Czechoslovak Mathematical Journal

K. Leutola; Juhani Nieminen Relations, coverings, hypergraphs and matroids

Czechoslovak Mathematical Journal, Vol. 33 (1983), No. 4, 509-518

Persistent URL: http://dml.cz/dmlcz/101906

Terms of use:

© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

RELATIONS, COVERINGS, HYPERGRAPHS AND MATROIDS

K. LEUTOLA and J. NIEMINEN, Oulu (Received December 29, 1980)

1. The purpose of this paper is to consider symmetric and reflexive k-ary relations. A binary symmetric and reflexive relation is called a tolerance, whence we call k-ary symmetric and reflexive relations k-tolerances and, in particular, a tolerance is a 2-tolerance. As in the case of 2-tolerances, k-tolerances are induced by certain coverings of the set where they are defined. At first we will consider properties of coverings inducing k-tolerances and compatible k-tolerances. In the second part of this paper we will consider hypergraphs and matroids and their connection to k-tolerances.

2-tolerances and related covering are given by Chajda, Niederle and Zelinka in [3]. Unsymmetric binary relations, related coverings and an application is considered in [5]. As a basic reference for hypergraphs we have used the book [2] of Berge and for matroids the book [1] of Aigner.

- 2. A k-ary relation T_k on a set A is reflexive and symmetric i.e. a k-tolerance on A, if $(a, ..., a) \in T_k$ for every $a \in A$ and if $(a_1, ..., a_k) \in T_k$ implies that $(b_1, ..., b_k) \in T_k$ for all k elements b from $\{a_1, ..., a_k\}$. In [3] Chajda, Niederle and Zelinka show that a 2-tolerance T_2 on a set A corresponds to a family \mathcal{M} of subsets of A called τ -covering of A. $\mathcal{M} = \{M_i \mid i \in I\}$ is a τ -covering of A if (1) (3) below hold:
- $(1) A = \bigcup \{M_i \mid i \in I\};$
- (2) if $j \in I$ and $S \subset I$, then $M_j \subset \bigcup \{M_s \mid s \in S\} \Rightarrow \bigcap \{M_s \mid s \in S\} \subset M_j$;
- (3) if $N \subset A$ and N is not contained in any set from \mathcal{M} , then N contains a two-element subset of the same property.
- In [3, Thm. 1] Chajda, Niederle and Zelinka show that there is a one-to-one correspondence between τ -coverings \mathcal{M} and 2-tolerances T_2 such that if \mathcal{M} is the τ -covering corresponding to T_2 , then any two elements of A are in the relation T_2 if and only if there exists a set $M_i \in \mathcal{M}$ containing these two elements. Following [3] we call a family $\mathcal{M}_k = \{M_i \mid i \in I_k\}$ of subsets of A a τ_k -covering if the following conditions (4)–(6) hold:
- $(4) A = \bigcup \{M_i \mid i \in I_k\};$
- (5) $M_i \, \subset M_j$ when $i \neq j$ and $i, j \in I_k$;
- (6) if $N \subset A$ and N is not contained in any set of \mathcal{M}_k , then there is a k-sequence

 $a_1, ..., a_k$ of elements from N (not necessarily disjoint) such that $a_1, ..., a_k$ is not contained in any set from \mathcal{M}_k .

A family $\mathcal{M} = \{M_i \mid i \in I\}$ of subsets of a set A is called a *covering of A*, if (1) holds for \mathcal{M} . We assume that $M_i \neq M_j$ whenever $i \neq j$ and $i, j \in I$.

At first we like to present a connection between τ_2 -coverings and τ -coverings of Chajda, Niederle and Zelinka.

Theorem 1. A τ -covering $\mathcal{M} = \{M_i \mid i \in I\}$ is a τ_2 -covering of A and vice versa.

