ()]

0

+ ij-o e~ e g(1) U; e g(s) dS] dt < lj g(t) U g(s) dS] Cas
UCDEE ‘

Lemma 2. Let g(t) = 0 be continuous on 0 < t < oo and such that

J sg(s)ds < oo
0

+

Q

Then

J g(s)dse L0, ), p=1.
t

Proof. If [§ s g(s)ds < oo then [§ g(s)ds < oo and [;° 9(s) ds is nonincreasing
Then for p > 1, using the second mean-value theorem we get

[ (] oo (o) [ srasars
<([Tass) " [saos <

for some ¢ € (0, o). For p = 1 we have

J':J:O 9(s)ds dr = j-:ﬁ) g(s)drds = J:Sg(s)ds <.
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Lemma 3. Let y(t) and ¢(t) be positive functions for t > 0, Y(t) a nonsingular
matrix and P a projection. Further, suppose that

5) [ vororroeors]” s«
fort=20,K>0,p > 0and

(6) J.: exp (—K“’J‘t @ (s) ¥ 2(s) ds) dt < .
Then

(7) limy =) |Y(1) P| =0 as t—
and

(8) [w=1(r) Y(1) P| € L,(0, ) .

Proof. We follow first the proof due to T. G. Hallam [2]: Let

h(1) = ¢"(t) IY(t) P|7r.

We consider the identity

) Y(t)Pj‘ h(s) ds = L lo=2(s) Y(s) P~ Y(t) P Y~X(s) o(s) ¢~ (s) Y(s) P ds .

0

Using the Holder inequality we get

0 oz ([ oa) ([ o rrors)

and with respect to (5) we have

(11) b1(0) ¥() P| < K( L h(s) ds)_””.

Denote

1/p

t
ut) = f h(s) ds
0
Then (11) yields the inequality

p(e) [Y(1) P o~ '(1)] = Ko™ ¥(2)
and since

T = b = YO Pl o),

we get
—-1/p
uin(s) (%) < K o7 (1) ¥()
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or

955 > K7 o%(t) (1) )

Integrating from f; (¢, > 0) to ¢ we obtain the inequality (using Gronwall lemma)

(12) 1) 2 e K0 oy as]

1

t

Note that (6) implies
J' " o(s) U () ds = % .
0
Thus lim p(t) = o0 as t — oo and then (11) yields (7) and
r [v='() |Y(2) P[]7 dt < K” r po i) de.
t 1
In virtue of (12) we have

J,promorra s o[- [ ooy ra]a,

ty

t

which by (6) gives (8).
Now we are able to prove some theorems concerning the (, p)-integral equi-
valence of the systems (1), (2).

Theorem 2. Let A be a constant matrix. Let ¢(t) be continuous on {0, ), and let
(13) j tle(t) dt < 0.
0
Then the systems (1') and (2') are (1, p)-integral equivalent, p = 1.

Proof. For a solution x(t) of (1') we have x(t) = y(f) + xo(t), where x,(t) is
a particular solution of (1) and y(7) a suitable solution of (2'). To prove our theorem
it suffices to prove the existence of such solution y(f) of (1’) that

po(t) € L(0, o0) .

Let Y(z) be the fundamental matrix of (2'), u = 0 and Y,(¢), Y,(¢) the corresponding
matrices mentioned above. Let x, be such that

N Y, ' (s) o(s)ds = 0.

xO+J
0

Then the solution x(z), x(0) = x,, of (1') satisfies

(14 x() = Yi()x + J"O Yt - 5) ofs) ds — j " Yot - 5) ofs) ds

t
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To prove that x(¢) belongs to L,(0, o) it is sufficient to prove that each of the three
terms on the right hand side in (14) belongs to L,(0, o).

Owing to (5), we have

J. LYi(s)] |xo[17 ds = |xo|” C‘;J’ exp [ —pds] xhu(s)ds < +o0.
0

0
Then

. o [t P
j dt < j [j TS et = ) @(s)] ds] dt
0 o LJo

But, using the Minkowski inequality, we have

{j:)[j;e6““S’%m4r——s>|w<atds]”d,}*? -
éU?Uf‘“”M*—»wmmﬂ%§”+

Lo

we have t =2t — s = 1t > 1, therefore

[ RIGRLCE

0

3t
) t/2 P
= J U' e—é(x~s}/le—6(1~s)/2(t _ S)m"‘—l I(p(s)\ ds] dt =

=) t/2 p
= B1J. [j 6_5('~S)/2lq)(s)l ds] dt
o LJo

where we have used the inequality ¢ ®/2u™ 1 < B, for u = 0 and & > 0. Now
from Lemma 1 we have I] < oo.

