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1. Introduction. By a space we always mean a uniform Hausdorff space. Following
[F—H] a space X will be called paracompact if each open cover has a o-discrete
(in the uniform sense) refinement. It should be noted that paracompact spaces were
introduced in [ Fe]under the name ““spaces of paracompact type”.In [F — H] paracom-
pact spaces were introduced to express an important property o analytic spaces, see
1.4 and 1.6 below. In [Fe] one of the reasons for introduction of paracompact spaces
was the following easy but useful observation: if a space is the union of a countable
family of its paracompact subspaces then the space itself is paracompact. The aim
of this note is to characterize paracompact and separable paracompact spaces in the
spirit of the famous Tamano characterization of paracompactness of a topological
space X by normality of the product space X x fX, see Theorems 1 and 2 in § 2.
In this paragraph we recall several facts from [F—H] and add a few observations.
Note that by a theorem of A. H. Stone, every metric uniform space is paracompact.

Proposition 1. A space X is paracompact iff each countably additive open cover
has a a-discrete refinement.

Proof. “Only if” is self-evident. For ““if’, let % be an open cover and let 7~ be the
smallest countably additive collection containing %, and let {X, ] aec A} be a o-
discrete refinement of ¥". For each a in 4 choose V, in V containing X, and a se-
quence {Uj|new} in % such that ¥V, = J{Us|new}. Then {X,nUs|ae A4,
n € w} is a o-discrete refinement of %.

Proposition 2. Let X be a uniform space, and let Y be a Lindeldf topological
space containing X as a topological subspace. Then X is paracompact iff for each
. closed set C inY, CnX =0, there exists a o-discrete cover M of X such that
M¥ n C = 0 for each M in M.

Proof. For “only if”, if C is given, take a o-discrete refinement .# of the open
cover of X consisting of all U n X where U is open in Y, and U n C = . For “if”,
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given an open countably additive cover % of X, let
C=Y\U{U |Ueu},

where U’ is the largest open set in Yintersecting X in U, and take a o-discrete cover ./
of X such that MY n C = 0 for each M in . clearly 4 refines %.

Corollary. A topological space X is Lindeldf iff each compatible uniformity is
" paracompact.

Proof. “Only if” is evident from Proposition 2, and for *“if”” observe that a pre-
compact uniform space is paracompact iff the underlying topology is Lindelof (in
a precompact space, or more generally, in a separable uniform space, o-discrete means
just countable).

Recall that coz (X) stands for the collection of all cozero sets in X, i.e. the collec-
tion of all coz (f) = {x [fx + 0} with fe U(X) which is the set of all uniformly
continuous functions (real valued) on X.

Proposition 3. A space X is paracompact iff each open cover of X has a o-discrete
(in the uniform sense!) refinement ranging in coz (X).

Proof. “If” is self-evident, and to check ““only if” take any open cover % of X;
since coz (X) is a base for the topology there exists a refinement ¥~ < coz (X) of %.
Let # = \J{.#,} be a refinement of ¥~ with each .#, discrete. For each n choose
a discrete family {Gy [ M eu,} ranging in coz(X) with Gy > M for each M.
For each M € / choose Ve?” with M = Vy. Then {Vjy N Gy I M e Jt} has the
required property.

Corollary. A topologically fine space is paracompact iff the induced topo-
logical space is paracompact.

Proof. It is well-known that a topological space is paracompact if every open
cover has a g-discrete (in the topological sense) open refinement.

Important examples of paracompact uniform space are obtained from the fol-
lowing (see also [F—H], Proposition 4).

Recall that a family {M, ] ae€ A} is o-discretely decomposable (abbr. o-dd) if
there exists a family {M,, | a € 4, n € w} such that M, = J{M,, | n € w} for each a,
and {M,, | a€ A} is discrete for each n. A correspondence f:X — Y is called
o-dd-preserving if for each o-dd family {X,} in X, the family {f[X,]} is o-dd in Y.
For the properties of the two notions see [F—H], § 1, § 2. Observe that each o-dis-
crete family is o-dd.

Proposition 4. Let f be an upper semi-continuous o-dd-preserving correspondence
of X onto Y, and let the values of f be Lindeldf. If X is paracompact then so is Y.
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Proof. Let % be a countably additive open cover of Y, and let ¥~ be the collection
ofallV, = {x | fx = U}, U e %. Clearly ¥"is an open cover of X (each fx is Lindeldf);
choose a o-discrete refinement % of ¥". Then f[.#] is a o-dd refinement of %,
and any “‘o-dd decomposition” of f[.#] is a o-discrete refinement of %.

Remark. The assumption that f is o-dd-preserving may be weakened to o-dr-
preserving (see [F—H], § 2).

Corollary. If X is paracompact, and if K is compact then X x K is paracompact.