Proof. By putting |S|=1 in (2), one sees that a τ -covering \mathcal{M} satisfies (5), and because (1) is equivalent to (4) and (3) to (6), \mathcal{M} is a τ_2 -covering. Conversely, let $\mathcal{M}_2=\{M_i\mid i\in I_2\}$ be a τ_2 -covering of A. \mathcal{M}_2 is a τ -covering if (2) holds for \mathcal{M}_2 , and thus we assume that $j\in I_2$, $S\subset I_2$ and $M_j\subset \bigcup\{M_s\mid s\in S\}$. If now $\bigcap\{M_s\mid s\in S\}\notin M_j$, then $a\in\bigcap\{M_s\mid s\in S\}$ such that $a\notin M_j$. On the other hand, there is for every $b\in \bigcup\{M_s\mid s\in S\}$ some M_s containing a and b. In particular, this means that there is for every $c\in M_j$ some $M_{s(c)}$ containing a and c. Let us consider now $M_j\cup\{a\}$. It is contained in a set from \mathcal{M}_2 or not. If it is not, we obtain a contradiction with (6), and if it is contained in, then M_j is contained properly in a set from \mathcal{M}_2 , which contradicts (5). Hence $\bigcap\{M_s\mid s\in S\}\subset M_j$.

Before proving an analogy to [3, Thm. 1], we like to show that there are τ_k -coverings of a set A that are not τ_m -coverings, $k, m \ge 1$ and k > m. Let $A = \{a_1, ..., a_k\}$ and \mathcal{M}_k consist of all disjoint k-1-element subsets of A; as well known, there are k such subset M_i in A. Clearly (4) and (5) are satisfied in \mathcal{M}_k . The only subset N of A not contained in any set from \mathcal{M}_k is the whole set A. A contains clearly a k-sequence $a_1, ..., a_k$ not contained in any set from \mathcal{M}_k , and thus \mathcal{M}_k is a τ_k -covering of A. On the other hand, every k-1-sequence of A is contained in some set M_i from \mathcal{M}_k and thus \mathcal{M}_k is not a τ_{k-1} -covering of A. Similarly one sees that \mathcal{M}_k is not a τ_m -covering of A, k > m. Note that there is only one τ_1 -covering of A: $\mathcal{M}_1 = \{A\}$.

Theorem 2. Let A be a non-empty set. There exists a one-to-one correspondence between k-tolerances on A and τ_k coverings of A such that if T_k is a k-tolerance on A and \mathcal{M}_k is the τ_k -covering corresponding to T_k , then any k elements a_1, \ldots, a_k of A are in the relation T_k if and only if there exists a set from \mathcal{M}_k which contains a_1, \ldots, a_k .

Proof. At first we show that every k-tolerance T_k on A determines a τ_k -covering \mathcal{M}_k of A. Let $\mathcal{L} = \{L_j \mid j \in J\}$ be the family of all subsets of A such that every k elements of L_j are in the relation T_k , and let $\mathcal{M} = \{M_i \mid i \in I\}$ be the family of all maximal elements of \mathcal{L} , which exist by assuming Zorn's lemma. Because of the reflexivity of T_k , \mathcal{L} and \mathcal{M} are coverings of A and according to the maximality, (5) holds for \mathcal{M} . Let N be a subset of A not contained in any of the sets from \mathcal{M} . If every k-sequence of N is contained in some set from \mathcal{M} , then $N \in \mathcal{L}$, and according to the maximality

of \mathcal{M} , N is contained in some $M_i \in \mathcal{M}$, which is a contradiction. Hence (6) holds for \mathcal{M} and thus it is a τ_k -covering of A.

Obviously every τ_k -covering \mathcal{M}_k of A determines uniquely a k-tolerance T_k , and further, \mathcal{M} derived from T_k above determines the original T_k .

Let \mathcal{M}_k be a given τ_k -covering of A, T_k the k-tolerance determined by \mathcal{M}_k and \mathcal{M} the τ_k -covering of A derived from T_k above. In the following we show that $\mathcal{M}_k \subset \mathcal{M}$ and $\mathcal{M} \subset \mathcal{M}_k$, whence $\mathcal{M} = \mathcal{M}_k$, which now implies the assertion of the theorem. $\mathcal{M}_k \subset \mathcal{M}$: Assume that $M_i \in \mathcal{M}_k$ and $M_i \notin \mathcal{M}$. Because of T there is a set $L \in \mathcal{M}$ containing M_i properly. But then, because T is determined by \mathcal{M}_k , for every k elements $a_1, \ldots, a_k \in L$ there is a set $M \in \mathcal{M}_k$ containing these elements. If L is not contained in a set from \mathcal{M}_k , we obtain now a contradiction with (6). Hence $L \subset M_j$ for some $M_j \in \mathcal{M}_k$. But then M_i is contained in M_j properly, which contradicts (5). Thus $\mathcal{M}_k \subset \mathcal{M}$. $\mathcal{M} \subset \mathcal{M}_k$: Let $L \in \mathcal{M} \setminus \mathcal{M}_k$. Because $\mathcal{M}_k \subset \mathcal{M}$, L is now a set N from (6) for τ_k -covering \mathcal{M}_k . Thus L contains a k-sequence a_1, \ldots, a_k not in the relation T_k , which is a contradiction to $L \in \mathcal{M}$.

