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0. By a hypergraph we shall mean an ordered pair Ж = (V, ê), where Fis a finite 
nonempty set, and (f is a set of nonempty subsets of V (note that our concept of 
a hypergraph is not identical with the concept of a hypergraph in the sense of [ l]) . 
The elements of V are called vertices of Ж and the elements of S' are called edges 
о1Ж. 

Let J^ = ( F , #) be a hypergraph. Denote и = | F [ . Consider a sequence (v^,..., v^ 
such that (i^i, ..., i;„} = F If for each EeS there exist integers i and k, 1 ^ i S k ^ 
^ n, with the property that 

E = {vy, i^juk}, 

then we shall say that the sequence (f̂ , ..., v„) is a projectoidic arrangement of Ж. 
Obviously, if (v^, •••?^,j) is a projectoidic arrangement of Ж, then the sequence 
(i;„, ..., v^) is also a projectoidic one. We shall say that . ^ is a projectoid if there 
exists a projectoidic arrangment of Ж. This means that ^^ is a projectoid if and only 
if its vertices can be numbered by the integers 1, . . . , and n in such a way that for each 
Eeê,if /, J, and к are integers, 1 ^ i ^ j ^ к ^ n, such that both i and к are the 
numbers assigned to some vertices of E, then/ is also the number assigned to a vertex 
o f £ . 

Objects equivalent to projectoids were studied by means of the matrix theory in [3] 
and [7], and by means of the theory of bipartite graphs in [7]. As families of sets 
projectoids were studied in [2] and [6] (an applications of projectoids in the area 
of information retrieval was shown in [2]). In [2], [З], [6], and [7] various charac­
terizations for projectoids (or objects equivalent to them) can be found. For the full 
list of "subhypergraphs" (in a certain sense) which are forbidden for projectoids the 
reader is referred to [6]. (Note that the terms "projectoidic" or "projectoid" have 
not appeared in the papers mentioned above). 

It is obvious that a hypergiaph with at most two edges is a projectoid. In the 
present paper for every hypergraph Jf" we shall construct a certain set of hypergraphs 
with exactly three edges and show that ^ is a projectoid if and only if each hypergraph 
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in the constructed set is. The proof of this is based on the concept of a strict separating 
set (see below). In the last section of the paper this result will be applied to a problem 
concerning directed graphs. 

1.1. Let j / be a finite nonempty set of finite nonempty sets. Then we denote by < J / > 
the hypergraph (F' , se), where 

V ^[jA. 

Let J T = (F, ^) be a hypergraph. If J^/ ç (Г, then instead of (F, (Г - j / ) we shall 
write Ж — s^. If Z is a, nonempty subset of F, then we denote by <Z>^ the hyper­
graph (Z, S"), where 

(f ' = {£ n Z; £ e (f and £ n Z Ф 0} . 

We denote by и{Ж) the set defined as follows: 
(1) if VEV, then {v} e и{Ж); 
(2) if Eeé', then E e и{Ж); 
(3) if S\ S" e и{Ж) and S' n S" Ф 0, then S' u S" e и(Ж); 
(4) no other element belongs to и{Ж). 

It follows from (Ij that the hypergraphs <ß(c^)> and (F, и{Ж)) are identical. It is 
obvious that there exists exactly one partition ^ of F with the properties that (a) if 
и G^, then и e и{Ж); and (b) if Ee<^, then there exists We ^ such that £ Ç Ж 
If V E ̂ , then we shall say that <F'>^ is a component of Ж. We say that Ж is con­
nected if it has exactly one component. Clearly, Ж is connected if and only if 
F e и(Ж). Let ja/ £ (f; we say that j / is a separating set of c^ if ^ — j / is not con­
nected. We say that a separating set ja/ of J f is strict if no proper subset of J^ is 
a separating set of Ж. 

Proofs of the following four propositions will be left to the reader: 

Propostion 1. Let Ж = (F, S') be a projectoid, and let V ^ V and ê' Ç S, where 
F' Ф 0 Ф S'. Then both <F'>^ and {S"} are projectoids. 

Proposition 2. Let Ж be a hypergraph. Then every projectoidic arrangement 
of Ж is a projectoidic arrangement of (и(жУ), 

Proposition 3. A hypergraph Ж is a projectoid if and only if (^и{жУ) is. 