Remark. In topology the product of a paracompact space by a discrete space is
paracompact. It is a good exercise for the reader to show that this is not true in uni-
form spaces.

Proof. Take the inverse of the projection X x K — X for f in Proposition 4.

The union of a discrete family of cozero sets does not need to be a cozero set.
Following [F,] we define by induction h° coz (X) = coz (X), and h* coz (X) consists
of o-discrete unions of members of (J{h’coz(X)|B < a}. The elements of
hcoz (X) = J{h*coz(X)} are called hyper-cozero sets, and the clements of
h* coz (X) are called hyper-cozero sets of class o. The following result corresponds
to the fact from topology that every paracompact space is normal. Of course, by
a h* coz (X) function we mean a function on X such that the preimages of open
sets are in h* coz (X).

Proposition 5. (a) If X is paracompact, then
h' coz (X) = hcoz (X) = coz (tX),

(t; denotes the topologically fine coreflection) and any two disjoint closed sets are
separated by a h' coz (X) — function.

(b) If X is a separable paracompact space then
coz (X) = coz (tX),
and any two disjoint closed sets in X are separated by a coz (X) — function.

Proof. (a) It is enough to show that each open F,-set G is in h' coz(X). Let
G = U{F, ] ne w} with all F, closed. We shall express G as a o-discrete union of
sets in coz (X) as follows: For each n let %, < coz(X) be a o-discrete refinement
of {G, X\ F,} (Proposition 3). Then

G=U{U|UveU{#}, U< G}.
(b) If X is separable then o-discrete means just countable, and hence h coz (X) =
= coz (X).
A space X is called o-dd-simple if {{M,, |beB,} acA} is a family of ¢-dd
families, and if the family {{J{M,, [ beB,} ]a € A} is o-dd then so is the family
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{Mg | ae A, beB,}. Similarly, one defines discrete-simple and o-discrete-simple.
It is routine to check that X is ¢-dd-simple iff {{M,, | be B,} ae A} is a family of
discrete families, and if the family {J{M, | b€ B,} | a € 4} is discrete then {M,,}
is o-dd. Recall from [F—H] the following result. The proof is natural.

Proposition 6. In a paracompact space each topologically discrete family is o-dd
(but need not be o-discrete even if the space is metrizable). Every paracompact
space is o-dd simple.

Remark. Note that a uniform space X is paracompact iff the induced topology
is paracompact (i.e. t;X is paracompact by Corollary to Prop. 3) and X is o-dd-
equivalent to tX. Since tX is finer than X we can say that X is paracompact iff the
induced topology is paracompact and each discrete family in t;X (or in the topology,
this is equivalent if the topology is paracompact) is o-dd in X.

§2. Main results. The classical Tamano Theorem [T] says that each of the fol-
lowing two conditions is necessary and sufficient for a completely regular topological
space X to be paracompact:

(i) X x BX is normal.

(ii) For each compact C = X \ X there exists a continuous function on X x X
which is 0 on X x C and 1 on the diagonal 4y (= {(x, x) | x € X}).

The point of the theorem was that (ii) is sufficient. The aim of this note is to prove
a similar characterization of paracompact uniform spaces. The use of fX in Tamano
Theorem is not important; it can be replaced by any compactification of X. In what
follows by a compactification of a uniform space X we mean any compactification K
of the induced topological space; for convenience we always assume X < K.

First observe that the use of uniformly continuous functions is too restrictive:
Denote by Vv Y the Samuel compactification of Y (i.e. the completion of the pre-
compact reflection pY of Y).

Theorem 0. A uniform space X is compact if (and only if) for some compac-
tification K of X the following holds: for each compact C = K\ X there exists
a uniformly continuous function on X x K which is 0 on X x C, and 1 on 4.

Proof. Assume that the condition holds for some K. Take any compact C =« K\ X
and show that C = . It is well-known that (see [C],

V(X xK)= vX xK

because K is precompact. Since X x C and 4y are separated by a uniformly con-
tinuous function, necessarily

XxCndy=0
where the closures are taken in VX xK. But X x C = v X xC, and the projection
of Ay into K is K. Thus C = 0.

479



The main results are:

Theorem 1. A space X is separable and paracompact if (and only if) there exists
a compactification K of X such that the following holds:
for each compact C = K\ X there exists a

Gecoz(X x K) with Ayc G X x K\X x C.

Theorem 2. A space X is paracompact if (and only if) there exists a compacti-
fication K of X such that:
for each compact C = K\ X there exists

Geh'coz(X x K) with 4y =« G <X x KNX x C.

For convenience of the reader we list several other characterizations in the fol-
lowing two theorems.

Theorem 1'. Each of the following properties of a space X is necessary and suf-
ficient for X to be paracompact and separable (i.e. the underlying topology is
Lindeldf by Remark to Corollary to Proposition 1.2)

(a) For some compactification K of X the following holds:

if C =@ K\NX is compact then there exists a cozero set G in X x K such that
4y c G = (X x K)\NX x C.