Accordingly, the investigation of k-tolerances on a set A is equivalent to the investigation of τ_k -coverings of A. As previously shown, a τ_k -covering need not be a τ_m -covering, k > m, whence k-ary tolerances need not be m-ary tolerances.

In the following we consider connections between different τ_k -coverings of a set A.

Theorem 3. Let \mathcal{M}_m be a τ_m -covering of a set A, then \mathcal{M}_m is also a τ_k -covering of A for every finite $k \geq m$.

Proof. It is sufficient to show that (6) holds for \mathcal{M}_m for every finite $k \geq m$. If $N \subset A$ and N is not contained in any set from \mathcal{M}_m , there is an m-sequence a_1, \ldots, a_m of elements of N not contained in any set from \mathcal{M}_m . But then the k-sequence a_1, \ldots, a_m , $a_{11}, \ldots, a_{1,k-m}$ of N, where $a_{11} = \ldots = a_{1,k-m} = a_1$, has the same property for every finite $k \geq m$. Hence the theorem.

Theorem 4. Let A be a finite non-empty set. Then the maximal sets of every covering $\mathcal{M}^* = \{M_i \mid i \subset I^*\}$ of A constitute a τ_k -covering of A for some $k \geq 1$.

Proof. Choose from \mathcal{M}^* all maximal sets and let the family such obtained be $\mathcal{M} = \{M_i \mid i \in I \subset I^*\}$. Because of the maximality of the sets in \mathcal{M} , (5) holds for \mathcal{M} as well as (4). By putting k = |A|, \mathcal{M} satisfies also (6), because if $N \subset A$ is not contained in any set from \mathcal{M} , then by joining to the sequence a_{1N}, \ldots, a_{rN} of all elements of $N \mid A \mid - \mid N \mid$ times a_{1N} , the desired $\mid A \mid$ -sequence is obtained.

Theorem 4 can also be generalized for infinite sets A if \mathcal{M}^* satisfies an additional condition. A covering \mathcal{M}^* of A is called *element finite*, if every $a \in A$ is contained in a finite number of sets of \mathcal{M}^* . By assuming Zorn's lemma, every covering \mathcal{M}^* of A can be reduced to a covering \mathcal{M} of A satisfying (4) and (5). If \mathcal{M}^* is element finite, then also \mathcal{M} is, but the converse need not hold. Assume that \mathcal{M} is an element finite covering of A satisfying (4) and (5), and let $k = \max\{k_a \mid a \text{ belongs to } k_a \text{ disjoint sets in } \mathcal{M}, a \in A\}$. We show that \mathcal{M} is then a τ_{k+1} -covering of A. Let $N \subset A$ be a set

not contained in any set from \mathcal{M} , a_1 an element of N and let $a_1 \in M_{i1}$, $i1 \in I$. Because of the property of N, there is an element $a_2 \in N \setminus M_{i1}$. If $a_1, a_2 \in M_{i2}$ for some $i2 \in I$, then according to the property of N, there is an element $a_3 \in N \setminus M_{i2}$. According to the choices of a_1 and a_2 , $M_{i1} \neq M_{i2}$. If a_1 , a_2 , $a_3 \in M_{i3}$ for some $i3 \in I$, then there is an element $a_4 \in N \setminus M_{i3}$. Because $a_2 \in N \setminus M_{i1}$, $M_{i1} \neq M_{i3}$, and because $a_3 \in N \setminus M_{i2}$, $M_{i2} \neq M_{i3}$. By continuing this process we will find a set of m disjoint elements a_1, \ldots, a_m from N not contained in any set from \mathcal{M} , $m \leq k$, or a set of k disjoint elements a_1, \ldots, a_k of N contained in a set M_{ik} from \mathcal{M} . In the first case, by joining the element $a_1 + k - m$ times to a_1, \ldots, a_m , a desired k + 1-sequence is obtained. In the second case, because N is not contained in any set from \mathcal{M} , $a_{k+1} \in N \setminus M_{ik}$. As above, the sets a_{i1}, \ldots, a_{ik} are pairwise disjoint. The a_{i1}, \ldots, a_{ik+1} is a desired subset of n_{i1}, \ldots, n_{ik} are pairwise disjoint. The n_{i2} disjoint sets from n_{i3}, \ldots, n_{ik} which contradicts the definition of n_{i2} . Thus we can write