Proposition 4. Let S^, S2, and S^ be three finite nonempty sets. Then <{Si, ^2, S^}} 
is a projectoid if and only if the following conditions hold: 

(1) if there exists a permutation p on {1, 2, 3} such that 5^(1) n (5'̂ ,(2) ~ ^р(з)) + 
+ 0 + ^рп) ^ {^p(3) - Sp(2)), then Sp(2) ^ >̂ p(3) ^ -^pd); 

(2) if the sets S^ n ^2, 82(^82, and S2 n S^ are nonempty, then there exists 
a permutation q on {1, 2, 3} such that 5^^) Я 5 (̂2) u Sq ^y 

We now state the main result of this paper: 



Theorem 1. Let Ж be a hypergraph. Then it is a projectoid if and only if for any 
three elements 5^, ^2, and S^ of и[Ж), {{S^, S2, S^}} is a projectoid, 

1.2. Proof of Theorem 1. Denote Ж = (F, S') and \v\ = п. 
(A) Assume that ^ is a projectoid. According to Proposition 3, <ß(jf')> is a pro­

jectoid. It follows from Proposition 1 that for any three 5^, ^2, S^ e Q(jf), {{S^, S2, 
5з}> is a projectoid. 

(B) Assume that for any three S^, S2, S^ e и[Ж), ({Sj, S2, 5з}> is a projectoid. 
We shall prove that ^ is a projectoid. 

It follows from assumption (B) that 

(*) for any nonempty proper subset V of V and for any three SJ, ^2, S3 G 
G ß « F ' > ^ ) , <{S;, Si, S;}> is a projectoid. 

If П ̂  2, then . ^ is a projectoid. Let n ^ 3. Assume that for every hypergraph 
Ж' = {V\ S') with | F ' | < /I and with the property that 

for every three S^, S2, S3 G П{Ж% <{S;, S^, 5з}> is a projectoid, 

it has been proved that Ж' is a projectoid. It follows from (*) and from the induction 
assumption that 

for every nonempty proper subset V of F, <F'>^ is a projectoid. 
If Ve <f, then c^ is a projectoid if and only if (F, ê — {F}) is a projectoid. There­

fore, without loss of generality we shall assume that Уфе. We distinguish the 
following cases: 

(1) Assume that Ж is not connected. Then every component of Ж is SL projectoid. 
Hence, Ж is also a projectoid. 

(2) Assume that Ж is connected. 
(2.1) Assume that for every strict separating set j / of Ж, there exists a vertex 

of Ж, say a vertex r{j^), such that <F— {r(s/)}}^ is a component of J f — J / . 
Since n ^ 3, we have that r(j3/) is determined uniquely. 

Let ^ be an arbitrary strict separating set of Ж. If Б^, Б2 G ̂ , then from the fact 
that <{^i, B2, V ~ {r{^)}}y is a projectoid if follows according to Proposition 4 
that either Б^ Ç Б2 or B2 Я B^. Hence, ^ is linearly ordered by the inclusion. We 
denote by J^* the minimum edge of J*. We have that ^ is the set of edges E G <f with 
the properties that r(J') G E and |£ | ^ 2. This implies that if ^ ' is a strict separating 
set of Ж, then J* = ^ 4 f and only if r (^ ) = r(J"). 

Consider a strict separating set ^ of Jf'. Since Уфе', there exists a strict separating 
set WofЖ such that ^ * ^ тГ. For every strict separating set s/ of Ж, either se = % 
or ja/ = i T (otherwise, < { F - {r(ja/)}, F - {r(^)}, У - {r{iV^)\\) is not a projec­
toid, which is a contradiction). This implies that ^ * u 'Г'* = Fand ^ * n -Г** ф 0. 
Assume that there exists XE^ niT. Then ^ * ç Z and '#^* ^ X, Hence, Z = F. 
Thus F G S, which is a contradiction. This means that Ш c^iV = ^. 

Without loss of generality we shall assume that |^* | ^ \if\. It is obvious that 
< F - {r{m)\y^ is a projectoid. We denote by {v^,..., i;„_i) a projectoidic arrange-



ment of < F - {г('^)}>^. Since |^/* - {г{Щ\ un - 2 and W'^eS, we have 
that either v^ ф ^?/* or i;„_i ф f/*. Without loss of generahty we assume that i;„_i ^ ^* . 
Hence, î „_i G iT*. If | i r * | = /i - 1, then | ^* | = w - 1, and therefore, t̂ i e '^*. 
Let |'ir*| Sn - 2\ since i;„_i e #"* and iT* е<Г, we have that ŷ  ̂ -îT*; hence, 
v^ E ̂ * . This means that (w, î ,̂ ..., î „--i) is a projectoidic arrangement of Ж. There­
fore, ci^ is a projectoid. 