(b) For each compactification K of X the condition in (a) is satisfied.

(¢) For some compactification K of X the following holds:

if C « K\X is compact then there exists a coz-function which is 1 on Ay and 0
on X x C.

(d) For each compactification K of X the condition in (c) is satisfied.

(e) Foreach compact space K any two disjoint closed sets in X x K are separated
by a coz-function.

Theorem 2'. Each of the following conditions is necessary and sufficient for
a space X to be paracompact:

(a) For some compactification K of X the following condition holds:

if C = K\X is compact then there exists a G € h' coz (X x K) such that Ay =
cGc(X xK)NX xO).

(b) For each compactification K of X the condition in (a) holds:

(c) For some compactification K of X the following condition holds:
if C K x X is compact then there exists a h'! coz-function which is 0 on
X x C and 1 on 4y.

(d) For each compactification K of X the condition in (c) holds:

(¢) For each compact space K, any two disjoint closed sets in X x K can be
separated by a h' coz-function.
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Beginning of the proof of Theorem 2'. If X is paracompact then (e) holds by
Corollary to Proposition 1.4 and by Proposition 1.5 (a). Clearly (¢) = (d) = (c) =
= (a), and (e) = (b) = (a). It remains to show that (a) is sufficient. This will be done
in § 3.

The beginning of the proof of Theorem 1’ is similar.

§3. Proofs. For the proof of Theorem 1 we only need the following

Lemma 1. If S is separable, then for any space X, G € coz (X x S) if (and only
if) G is the union of countably many rectangles U x V, U e coz (X), Ve coz (S).

Proof of Theorem 1 (the rest of the proof of Theorem 1'). Assume that G e
ecoz(X x K), 4y =« G = X x K~NX x C. Write G as the union of a sequence
{G,} in coz (X x K) such that G, = G for each n. By Lemma 1 each G, is the union
of a sequence {Us x Vi|kew}. Since G,nX x C =90, also Vs C = 0. By
Proposition 1.1, X is paracompact and separable.

For the proof of Lemma 1, and also for the proof of Lemma 3 which is used to
prove Theorem 2 we state the following useful fact. Recall that a family is called
completely #-additive if the union of each subfamily is in .#.

Lemma 2. Let o be a basis for uniform covers of X consisting of completely
coz (X)-additive covers. Then G e coz(X) iff there exists a sequence {¥",} in a
such that

G=U{U{V|Ve?, Ve G}|new}.

Proof of Lemma 1. The space S has a basis § consisting of countable covers
ranging in coz (S). Given Gecoz(X x S), by Lemma 2 there exists a sequence
{u,} of completely coz(X)-additive covers of X, and a sequence {#",} in 8 such
that G is obtained from {#, x #,} by the formula in Lemma 2. For each We #",
put

UWw)=U{U|Ue%, U x Wc G}.
Thus G is the union of all U(W) x W, We U{#",}.
Remark. It is easy to see that in a product space X x Yeach cozero set is a count-

able union of rectangles iff one of the spaces is separable.

Lemma 3. Assume that S is separable, and X is any space. Then G e
eh'coz(X x S) iff G is the union of a family {U, x W, | a € A} such that {U,}
is a g-discrete family ranging in coz (X), and {W,} ranges in coz (S).

Proof of Theorem 2 (the rest of the proof of Theorem 2’). Assume that K is com-
pactification of X such that the condition in Theorem 2 holds. Let C =« K\ X be
compact, and choose Geh'coz(X x K) with 4y =« G = X x K\X x C. By
" Lemma 3 we can express G as the union of a family {U, x W, [ ae A} with properties
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from Lemma 3. For each a express W, as the union of a sequence { W}, ] ne w} such
that the closure (in K) of each W} is contained in W,. Then

{UsnW;|aecA, new}

is o-discrete, and the closure of each member is disjoint to C. By Proposition 1.2 the
space X is paracompact.

Proof of Lemma 3. Self-evidently ““if” holds. Assume that G € h' coz (X x S).
Hence G = (J{G, | be B} where {G,} is a o-discrete (in X x S) family ranging in
coz(X x S)\{0}. By Lemma 1, each G, can be written as the union of a sequence
{Upy X Wy} with Uy, € coz (X), W, € coz (S)\ {0}. Thus {U,, x W,,} is o-discrete
in X x S, and U{Uy, X W,,} = G. It remains to show that {U,,|be B, new} is
o-discrete in X, and this follows from the following general result.

Lemma 4. Assume that X and S are spaces, and S is separable. If {M, x Na!
| a € A} is discrete in X x S, and N, # 0 for each a then {M,} is o-discrete in X.