Theorem 4'. Let \mathcal{M} be an element finite covering of A satisfying (5). Then \mathcal{M} is a τ_{k+1} -covering of A for $k = \max\{k_a \mid a \text{ belongs to } k_a \text{ disjoint sets from } \mathcal{M}, a \in A\}.$

Let k > m and \mathcal{M}_k be a τ_k -covering of A without being simultaneously a τ_m -covering of A. In the following we look for a rule to determine the least τ_m -covering of A containing \mathcal{M}_k , i.e. the τ_m -hull of \mathcal{M}_k . For that reason we determine at first the family $\mathcal{N}_{km} = \{N \mid N \notin M_i \text{ for any } M_i \in \mathcal{M}_k \text{ and there is no } m\text{-sequence } a_1, \ldots, a_m \text{ in } N \text{ having the same property as } N\}$. Moreover, let $\mathcal{K} = \{K \mid K \text{ is maximal among the sets of } \mathcal{M}_k \text{ and } \mathcal{N}_{km} \text{ and } K \text{ is either from } \mathcal{M}_k \text{ or from } \mathcal{N}_{km}\}$; such \mathcal{K} exists by assuming Zorn's lemma. Now we can prove

Theorem 5. Let \mathcal{M}_k be a τ_k -covering of a non-empty set A without being a τ_m -covering of A, k > m. Then \mathcal{K} is a τ_m -covering of A and it is the least τ_m -covering containing \mathcal{M}_k .

Proof. Obviously \mathcal{K} is a covering of A, and (5) holds because of the definition of \mathcal{K} . Let $N \subset A$ such that N is not contained in any set from \mathcal{K} and assume that there is no m-sequence a_1, \ldots, a_m of N having the same property as N. But then N is also not contained in any M_i from \mathcal{M}_k without containing an m-sequence with the same property. Hence $N \in \mathcal{N}_{km}$ and thus N is contained in some K_j from \mathcal{K} , which is a contradiction. Thus (6) holds for \mathcal{K} and it is a τ_m -covering of A.

It remains to show that \mathscr{K} is the least τ_m -covering of A containg \mathscr{M}_k , i.e. there is for every $M_i \in \mathscr{M}_k$ at least one $K_j \in \mathscr{K}$ containing M_i . Assume that \mathscr{D} is a τ_m -covering of A containing \mathscr{M}_k and \mathscr{D} is contained in \mathscr{K} , i.e. for every $D_s \in \mathscr{D}$ there is a $K_j \in \mathscr{K}$ containing D_s . $\mathscr{D} \subset \mathscr{K}$ properly only if 1) some D_s is contained in some K_j properly or 2) there is a $K_j \in \mathscr{K}$ for which there exists no $D_s \in \mathscr{D}$ such that $D_s \subset K_j$.

1) Let $D_s \subset K_j$ properly and let $x \in K_j \setminus D_s$. Because \mathscr{D} is a τ_m -covering of $A_j \cup \{x\} \subset D_k$ for any $D_k \in \mathscr{D}$. Thus there is an m-sequence a_1, \ldots, a_m in $D_s \cup \{x\}$ not contained in any set from \mathscr{D} . On the other hand, this m-sequence is contained in

some $K_t \in \mathcal{K}$. Note that every *m*-sequence from a $K_j \in \mathcal{K}$ is contained in some $M_i \in \mathcal{M}_k$ according to the definition of \mathcal{N}_{km} . Hence the *m*-sequence a_1, \ldots, a_m is contained in some M_i which is contained in some $D_h \in \mathcal{D}$, which is a contradiction. Hence 1) cannot hold.

