Czechoslovak Mathematical Journal

Chong-Yun Chaos; Mu Chang Zhang
 On the semigroup of fully indecomposable relations

Czechoslovak Mathematical Journal, Vol. 33 (1983), No. 2, 314-319

Persistent URL: http://dml.cz/dmlcz/101880

Terms of use:

© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON THE SEMIGROUP OF FULLY INDECOMPOSABLE RELATIONS

Chong-Yun Chao, Pittsburgh
Mou-Cheng Zhang*), Guangzhou
(Received April 25, 1982)

The purpose of this note is to give a sufficient condition for the conjecture in [4] concerning the semigroup of fully indecomposable relations to hold.

A binary relation on a finite set $\Omega_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n elements, $n>1$, is a subset of $\Omega_{n} \times \Omega_{n}=\left\{\left(a_{i}, a_{j}\right) ; a_{i}, a_{j} \in \Omega_{n}\right\}$. Let $B=B\left(\Omega_{n}\right)$ be the set of all (binary) relations on Ω_{n}. Then B is a semigroup with the multiplication defined as follows: for ϱ and τ in $B,\left(a_{i}, a_{j}\right) \in \varrho \tau$ if there is a $a_{k} \in \Omega_{n}$ such that $\left(a_{i}, a_{k}\right) \in \varrho$ and $\left(a_{k}, a_{j}\right) \in \tau$. Let ω be the universal relation on Ω_{n}, i.e., $\omega=\Omega_{n} \times \Omega_{n}$. Let M_{n} denote the set of all $n \times n$ matrices over the Boolean algebra of $\{0,1\}$. Then M_{n} is a semigroup under the ordinary matrix multiplication, and the map

$$
\varrho \rightarrow M(\varrho)=\left(M_{i j}\right)
$$

where

$$
M_{i, j}= \begin{cases}1 & \text { if }\left(a_{i}, a_{J}\right) \in \varrho, \quad \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

is an isomorphism of B onto M_{n}. Also, let X_{n} be the set of all directed graphs on n vertices with allowable loops and simple directed edges. Each matrix in M_{n} can be considered as the adjacency matrix of a directed graph Y in X_{n}, and it determines Y uniquely up to isomorphism. Also, each graph in X_{n} with labelled vertices determines a unique matrix in M_{n} as its adjacency matrix. Hence, there is a one-to-one correspondence among B, M_{n} and X_{n} :

$$
\varrho \rightarrow M(\varrho) \rightarrow Y(\varrho) .
$$

Let $B_{0}=B_{0}\left(\Omega_{n}\right)$ consist of all binary relations on Ω_{n} with $\operatorname{pr}_{1}(\varrho)=\operatorname{pr}_{2}(\varrho)=\Omega_{n}$ where

$$
\begin{gathered}
a_{i} \varrho=\left\{x \in \Omega_{n} ;\left(a_{i}, x\right) \in \varrho\right\}, \quad \varrho a_{i}=\left\{y \in \Omega_{n} ;\left(y, a_{i}\right) \in \varrho\right\} \\
\operatorname{pr}_{1}(\varrho)=\bigcup_{j=1}^{n} \varrho a_{j} \quad \text { and } \operatorname{pr}_{2}(\varrho)=\bigcup_{j=1}^{n} a_{j} \varrho
\end{gathered}
$$

${ }^{*}$) This work was done, while the author was a visiting scholar at the University of Pittsburgh.

Clearly, B_{0} is a subsemigroup of B. This means that, if $\varrho \in B_{0}$, then none of the columns and none of the rows in $M(\varrho)$ consist of all zeros, and every vertex in the graph $Y(\varrho) \in X_{n}$ is incident with at least one incoming edge and at least one outgoing edge (a loop is considered both as an incoming edge and as an outgoing edge). A relation $\varrho \in B_{0}$ is said to be decomposable, if there is a π belonging to the group Π of all permutation relations on Ω_{n} such that $M\left(\pi \varrho \pi^{-1}\right)$ is of the form

$$
\left[\begin{array}{ll}
B & 0 \tag{1}\\
C & D
\end{array}\right]
$$

where B and D are square matrices of sizes $s \times s$ and $(n-s) \times(n-s)$ respectively, and $1 \leqq s \leqq n-1$. Otherwise, it is called indecomposable. A relation $\varrho \in B_{0}$ is said to be partly decomposable, if there exist π_{1} and π_{2} in Π such that $M\left(\pi_{1} \varrho \pi_{2}\right)$ is of the form (1). Otherwise, it is called fully indecomposable. A relation $\varrho \in B_{0}$ is said to be primitive, if there is a positive integer $k=k(\varrho)$ such that $\varrho^{k}=\omega$. If k is the least integer such that $\varrho^{k}=\omega$, then k is said to be the index of ϱ. Let $P=P\left(\Omega_{n}\right)$ and $F=F\left(\Omega_{n}\right)$ be, respectively, the set of all primitive relations in B_{0} and the set of all fully indecomposable relations in B_{0}. Since a fully indecomposable relation is primitive, we have $F \subset P$. A graph Y in X_{n} is said to be strongly connected if, for any two vertices in Y, there is a directed path in Y from one vertex to the other. If ϱ is decomposable, then the corresponding graph $Y(\varrho)$ is not strongly connected. If ϱ is primitive, then the corresponding graph $Y(\varrho)$ is strongly connected. However, if the graph $Y(\varrho)$ is strongly connected, ϱ may not be primitive.