Using the same fact that e ™ y .t — 5) < B, for t — s = 0 we get

< B J: [ j :/2 l(s)] ds]pdt < B, J: UZ ¢<p(s)1dssz <o,

following Lemma 2. Thus the second term on the right-hand side in (14) belongs
to L,(0, o0).

For the third term on the right-hand side in (14) we have

o e aesff o s e[ [ Tate - obone ] of "<
] WrsT o} " of[ [ e}

lIA
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<ol o] ol ], et o<

according to Lemma 2.

Theorem 2 and its proof give us some ideas how to establish the (, p)-integral
equivalence between (1) and (2) There are three things to be used: the formula of
variation of constants, the decomposition of the fundamental matrix Y(t) of (2) into
two matrices Y;(7), Y,(¢) which have similar properties as (3), (4), the estimation and
the growth of f(t, x). The last task will be easier if we know an apriori estimate for
the solutions x(r) of (1).

Theorem 3. Let Y() be a fundamental matrix of (2), y(t) and ¢(t) positive con-
tinuous functions for t = 0.
Suppose that:

a) there exist supplementary projectors P, P,, a constant K > 0 and 2 <
< p <  such that

U' [ (1) Y(1) P, Y7 '(s) o(s)]” ds + r [~ "(r) Y(t) P, Y™ '(s) (p(s)[”ds]”p <K

forall t 20,

b) there exists g: <0, 00) x <0, 0) — €0, o) such that (i) g(t, u) is monotone
nondecreasing in u for each fixed t e {0, oo) and integrable on compact subsets
of €0, ) for fixed ue 0, ), (ii) |5 s g" (s, ¢)ds < oo for any constant ¢ = 0,
where 1/p + 1[p’ = 1,(iii) let (1, x) be continuous on <0, ©) x R" and such that

for each x e R"
7 %)] = () 9t ¥~ (1) [x))

a.e. on <0, ),

o) r exp {-K—»f' 07(s) 7(s) ds} dt < o0,

0 0

d) j: [Py Y7'(s) @(s)| g(s. ¢) ds < oo

Then the sets of y-bounded solutions of (1) and of (2) are (y, p)-integral equivalent.

Proof. Let y(7) be a y-bounded solution of (2) on 1y, ), t, = 0. Then there is
¢ > 0 such that y € B, ,, where

t21o

B, , = {z : z is continuous on (to, ) and sup [y~ (t) z(t)| < o} .

Define for x € By ,, the operator

Tx(t) = y(t) + f Y(t) Py Y™ '(s) f(s, x(s)) ds — Jw Y(t) P, Y7 '(s) f(s, x(s)) ds .

to t
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The existence of
J‘ Y(r) P, Y™ !(s) £ (s, x(s)) ds

is guaranteed by a) and b)-
Then

[v= ') Tx(1)] =
<y ) [v(0)] + 'f [v=1(1)Y(r) PY " (s)| | f(s.x(s))| ds + J w[ak"(t)Y(t)PzY“‘(s)!.

Vs as s e [ 70 Y0 2y 0] o) oty ) s +

+fw%mmmr%w@mwwmwm
Using the Holder inequality, a), b) we get
[v=1() Tx(1)| <
gg{wmmm mwm}gwmm§+

{wwmnymmmﬁgg@m@ g

<o +K{'[ 9" (s, 2Q)ds}

If we choose t, such that

0 , 1/p’
K {f 9" (s, 20) dS} <o,
to

we have that T'maps By, ,, into itself.

Now we are going to prove the continuity of Ton By, ,,- Let x,(t), x() € B, ,, %,(t)
converge to x() uniformly on compact intervals of (t,, ). For Tx,(1) — Tx(t) we
have

[Tx,(t) = Tx(t)| <

< ﬁ |Y(t) P, Y1) |£(ss xu(s)) = £ (s, x(s))| ds +
+fW@&T%MMm@—MMM®é
E0) J: ].p‘l(t) Y(t) P, Y~4(s) (p(s)] @ !(s) 'f(s, x,(5)) — f(s, x(s))] ds +
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=90 [0 YO P Y6 0] 07 ) s 6 = s3] 0 =
=vo{[ proror e opas”
. { J 077 (5) £ %5)) — S5, x(5))|P d} .
+ (1) { f W40 Y() P2 Y7 (s) pls)]? d}
A[ ool s - o] <
< vk [ o776 500 = S 2O af "
v OK{ [0 O 500 = 160 o}
s 2690 {[ 0T O 1) - s ) ) <
< 2K (1) { f 077 () /(5. 3(5)) — S5, 5P ds +
# [Tl ) — s s e

On (1o, 1), x,(s) converges to x(s) uniformly. Then the continuity of f(r, x) implies
that to & > 0 there is ny(7,) such that for n > n (t,) we have

9~ (5) [/ (s, xfs) — f(s: x(s))] <

for se {1ty t1>.