2) Let $K_j \in \mathcal{K}$ be a set such that no $D_s \in \mathcal{D}$ is contained in K_j . Because $\mathcal{D} \subset \mathcal{K}$, K_j is not contained in any $D_s \in \mathcal{D}$ and because \mathcal{D} is a τ_m -covering of A, there is an m-sequence a_1, \ldots, a_m from K_j not contained in any $D_s \in \mathcal{D}$. This is absurd from the same reason as in 1), and hence 2) cannot hold.

Thus \mathscr{D} is not contained in \mathscr{K} properly. If there is \mathscr{D} containing \mathscr{M}_k , then K and D have a common lower bound \mathscr{H} (which can be constructed by means of the intersection of m-tolerances determined by \mathscr{D} and \mathscr{K}) containing \mathscr{M}_k and contained in \mathscr{K} . As the proof before shows, $\mathscr{H} = \mathscr{K}$. Hence \mathscr{K} is the least τ_m -covering of A containing \mathscr{M}_k .

We will make some remarks about τ_m -hulls when considering hypergraphs related to a τ_k -covering \mathcal{M}_k .

Following Chajda [4], we call a k-tolerance T_k defined on the support A of an algebra A = (A, F) compatible with respect to A if and only if the corresponding τ_k -covering \mathcal{M}_k of T_k has the following property

(7) for every *n*-ary operation $f \in F$ of A and for every *n*-tuple $M_1, ..., M_n \in \mathcal{M}_k$ (where $M_1, ..., M_n$ need not be disjoint) there exists at least one $M_0 \in \mathcal{M}_k$ such that $f(M_1, ..., M_n) = \{f(a_1, ..., a_n) \mid a_j \in M_j \text{ and } j = 1, ..., n\} \subset M_0$.

As easily seen, the definition above is equivalent with the following: every n-ary $f \in F$ and every n k-ary relations $(a_{11}, \ldots, a_{k1}), (a_{12}, \ldots, a_{k2}), \ldots, (a_{1n}, \ldots a_{kn}) \in T_k$ imply that $(f(a_{11}, a_{12}, \ldots, a_{1n}), \ldots, f(a_{k1}, a_{k2}, \ldots, a_{kn})) \in T_k$.

One can now prove an analogy of [3, Thm. 3]; the proof is similar to that of [3, Thm. 3], whence we omit it.

Theorem 6. Let A = (A, F) be an algebra, T_k a k-tolerance on A, and \mathcal{M}_k the corresponding τ_k -covering of A. T_k is compatible with respect to A if and only if there exists an algebra B = (B, G) with the following properties:

- (i) there exists a one-to-one mapping $\varphi: F \to G$ such that for any positive integer n and for each $f \in F$ the operation φf is n-ary if and only if f is n-ary;
- (ii) there exists a one-to-one mapping $\chi: \mathcal{M}_k \to B$ such that for every n-ary operation $f \in F$, where n is a positive integer, and for any n+1 elements M_0, M_1, \ldots, M_n of \mathcal{M}_k the equality $\varphi f(\chi(M_1), \ldots, \chi(M_n)) = \chi(M_0)$ implies that for any n elements a_1, \ldots, a_n of A such that $a_i \in M_i$, $i = 1, \ldots, n$, the element $f(a_1, \ldots, a_n) \in M_0$.

A family $\mathcal{M} = \{M_i \mid i \in I \text{ and } M_i \subset A\}$ is called a compatible covering of an algebra A = (A, F), if \mathcal{M} is a covering of A and (7) holds for \mathcal{M} . The maximal elements of \mathcal{M} have the same properties and hence we can write a compatible analogy

of Theorem 4 as a corollary. If A is infinite but the maximal elements of \mathcal{M} constitute an element finite compatible covering of A, we obtain a compatible analogy of Theorem 4'. Because every covering of a finite set A with maximal subsets is element finite, we can write

Corollary. Let A = (A, F) be an algebra and \mathcal{M} a compatible element finite covering of A satisfying (5). Then \mathcal{M} is a τ_{k+1} -covering of a compatible k+1-tolerance on A for $k = \max\{k_a \mid a \text{ belongs to } k_a \text{ disjoint sets from } \mathcal{M}, a \in A\}$.