(2.2) Assume that there exists a strict separating set s^ oï Ж such that the hyper-
graph Ж — s^ contains no component with n — \ vertices. 

(2.2.1) Assume that Ж — se has at least three components. Let Ж^ = (F^, S'^), 
^2 = (^2. ^2 ) ' . . . , = ît = (K^ ̂ k) be the components of «^ - J / . Hence, к^Ъ. 
Since .ç/ is a strict separating set of Jf, we have that for every f, 1 ^ г ^ A:, and every 
У4 6 с5з/, the inequahty Л n F̂  Ф 0 holds. 

Assume that for every j , 1 ^ 7 ^ /c, there exists Л^ e jâ  such that Fj — Л^ Ф 0. 
Denote 

Б1 = Л1 u F2 u F3 , JB^ = Л2 u F3 u Fi , Б3 = Лз u Fl u F2 . 

Clearly, Б1, ^2, ^3 G ß ( ^ ) . We can see that 

F3 - ^3 ^ ^1 n (Б2 - B3) , F2 - ^2 ^ Б1 n (5з - B^), 

and 
Fl - ^ i Ç (02 n Б3) - J5i . 

Since F̂ . - Лу Ф 0, for 1 ^ j ^ 3, it follows from Proposition 4 that {{Б^, ^2, Бз}> 
is not a projectoid, which is a contradiction. This means that there exists/, 1 ^ f ^ k, 
such that for every Ae s^yVj- ^ A. 

Let (MJ, ..., w„_ĵ ĵ) be a projectoidic arrangement of < F ~ Vf}^. There exists g, 
1 S 9 Û к and g Ф f, such that ŵ  e F .̂ Clearly, Wj,..., Wĵ^̂j e P .̂ Let (TV ,̂ ..., Wĵ |̂) 
be a projectoidic arrangement of <Fy>^. Then 

is a projectoidic arrangement of Jf". Hence, Ж is a. projectoid. 

(2.2.2) Assume that Ж ~ se has exactly two components, say the components 
Ж^ = (Fi,<ri) and Ж-2 = (F2,(f2). Obviously, min(|Fi | , IF2I) ^ 2. Since ^ is 
a strict separating set of Ж, we have for every Ae s^ the inequalities Л n F^ Ф 
Ф 0 Ф Л n F2. Consider arbitrary A\ A'' e se. Since both <{Fi, Ä u F2, Ä' u F^}) 
and <Jx^2^ ^ ^ 1̂? ^ ' ' ^ ^1}) ^rc projectoids, we have that (a) either A' n V^ ^ 
^ Ä' n Fl or Л'' n Fl Ç /1 ' n Fl, and (b) A nV^^ A' n F2 or A" nV^^^. A! r\ 
n F2. This implies that there exists v^ G FI and V2 G F2 such that for every AE se, 
we have v^, V2 e A. 

Consider a projectoidic arrangement (WQ, ..., u^y^^) of <(Fi u {02}^^^ ^^^ ^ P^^' 
jectoidic arrangement (WQ, ..., w^v^ù ^f <^2 ̂ -̂  {^ î}> -̂ It is clear that without loss of 
generality we may assume that uiv^i = V2 and WQ = v^. It is not difficult to see that 



[UQ, ..., г̂ |̂ л (̂_1, Wj, ..., Wĵ r̂ i)is aprojectoidic arrangement of J^. Hence, e^is a pro­
jectoid, which completes the proof of Theorem 1. 

2. Let D = (F, У4) be a digraph in the sense of [4]. For every v e V, we denote 
by R{v, D) the set of vertices which are reachable form v (in D). Obviously, 
vv e R[w, D), for each w e V. Denote 

ЩВ) = {R{v, D); V E V} . 

We denote by [D] the graph obtained from D in such a way that each arc (w, v) is 
replaced by the edge [u, v]. If u, v, w e F, then we shall say that v is (w, w)-reachable 
(in D) if for every path P (in the sense of [3]) which connects и with w in [D], there 
exists a vertex tp belonging to P and such that v e R{tp, D). 