To any $\varrho \in P$, there is a least integer $l_{2}=l_{2}(\varrho)$ such that $\varrho^{l_{2}} \in F$. The conjecture on pp. 162-163 in [4] states:
For any $\varrho \in P$, we have $l_{2}=l_{2}(\varrho) \leqq n$ where n is the cardinality of Ω_{n}, i.e., $\left|\Omega_{n}\right|=$ $=n$. It was shown in [1] that the conjecture does not hold in general. To find a necessary and sufficient condition(s) for the conjecture to hold seems to be very difficult. Here we shall prove the following
Theorem. Let $\varrho \in P=P\left(\Omega_{n}\right)$ with $\left(a_{i}, a_{i}\right) \in \varrho$ for at least one $a_{i} \in \Omega_{n}$. Then $\varrho^{I_{2}} \in F$ with $l_{2}=l_{2}(\varrho) \leqq n$.
We note that $\left(a_{i}, a_{i}\right) \in \varrho$ for at least one $a_{i} \in \Omega_{n}$ implies the corresponding graph $Y(\varrho)$ having at least one loop. Thus, for convenience, a relation ϱ is said to be a looprelation if $\left(a_{i}, a_{i}\right) \in \varrho$ for at least one $a_{i} \in \Omega_{n}$. Consequently, the theorem above can be stated as: If ϱ is a primitive loop-relation, then the conjecture holds, i.e., $\varrho^{\boldsymbol{l}_{2}} \in F$ with $l_{2}=l_{2}(\varrho) \leqq n$.
In order to prove our theorem, we need the following lemmas:
Lemma 1. Let $M=M(\varrho)$ be the adjacency matrix of the graph $Y=Y(\varrho)$ with n vertices. Then, in $M^{r}=\left(M_{i, j}^{r}\right), M_{g, h}^{r}$ is $1($ is 0$)$ if and only if there is at least one directed path (no directed path) of length r in Y from the vertex g to the vertex h.
Proof. It follows from the definition of adjacency matrix and the definition of matrix multiplication over the Boolean algebra of $\{0,1\}$.

Lemma 2. Let Y be a strongly connected graph with n vertices. Then for any two different vertices u and v in Y, there exists a directed path of length at most $n-1$ in Y from u to v.
Proof. Since the graph Y is strongly connected, there exists a path from u to v, and the path goes through each of the vertices in Y at most once. Consequently, the path is of length at most $n-1$.

The following corollary is well known. (For instance see [3] and [2]).
Corollary 2.1. If ϱ is a primitive loop-relation, then the index of $\varrho \leqq 2 n-2$.
Proof. Since ϱ is primitive, the corresponding graph $Y=Y(\varrho)$ is strongly connected. By using Lemma 2 and by using the loop there is a directed path of length $2(n-1)$ in Y from any vertex in Y to all n vertices in Y, i.e., $M^{2 n-2}$ consists of all 1's where $M=M(\varrho)$ is the adjacency matrix of Y, and the index of $\varrho \leqq 2 n-2$ follows.

Let U be a subset of the vertex set $V(Z)$ of a graph Z in X_{n}. We define $N_{t}(U)=$ $=\left\{v \in V(Z)\right.$; there exists a directed path of length t in Z from a vertex v_{i} in U to $\left.v\right\}$, and $\left|N_{t}(U)\right|$ is the cardinality of $N_{t}(U)$. For example, let Z be the following graph

Then $N_{1}\left(\left\{v_{1}\right\}\right)=\left\{v_{2}, v_{5}\right\}, N_{2}\left(\left\{v_{1}\right\}\right)=\left\{v_{2}, v_{3}, v_{4}\right\}$ and $N_{2}\left(\left\{v_{1}, v_{4}, v_{5}\right\}\right)=\left\{v_{2}, v_{3}, v_{4}\right\}$. Also, $\left|N_{1}\left(\left\{v_{1}\right\}\right)\right|=2$ and $\left|N_{2}\left(\left\{v_{1}\right\}\right)\right|=\left|N_{2}\left(\left\{v_{1}, v_{4}, v_{5}\right\}\right)\right|=3$. (Note that Z is not strongly connected.)