3. Let A be a finite set and $\mathscr E$ a family of subsets of A. The couple $(A,\mathscr E)=H$ is called a *hypergraph*, if $\emptyset \notin \mathscr E$ and $\mathscr E$ is a covering of A. Its vertices are the elements of A and its edges the sets in $\mathscr E$. By $(H)_2$ is meant a graph (A,E) without loops, where two vertices a_1 and a_2 are adjacent whenever a_1 and a_2 are contained in an edge $E_i \in \mathscr E$ in H. In [2, Chpt. 17:3] a hypergraph is called conformal, if $\mathscr E_{\max}$ of all maximal edges of H is the set of all maximal cliques of the graph $(H)_2$.

Theorem 7. A k-tolerance T_k on a finite set A is a 2-tolerance on A if and only if the hypergraph (A, \mathcal{M}_k) , where \mathcal{M}_k is the τ_k -covering corresponding T_k , is conformal.

Proof. Let T_k be a 2-tolerance on A, i.e. k=2. In the graph $(H)_2$ vertices a and b are adjacent if and only if $(a, b) \in T_2$. According to the maximality of sets M_i , every M_i corresponds then to a maximal clique of $(H)_2$ and every clique of $(H)_2$ is contained in a set $M_i \in \mathcal{M}_2$. Hence (A, \mathcal{M}_2) is conformal. Conversely, if (A, \mathcal{M}_k) is conformal and N is not contained in any set from \mathcal{M}_k , then N contains at least one pair a, b of vertices not adjacent in $(H)_2$. Hence every N contains a two-element set with the same property as N has, and thus \mathcal{M}_k is a 2-covering of A and the corresponding k-tolerance a 2-tolerance on A.

We will say that a hypergraph $H = (A, \mathcal{E})$ is h-conformal, $h \ge 3$, if for every clique of $(H)_2$ not contained in an edge of H there is a number $s \le h$ such that every subset of s-1 vertices is contained in some edge of H but some subset of s vertices not. Moreover, there exists at least one clique of $(H)_2$ with s = h.

Theorem 8. Let $H = (A, \mathcal{E})$ be a hypergraph. \mathcal{E}_{max} is a τ_h -covering and not a τ_{h-1} -covering of A if and only if H is h-conformal, $h \ge 3$.

Proof. The theorem implies that T_k is a h-tolerance and not a h-1-tolerance on A if and only if (A, \mathcal{M}_k) is h-conformal. Now let H be h-conformal and N a set not contained in any set from \mathscr{E}_{\max} . The elements of N constitute a clique of $(H)_2$ or not. If not, then N contains at least one pair a, b of vertices not adjacent in $(H)_2$, whence N contains a h-sequence a, b, ..., b not contained in any set from \mathscr{E}_{\max} . If the points of N constitute a clique of $(H)_2$, then the existence of an h-sequence not contained in any set from \mathscr{E}_{\max} follows from h-conformality. Thus (6) holds for \mathscr{E}_{\max} , for which (4) and (5) hold obviously. Hence \mathscr{E}_{\max} is a τ_h -covering of A and it is not a τ_{h-1} -covering of A because of the last sentence in the definition of h-conformality. The converse proof is now obvious, whence we omit it.

Let \mathcal{M}_k be a τ_k -covering of a finite set and $H_k = (A, \mathcal{M}_k)$ in the least 2-covering \mathcal{M}_2 containing \mathcal{M}_k , two elements a and b belong to a set from \mathcal{M}_2 at least then when they belong to a set from \mathcal{M}_k . In particular, this means that a and b are adjacent in $(H_k)_2$, and on the other hand, every two vertices c and d adjacent in $(H_k)_2$ belong to at least one M_i from \mathcal{M}_k simultaneously. Thus every maximal clique of $(H_k)_2$ is a set from \mathcal{M}_2 , and because the maximal cliques of $(H_k)_2$ constitute a τ_2 -covering of A containing \mathcal{M}_k , the maximal cliques of $(H_k)_2$ constitute the τ_2 -hull of \mathcal{M}_k . As seen above, every τ_2 -covering of A is also a τ_m -covering, $2 \le m \le k$, whence τ_m -hulls of \mathcal{M}_k are contained in \mathcal{M}_2 . These observations and Theorem 8 imply together