Proof. Take a uniform cover % x ¥~ of X x S which witnesses discreteness of
{M, x N,} such that 7" is countable, say 7" = {V, | n € w}.
Put

A, ={a|N,nV, +0}.

Clearly % witnesses discreteness of {M, l aed,}.

§4. J-paracompact spaces. If @ is a functor of the category of uniform spaces into
itself then a space X is called @-paracompact if @X is paracompact.

Proposition 1. If & preserves the topology then if X is ®-paracompact then so is
X x K for any compact space K.

Proof. The identity mapping ¢(X x K) — ¢X x K is uniformly continuous.
By Corollary to Proposition 1.4 the product space #X x K is paracompact, and
hence ¢(X x K) is paracompact.

We are interested just in the case when @ is the locally finc coreflection A because,
in that case, A-paracompact spaces are characterized by separation by hyper-cozero
sets in the spirit of Tamano Theorem.

Proposition 2. If X is A-paracompact then any two disjoint closed sets in X can
be separated by a h coz-function on X.

The proof follows immediately from Proposition 1.5 (a) and the following fact
from [F,, F,].

Lemma 1. For any space we have

h coz (X) = coz (1X) = hcoz (AX).
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From Proposition 1 and 2 it tollows immediately that the condition in the following
result is necessary.

Theorem 3. In order that a space X be A-paracompact it is necessary and suf-
ficient that there exists a compactification K of X such that the following holds:

For each compact C = K\X there exists a Gehcoz(X x K) such that Ay =
cGcX x KNX x C.
For the proof of sufficiency we shall need the following result.

Lemma 2. If X is o-dd-simple and if S is separable then
hcoz(X x S) = h'coz(X x S).

Proof. It is enough to check that h' coz (X x S) is closed under the formation
of the unions of discrete families. Let {U, f ae A} be a discrete family ranging in
h' coz(X x S). By Lemma 3.1, each U, can be written as a countable union of sets
of the form

UL = U(GE x H3| beB,)

where {Gj | be B,} is discrete in X, Gj € coz(X), Hy € coz (S). Hence it is enough
to show that

U' = U{U,|aeA}eh'coz(X x S)

whenever {U,} is discrete, and each U, is of the form described above. Take a uni-
form cover % x ¥ of X x S which witnesses discreteness of {U,} in X x S, and
let ¥~ be countable, say ¥ = {V, | ne w} and ¥" = coz (S). Put

U,,=U,n(X xV,).

It is enough to show that U,, € h' coz (X x S) for each n. Hence we may and shall
assume that Hy < V, where n € w is fixed. Also we may and shall assume that Hy = 0
for cach a and b. Then it is easy to check that % witnesses discreteness of

{U{G; | beB,} |ae A}.

Since also each {Gj ] b € B,} is discrete, and X is ¢-dd-simple, necessarily {Gj | a € 4,
b € B} is 0-dd, and hence the union (J{Gj x Hj} isin h' coz (X x S)by Lemma 3.3.

The proof of sufficiency in Theorem 3. Assume that K is a compactification of X
such that the condition holds. Take any compact C = K \ X and the corresponding
Gehcoz(X x K) with 4y © G =« X x K\X x C. By Lemma 1

Gehcoz(1X x K)
and by Lemma 2
Geh'coz(AX x K).

“ Hence AX is paracompact by Theorem 2.
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For the convenience of the reader let us state a longer list of characterizations of
A-paracompact spaces.

_Theorem 3'. Each of the following conditions is necessary and sufficient for X
be A-paracompact:

(1) For each compactification K of X the conditions in Theorem 3 holds.

(2) For some, and then each, compactification K of X, any two disjoint closed
sets in X X K are separated by a h coz-function.

(3) For each compact space K the space X x K has the property in (2).

The class of all discrete-simple spaces is coreflective [F,]; this is easy to show
by using 1 -partitions of the unity. Denote by é the coreflection on discrete-simple
spaces. It is shown in [F,, F;] that the identity maps

coz §(X) » AX - 6X

are uniformly continuous, where coz is the metric fine coreflection. Since a family
is 0-dd in Yiff it is 0-dd in coz Y, we obtain immediately:

Proposition 3. A space is A-paracompact iff it is 5-paracompact.

Using the results of [F,] one could perhaps describe the spaces characterized by
separation of h*coz-functions. Here we were using the categorial product. Very
interesting situation appears if we consider the Semi-uniform product of Isbell.
Then the conditions (i) and (ii) in Tamano Theorem are usually not equivalent. This
situation will be considered elsewhere. For a survey see the lecture on Leningrad
international topological Conference 1982, to appear in Lecture notes in Mathematics.
In particular, uniformly paracompact spaces introduced in [R] are considered, and
a space X is paracompact iff m;X is uniformly paracompact. Here m, X is the space
which has all o-discrete coz (X)-covers for a basis of all uniform covers.
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