Lemma 3. Let $\varrho \in P=P\left(\Omega_{n}\right), \quad Y=Y(\varrho)$ be the corresponding graph and $M=M(\varrho)$ be the adjacency matrix of Y. Then ϱ^{\prime} is partly decomposable if and only if there exists a set U_{k} of k vertices in Y, where $1 \leqq k \leqq n-1$, such that $\left|N_{r}\left(U_{k}\right)\right| \leqq$ $\leqq k$. In other words, ϱ^{r} is fully indecomposable if and only if for every set U_{k} of k different vertices in Y and for every $k=1,2, \ldots, n-1,\left|N_{r}\left(U_{k}\right)\right|>k$.

Proof. If ϱ^{r} is partly decomposable, then there exist π_{1} and π_{2} in Π such that $M\left(\pi_{1} \varrho^{r} \pi_{2}\right)$ is of the form

$$
\left[\begin{array}{ll}
B & 0 \tag{2}\\
C & D
\end{array}\right]
$$

where B and D are square matrices of size $k \times k$ and $(n-k) \times(n-k)$ respectively.

Since B is a $k \times k$ matrix with $1 \leqq k \leqq n-1$, by Lemma 1, we have $\left|N_{r}\left(U_{k}\right)\right| \leqq k$ where U_{k} consists of the k vertices in Y.
If there exists a set U_{k} of k vertices in Y, where $1 \leqq k \leqq n-1$, such that $\left|N_{r}\left(U_{k}\right)\right| \leqq$ $\leqq k$, then there exist permutation matrices Q_{1} and Q_{2} such that $Q_{1} M^{r} Q_{2}$ is of the form (2), i.e., ϱ^{r} is partly decomposable.

Let ϱ be a loop-relation in $P=P\left(\Omega_{n}\right)$ and $Y=Y(\varrho)$ be its corresponding graph in X_{n} with a loo ρ at a fixed vertex w. Let $d_{u}=d(u, w)$ be the shortest length, of the directed path from the vertex u in Y to w. Let u_{1} and u_{2} be two different vertices in Y. We define $u_{2} \leqq u_{1}$, if $d_{u_{2}} \leqq d_{u_{1}}$. (We note that since u_{1} and u_{2} are different vertices, $u_{2}=u_{1}$ means $d_{u_{2}}=d_{u_{1}}$.)

Lemma 4. Let ϱ be a loop-relation in $P=P\left(\Omega_{n}\right)$ and $Y=Y(\varrho)$ be its corresponding graph with a loop at a fixed vertex w. If $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a set of k different vertices in Y where $1 \leqq k \leqq n-1$ such that $v_{k} \leqq v_{k-1} \leqq \ldots \leqq v_{1}$, then $d_{v_{i}} \leqq n-i$ for $i=1,2, \ldots, k$.

Proof. By induction on k. For $k=1$, by Lemma $2, d_{v_{1}} \leqq n-1$. Assume that the lemma holds for any set of $k-1$ vertices in Y. Consider any set U_{k} of k different vertices in Y. We may assume $U_{k}=\left\{v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}\right\}$ with $v_{k} \leqq v_{k-1} \leqq v_{k-2} \leqq \ldots$ $\ldots \leqq v_{1}$. By our inductive hypothesis, $d_{v_{i}} \leqq n-i$ for $i=1,2, \ldots, k-1$. There are two cases to be considered:

Case 1. If $d_{v_{k}}<d_{v_{k-1}}$, i.e., $v_{k}<v_{k-1} \leqq v_{k-2} \leqq \ldots \leqq v_{1}$, then $d_{v_{k-1}} \leqq n-$ $-(k-1)$ implies $d_{v_{k}} \leqq n-k$.
Case 2. If $d_{v_{k}}=d_{v_{k-1}}$, i.e., $v_{k}=v_{k-1} \leqq v_{k-2} \leqq \ldots \leqq v_{1}$, then the path of shortest length from v_{k} to w does not pass through the vertex v_{k-1}, nor does it pass through any of the vertices $v_{k-2}, v_{k-3}, \ldots, v_{1}$. Consequently, $d_{v_{k}}$ is at most $n-1-(k-1)=$ $=n-k$, i.e., $d_{v_{k}} \leqq n-k$.
Now the proof of our theorem goes as follows: Since ϱ is a loop-relation in $P=$ $=P\left(\Omega_{n}\right)$, the corresponding strongly connected graph $Y(\varrho)$ in X_{n} has at least one loop, say, the loop is at the vertex w. Let $M=M(\varrho)$ be the adjacency matrix of Y.