Applying this and b) (iii), we have for n > n,

[7=0) = =49 = 20040 [4 rgr 2_[ () 97 (5) 97 (s, 20) dS:I”p,

Choose ¢, such that

J g7 (1, 29)dt<l
1y

2 47°KP
Then we get

|Tx,(1) — Tx(t)] < e y(r).

This shows that T'is continuous on B, ,,.
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The functions in TB, ,, are evidently uniformly bounded for each t > f, because
TB, ,, = B, 1, Because z = Tx is a solution of the equation

' = A(t) z + (1, x())
the derivatives of the functionsin TB,, ,, are uniformly bounded on every compact
interval. Thus the functions in TB,, ,, are equicontinuous on every compact subinter-
val of {1, o).

Then Schauder’s fixed point theorem yields the existence of a fixed point x(r) of T
in B, ,,- A direct verification shows that this fixed point x(r) is a y-bounded solution
of (1).

Conversely, let x(t) be a y-bounded solution of (1). Define

’ t )

W) = x(i) - j ¥(0) Py Y~(5) /s, x(s)) ds + J ¥()) Py Y4(s)f(s, x(s)) ds

to t
It is easy to prove that y(r) is a y-bounded solution of (2).
Now we have to prove that

Y2 Ix(t) - y(l)[ e L(to, »0).
v () [x(0) — ¥()] =
- f U(0) Y1) Py Y~ (5) f(s, x(s)) ds — j 0 Y(0) Py Y X(s) (s, x(s)) ds -

It is sufficient to show that the terms on the right-hand side belong to L,(t,, ).
By the assumptions of the theorem and the Holder inequality we get

j ") Y(0) Py Y X($) f(s, x(s)) ds

We have

< j 0¥ 0) Py (5)] os) g5, 2) s =

< [4™1(1) Y(1) P, j " 1Py Y6 0(5) 9(s, 20)] s

Since (from Lemma 3)
|w=*(1) Y(r) Py| € L,(ty, )

and d) holds, it is evident that this first term belongs to Ll,(to, oo). For the second
term we have

J' 10 Y(0) Py Y6 |1, x(5))] ds < r 01O Y () oY~ (s)] 0(s) 9(s. 20) ds <

/p’

<([" B OO P @0l as) ([Trewe)” <

o 1/p’
<K (j 9”(s, 20) ds) .
t
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Thus from b) (ii) and Lemma 2 we get that also this term belongs to L(to, ). The
proof of the theorem is complete.

Corollary 3.1. Let p = 1 (and thus p' = o). Assume that the assumptions of
Theorem 3 are satisfied except b) (ii) which is substituted by the conditions
limy(t) =0 foreach ¢ =0 and y(t)el(0, o),
| Sndie e}

where y(t) = sup g(s. ¢). Then the conclusion of Theorem 3 holds true.
s>t

Corollary 3.2. Let p = oo (and p’ = 1). Let the condition a) of Theorem 3 be
replaced by

sup 1§20 Y() P, Y15 o(9)] + sup [0 Y0 P2 Y9 ofs)] < K

and o
[~ '(t) Y(2) Py| € L,(0, 0), »>1

and let all the other assumptions of Theorem 3 hold.
Then the sets of Y-bounded solutions of (1) and of (2) are (Y, v)-integral equi-
valent.

Theorem 4. Let y(t), o(t) and () be positive continuous functions for t = 14 2 0
with

limy () = 0
t— o

and f(t) bounded on {1, ).
Let Y(t) be a fundamental matrix of (2).
Let w: (19, 0) x I > 1,1 = {0, 0) be such that
a) w(1, r) is monotone nondecreasing in r for each fixed t € (1o, ), w(t, c Y(t)) is
integrable on compact subsets of {t,, ) for each ¢ 2 0,
b) {2 sa(s)w(s, ¥(s))ds < oo for each ¢ 2 0,
c) {1, B(t — s)als) w(s, c Y(s)) ds € L(to, ) for each ¢ = 0; v > 1.
Let there exist two supplementary projectors P, P, and a constant ¢ > 0 such
that

d) [Y(@) P, Y '(s)a" (s)| S c Bt —s) for t2521,
|Y(t) P, Y7 X(s) a_l(s)l <c for 1, £t<s< .
Then the sets of y-bounded solutions of (1) and of (2) are (1, v)-integral equivalent.
Proof. Let t, = 7, be fixed and let y(t) be a y-bounded solution of (2) with
ly()]y = sup |y (1) (1) < 6 for 5> 0.
Let -
o(t) = a'(t), g(t,r) = o) w(t, Y(t)r) for t=1,.
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Then for ¢ = 1o, g(t, r) is monotone nondecreasing in r and for each fixed rel,
g(t, r) is integrable on compact subsets of {74, c0) by condition a).
From b) we get

