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A NOTE ON UPPER EMBEDDABLE GRAPHS 

LADISLAV NEBESKY, Praha 

(Received August 20, 1980) 

In the present note only graphs in the sense of the book [ l ] are considered (multiple 
edges or loops are not allowed). Let G be a graph. Its vertex set, its edge set, and the 
number of its components will be denoted by V(G), E(G), and c(G). respectively. 
If и is a nonempty subset of V(G), then <t/>G denotes the subgraph of G induced 
by U, and E(U, G) denotes the set of edges e G E(G) with the property that e is in
cident with exactly one vertex of U. Define ß{G) = \E{G)\ - \V{G)\ + c(G). 

0. Let G be a connected graph. As was shown in [4], for no integer n > [^(G)/2], 
there exists a 2-cell (or cellular [7]) embedding of G onto the orientable surface of 
genus n. G is said to be upper embeddable if there exists a 2-cell embedding of G 
onto the orientable surface of genus [ß{G)l2]. (For various details concerning the 
concept of upper embeddability and related subjects the reader is referred to [6]). 

If Я is a graph, then we denote by b(H) the number of components F of H with the 
property that ß(F) is odd. 

We now state two characterizations of upper embeddable graphs: 

Theorem 0. Let G be a connected graph. Then the following statements are 
equivalent: 

(I) G is upper embeddable; 
(II) there exists a spanning tree T of G such that for at most one component 

F of G - E{T), \E{F)\ is odd; 

(III) for every Ä ^ E (G), 

{^) b{G ~ Ä) + c{G - Ä)~2^\A\. 

The equivalence (I) о (II) was found independently by Jungerman [2] and Xuong 
[8]. The equivalence (ll) о (III) follows immediately from the results proved in [3]. 

In the present note two results will be deduced from the equivalence (I) о (III). 

1. Let G be a graph, and let n be a positive integer. We shall say that G is oddly 
n-edge-connected if it is connected, and for every nonempty proper subset U of F(G) 
with the properties that (JJ^Q is connected, ß{{UyQ) is odd, and no component of 
G ~ E{U, G) is a tree, it holds that \E{U, G)\ ^ n. 
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Theorem 1. Every oddly A-edge-connected graph is upper embeddable. 

Proof. On the contrary, we assume that there exists an oddly 4-edge-connected 
graph G which is not upper embeddable. It follows from the implication (ill) => (l) 
that there exists A ^ E(G) such that (*) does not hold, and that A is minimal in the 
sense that for every A' ^ £(G), if \A'\ < \A\, then b{G - A') + c{G - A') - 2 й 
^ |Л'|. This implies that c(G — A) = b{G — A), and that every component of G — Л 
is an induced subgraph of G. Moreover, we get that c{G — A) ^ 2. 

Consider an arbitrary component F of G — Л. It is clear that F is a component 
of G - F(F(F), G). Since c[G ~ A) = b{G - A), we have that ß{F) is odd and that no 
component of G —F(t/, G) is a tree. Since G is oddly 4-edge-connected, | F ( F ( F ) , G)| ^ 4. 

This implies that 2\A\ ^ 4b(G — A), and thus (*) holds, which is a contradiction. 
Hence, the theorem follows. 

We say that a graph G is cyclically n-edge-connected [n ^ 1) if it is connected, 
and for every nonempty proper subset U of V(G) with the property that neither of the 
graphs <(7>G and (V(G) - U}G is a forest, it holds that \E{U, G)\ ^ n. It is clear 
that every cyclically и-edge-connected graph [n ^ 1) is oddly «-edge-connected. 

Corollary (Payan and Xuong [5]). If a graph is cyclically 4-edge-connected, then 
it is upper embeddable. 

Note that Payan and Xuong [5] proved the result in the corollary without utihzing 
the implication (111) => (1), but their proof is rather difficult. Theorem 1 is stronger 
than the corollary: the graphs in Figs. 1 and 2 can serve as examples of oddly 4-edge-
connected graphs which are not cyclicaliy 4-edge-connected. 

2. We shall say that a connected graph G is absolutely upper embeddable if every 
graph which is spanned by G is upper embeddable. According to the definition, 
every absolutely upper embeddable graph is upper embeddable. The trees of dia
meter ^ 5 and the graph in Fig. 1 can serve as examples of upper embeddable graphs 
which are not absolutely upper embeddable. 

Let Я be a graph. We denote by /(Я) the number of components F of Я with the 
property that either ß(F) is odd or F is a non-complete graph. Obviously, i[H) ^ 

à ьшу 
The following theorem gives a characterization of absolutely upper embeddable 

graphs : 
Theorem 2. A connected graph G is absolutely upper embeddable if and only if 

(**) /(G - A) + c{G - A) - 2 й \Л\ , 
for every A с E{G). 

Proof, (l) We first assume that there exists A ^ E{G) such that (**) does not hold. 
We shall assume that A is minimal in the sense that for every AQ Ç E(G), if |^o| < 
< \A\, then /(G — AQ) + c(G — AQ) - 2 g \AQ\. This implies that every com
ponent of G — Л is an induced subgraph of G. We wish to prove that G is not ab
solutely upper embeddable. 
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Consider a graph H obtained from G in such a way that one new edge is inserted 
into each component F of G — A with the property that F is non-complete and ß[F) 
is even. Since every component of G — Л is an induced subgraph of G, no new edge 
of Я belongs to A. Since b[H — A) = i(G — A) and c(^H — A) = c(G — A), we have 
that b{H - A) + c{H - A) - 1 > \A\. Accordiiig to the implication (1) => (ill), 
Я is not upper embeddable. The desired result follows. 

о p 

Cp h Л ^ 

6 Л <Ц_ jij 

о ô Л ^ 

ô 6 0 — Ö 

Fig. 1. Fig. 2. 

(2) We now assume that G is not absloutely upper embeddable. We wish to prove 
that there exists A ^ £(G) such that (**) does not hold. There exists a graph H' 
which is spanned by G and which is not upper embeddable. According to the implica
tion (III) => (I), there exists Ä ^ F{H') such that b{H' - Д') + c{H' - A') - 1 > 
> \A'\. Put A = A' n E(G). 

Consider an arbitrary component F' of Я ' . Obviously, b[F') + c[F') ^ 2. Denote 
F = <F(F')>G. If c{F) = 1, then i{F) ^ i{F') ^ b{F% and thus i{F) + c{F) ^ 
^ b(F') + c(F'). If c(F) ^ 2, then /(F) + c{F) ^ c(F) ^ b(F') + c{F'). 

This observation implies that (**) does not hold, which completes the proof. 
It can be easily deduced from Theorem 2 that the graph in Fig. 2 is absolutely upper 

embeddable. 
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