Let $U_{k}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a set of any k different vertices in Y where $1 \leqq k \leqq$ $\leqq n-1$. We may assume that $v_{k} \leqq v_{k-1} \leqq v_{k-2} \leqq \ldots \leqq v_{1}$. Then, by Lemma 4, $d_{v_{i}} \leqq n-i$ for $i=1,2, \ldots, k$. Since Y is strongly connected, the directed paths of length i from $w, 1 \leqq i \leqq n-1$, pass through at least $i+1$ vertices in Y. Say, these vertices are $w, w_{1}, w_{2}, \ldots, w_{i}$ in Y. Again, since Y is strongly connected and since $v_{k} \leqq v_{k-1} \leqq v_{k-2} \leqq \ldots \leqq v_{1}$ where $1 \leqq k \leqq n-1$, by using the loop at w, (if necessary, use the loop many times) there is at least one directed path of length n from v_{i} to w, at least one directed path of length n from v_{i} to w_{1}, \ldots, at least one directed path of length n from v_{i} to w_{i}. Hence $\left|N_{n}\left(\left\{v_{i}\right\}\right)\right| \geqq i+1$ for $i=1,2, \ldots, k$, i.e., for any $v_{i} \in U_{k},\left|N_{n}\left(\left\{v_{i}\right\}\right)\right| \geqq 2$. For any two different $v_{i_{1}}, v_{i_{2}} \in U_{k}$, we suppose $v_{i_{2}} \leqq v_{i_{1}}$, then $\left|N_{n}\left(\left\{v_{i_{1}}\right\}\right)\right| \geqq 2$ and $\left|N_{n}\left(\left\{v_{i_{2}}\right\}\right)\right| \geqq 3$. Since $\left|N_{n}\left(\left\{v_{i_{1}}, v_{i_{2}}\right\}\right)\right| \geqq$ $\geqq \max \left\{\left|N_{n}\left(\left\{v_{i_{1}}\right\}\right)\right|,\left|N_{n}\left(\left\{v_{i_{2}}\right\}\right)\right|\right\},\left|N_{n}\left(\left\{v_{i_{1}}, v_{i_{2}}\right\}\right)\right| \geqq 3$. Similarly, for any t different
$v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{t}} \in U_{k}$ where $3 \leqq t \leqq k,\left|N_{n}\left(\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{t}}\right\}\right)\right| \geqq t+1$. By Lemma 3, ϱ^{n} is fully indecomposable, i.e., $\varrho^{n} \in F$, and it follows that $\varrho^{l_{2}} \in F$ where $l_{2}=$ $=l_{2}(\varrho) \leqq n$.
The following example shows that the loop relation in our Theorem is not a neces sary condition for the conjecture to hold: Let $\Omega_{4}=\{1,2,3,4\}$ and $\varrho=\{(1,2)$, $(2,3),(2,4),(3,1),(4,3)\}$. Then $Y=Y(\varrho)$ and $M=M(\varrho)$ are, respectively,

Then

$$
M^{4}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \in F, \quad \text { i.e., } \quad \varrho^{4} \in F
$$

The following example demonstrates our theorem: Let $\Omega_{5}=\{1,2,3,4,5\}$ and $\varrho=$ $=\{(1,2),(2,3),(3,4),(4,5),(5,1),(5,5)\}$. Then $Y=Y(\varrho)$ and $M=M(\varrho)$ are, respectively,

Then M^{2}, M^{3}, M^{4} and M^{5} are, respectively,

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right] \text { and }\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

We note that $M^{2} \notin F$, because $\left|N_{2}(\{1\})\right|=1$. $M^{3} \notin F$, because $\left|N_{3}(\{2\})\right|=1$. $M^{4} \notin F$, because $\left|N_{4}(\{1,2\})\right|=2$. But $M^{5} \in F$, i.e., $\varrho^{5} \in F$.
The authors wish to thank Professor Š. Schwarz for his helpful suggestions.

References

[1] Chao, C. Y.: On a conjecture of the semigroup of fully indecomposable relations, Czechoslovak Math. J., 27 (1977), 591-597.
[2] Dulmage, A. L. and Mendelsohn, N. S.: Gaps in the exponent set of primitive matrices, Illinois J. of Math. 8 (1964), 642-656.
[3] Heap, B. R. and Lynn, M. S.: The index of primitivity of a non-negative matrices, Numerische Math 6 (1964), 120-141.
[4] Schwarz, Š.: The semigroup of fully indecomposable relations and Hall relations, Czechoslovak Math. J., 23 (1973), 151-163.
[5] Schwarz, $\breve{S}_{\text {.: }}$ A new approach to some problems in the theory of nonnegative matrices, Czechoslovak Math. J., 16 (1966), 274-283.

Authors' addresses: Chong-Yun Chao, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.; Mou-Cheng Zhang, South China Normal University, Guangzhou, People's Republic of China.