J’ g(s,c)ds <o for ¢=0.
0

Moreover, condition d) and the assumptions on () and () imply that there exists
K > 0 such that
sup [xp_l(t) Y(t) P, Y7 '(s) (p(s)l + sup ’z//"l(t) Y(1) P, Y '(s) (/)(s)| <K.
10<s=st t<s<wo
Then the same reasoning as in the proof of Theorem 3 with p = oo gives the existence
of a solution x() of (1) such that

[x(1)]y = f;i |¢="(1) x(1)] = 26

and

(15) x(1) = »(1) + J " Y(1) Py Y (s) £ (% x(s)) ds — J " Y() P, Y 1($) (5, x(s)) ds.

to t

Conversely, given a solution x(r) of (1) we have that
t 0
() = x(1) j ¥(1) Py Y~ 1(s) /(s x(s)) ds + J’ ¥() P, Y~ 1(s) /(5. x(s)) ds
to t
is a solution of (2).
Now, we have to prove that
[x(9) = 3(0)] & Lo, )
if (15) holds. We have

(1) = 5(0) gJ" 1Y(1) P, Y~1(5)] /(5. x(5))| s + J " O P, Y (5)] £ (s, x(6)ds <

to t

< J 1Y) Py Y(5) 2 s)] os) wls, 26 p(s)) ds +
+ Jtv |Y(t) P, Y7 (s) a‘l(s)l as) w(s, 20 Y(s)) ds <

<e { j Bt = s)a(s) w(s. 20 Y(s)) s + j " al(s) w(s. 20 ¥(s)) ds}.

t
It is sufficient to prove that each of the two terms on the righthand side belongs
to L,(to, ).
For the first term the statement is true by assumption c) and for the second term
it follows from b) and Lemma 2.

Lemma 4. (Theorem 5, M. Svec [3].) Let |/(1, x)| < w(t, |x|) a.e. on I for each
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x € R", where w(z, u) is a nonnegative continuous function in (t, u) onl x I, non-
decreasing in u for each fixed tel.

Suppose further that
J e w(t, ce* (1)) dt < o foreach ¢ =0
0

and

to—2 o C

lim lj e w(t, ce’ (1)) dt = 0

to
uniformly with respect to ¢ e {1, ®).
Then every solution x(t) = x(t; t,, x,) of (1) is defined on {t,, ) and the estimate
|x(1)] £ De* zn(1), 121,20
holds for some constant D > 0.
Corollary 4.1. Let I, m and A be defined as above. Suppose that there exists a non-
negative function w on I x I such that

a) w(t, r) is monotone nondecreasing in r for each tel and w(t, ce* x,(1)) is in-
tegrable on compact subsets of I for each c.

b) f(t, x) < w(t, ,x,) a.e. on I for each x € R",
) [ w(t, ce™ y,(1)) dt < oo for each ¢ = 0 if A =0,
[&e " w(t, ce* y,(1)) dt < o for each ¢ 20 if 2 <0,

d) lim 1/c [ e™* w(t, ce* x,(1))dt = 0

to—

uniformly with respect to c € {1, ©)
e) Ji, e 729 ot — 5) 1" w(t, ce (1)) di e L(tg, 0), v 1.
Then the systems (1) and (2) are (1, v)-integral equivalent.
Proof. Since all the hypotheses of Lemma 4 are satisfied, solutions x(t) of (1) and
¥(1) of (2) satisfy the estimate
Ix(t)l S DM p(1), 121
and
[¥(1)] £ Dye™ ), 1210
Let
Y(1) = e* 1,.(1) -
Then it follows that all the solutions of (1) as well as those of (2) are y-bounded.
Therefore if A < 0, all solutions of (1) converge to zero as t — oo and the same is

435



true for the solutions of (2)- Then, using the Minkowski inequality, we get

[ 0= stor oe] "5 (] o a) o ([ popar)” <

/v

9 1/v © 1/
< D, U et X,,,+v(t)dt) + D, U e Xm+,,(t)dt) <.
to to

We need to consider the case 2 = 0 only. We may proceed as in [3, p. 56]. We get

x(1) — ¥(t) = ft Yi(t — ) f(s, x(s)) ds — J.w Y,(t — s) f(s, x(s)) ds

to t

and using (4) and b),

t
() = (0] = e [ €77 s =)l D) 05 +
1

0

+ cZJ. x(s — 1) w(s, Dye* x,(s)) ds <

t

t
<e J €7D 1t = 5) wls, Dye® 1,(s) ds +
to

+ ¢, J w(s, Dye* x,(s)) ds + CZJ' s w(s, Dye™ y,(s)) ds.
T t

The first term belongs to L,(f, ©) by €), the second and the third belong to the same
space as a consequence of Lemma 2.
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