Let D = (F, A) be a digraph. Denote | F | = n. Consider a sequence [vj^, ..., v„) 
such that {v^, ..., v^] — F We shall say that the sequence (v^, ..., v„) is a projective 
arrangement of D if it is a projectoidic arrangement of the hypergraph (F, ^(D)). 
The term "projective" in the sense of the present paper has its origin in mathematical 
linguistics, namely in studying sentence structures. For some furher details the reader 
is referred to [5]. 

We shall say that a digraph D is a project if there exists a projective arrangement 
of D. It is obvious that a digraph D = (F, A) is a project if and only if (F, ЩО)) is 
a projectoid. For example, every out-tree is a project. There exists exactly one digraph 
with less than five vertices which is not a project; it is the in-tree Г with the property 
that [T] is the starKi^^. 

The proof of the following proposition is easy (cf. the proof of Theorem 3.2 in [5]). 

Proposition 5, Let (v^, ..., v„) be a projective arrangement of a project D. Then 
for any three integer i,j, and fc, 1 g i ^ j g /c ^ /i, Vj is (vi, Vi^reachable. 

The following theorem is a solution of the problem which was stated by the present 
author at Czechoslovak Graph Theory Conference held in Brno, May 1975: 

Theorem 2. Let D == (F, A) be a digraph. Then it is a project if and only if for 
any v^, V2, v^ e F, there exists a permutation p on (1, 2, 3} such that Vp^) is 
i^pdP Vp^^^yreachable. 

Proof. One of the implications in the statement of Theorem 2 follows immediately 
from Proposition 5. We shall prove the other one. 

Let D not be a project. Then (F, ЩО)) is not a projectoid. According to Theorem 
1, there exist distinct S^, S2, S^ e Q{{V, ЩВ)) such that <{5i, ^2, S^}} is not a pro­
jectoid. We distinguish two cases: 

(1) Assume that the set Sj, - (̂ '2 u 5з), ^2 - {S^ u Sj), and S3 - (S^ u S2) 
are nonempty. Consider v^^e Si — (S2 u 5з), V2e S2 — (S^ u S^), and f 3 e 5з — 
- (Si u S2). Since Si, S2, S3 6 0((F, ^(Z>)), we have that Vi, where i = 1, 2, 3, is 
not reachable from any vertex in Sj, where j = 1, 2, 3 andj Ф i. Since {{Sj, S2, S^}} 
is not a projectoid, it follows from Proposition 4 that Sj n S2, S2 n S3, and S3 n S^ 



are nonempty. This means that in [£)] there exist paths Рц^Ргъ^ ^^^ ^31 which 
connect Vi with Vi^ V2 with v^, and 1̂3 with v^, respectively, such that each vertex 
of 

^125 ^23» ^^^ ^31 ' belongs to Si u ^2, S2 u S^, and ^з u S^, respectively. 
Hence, for any permutation p on {1,2,3}, Vp(^2) is not (t;^^), t^p(3))-reachable. 

(2) Assume that at least one of the sets S^ — (S2 u iS3), S2 — {S^ u 5^), and 
-̂ 3 "• (*̂ i ^ ^2) is empty. Without loss of generality we assume that .Ŝ  ç S2 u S3. 
If Si n (S2 - S3) = 0 or Si n (S3 - S2) = 0, then S^ ç S3 or S^ с ^2, respec­
tively, and therefore, <{Si, S2, S3}) is a piojectoid, which is a contradiction. This 
means that Sj n (S2 — S3) Ф 0 Ф Sj n (S3 — S2). It follows from Proposition 4 
that (S2 n S3) - Si Ф 0. Consider 1̂12 e Si n (S2 ~ S3), 1̂13 e Si n (S3 - S2), 
and Î;23 ^(^2 ^ S3) — Si. It is clear that i^i2, t̂ i3 and 1̂23 ^re reachable from no 
vertex in S3, S2 and Sj , respectively. There exist paths Pi , P2, and P3 which connect 
t?i2 with i?i3,1^12 with V23, and i;i3 with г;2з, respectively, such that each vertex of 
Pi , P2, and P3, belongs to Si, S2, and S3, respectively. Hence, for any permutation 
p on {1, 2, 3}, Vp^2) is not {vp^iy, z;^,(3))-reachable. 

Thus the proof of Theorem 2 is complete. 
I wish to expiess my sincere thanks to Dr. Z. Stary for his comments on the text 

of this paper. 
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