Theorem 9. A τ_m -covering \mathcal{M}_m of a finite set A is the τ_m -hull of a τ_k -covering \mathcal{M}_k of A if and only if the graphs $(H_m)_2$ and $(H_k)_2$ derived from $H_m = (A, \mathcal{M}_m)$ and $H_k = (A, \mathcal{M}_k)$, respectively, are isomorphic and H_m is m-conformal, $k \geq m \geq 3$.

We give next a few remarks on the connection between the Helly property and τ_k -coverings. A family $\mathscr{B} = \{B_i \mid i \in I\}$ of subsets of a finite set A satisfies the Helly property if $J \subset I$ and $B_i \cap B_j \neq \emptyset$ for all $i, j \in J$ implies that $\bigcap \{B_j \mid j \in J\} \neq \emptyset$. Let $H = (A, \mathscr{E})$ be a hypergraph, where $A = \{a_1, ..., a_t\}$ and $\mathscr{E} = \{E_1, ..., E_s\}$. In the dual hypergraph $H^d = (E^d, \mathscr{A}^d)$ of H the vertices in $E^d = \{e_1, ..., e_s\}$ represent the edges of H and the edges in $\mathscr{A}^d = \{A_1, ..., A_t\}$ the vertices of H such that $A_j = \{e_i \mid i \leq s, a_j \in E_i\}$. Because a hypregraph H is conformal if and only if (the edge set of) its dual satisfies the Helly property [2, Chpt. 17: 3], we can write

Theorem 10. A τ_k -covering \mathcal{M}_k of a finite set A is a τ_2 -covering of A if and only if the dual of (A, \mathcal{M}_k) satisfies the Helly property.

Let $H = (A, \mathcal{E})$ be a hypergraph with s edges $E_1, ..., E_s$. The representative graph of H is a simple graph G of order s whose vertices $e_1, ..., e_s$ respectively represent the edges $E_1, ..., E_s$ of H and with vertices e_i and e_j joined by an edge if and only if $E_i \cap E_j \neq \emptyset$.

Theorem 11. Every graph is the representative graph of a τ_k -covering \mathcal{M}_k of a finite set A.

Proof. Let G' = (V', E') be a given graph. We will show that it repesents a τ_k -covering \mathcal{M}_k of a finite set A. We add first to every pendant vertex v' of G' a vertex v adjacent only to v'; the graph thus obtained is G = (V, E). Let $\mathcal{Q} = \{Q_1, ..., Q_h\}$ be the family of all maximal cliques of G and let Q_i contain the vertices $v_{i1}, ..., v_{it}$, $t \geq 3$. There are t disjoint sets, each of which contains t-1 vertices of Q_i and constitutes a clique of G; we denote these sets by $E_{i1}, ..., E_{it}$. Let $\mathscr E$ be the family of all such maximal sets and two-element maximal cliques Q of G. Every set from $\mathscr E$ is a clique of G and each vertex and each edge of G is covered by at least one set from $\mathscr E$. According to [2, Chpt. 17: 4, Proposition 1] <math>G is the representative graph of the dual hypergraph $H^d = (E^d, \mathscr V^d)$ of the hypergraph $H = (V, \mathscr E)$. Because $\mathscr V^d_{\max}$

is a covering of the finite set E^d satisfying (5), it is a τ_k -covering of E^d for some finite k. Thus the assertion follows by showing that G' is the representative graph of $(E^d, \mathscr{V}_{\max}^d)$; this is done by considering when $V_1 \subset V_2$ is possible in \mathscr{V}^d . Assume that $V_1 \subset V_2$, $V_1 \neq V_2$. According to the definition, $V_s = \{e_i \mid v_s \in E_i, \ E_i \in \mathscr{E}\}$ when $V_s \in \mathscr{V}^d$. If $V_1 \subset V_2$, then for every $e_i \in V_1$, the clique E_i of G contains v_1 as well as v_2 , and because $V_1 \neq V_2$, there is an $e_j \in V_2$ such that the clique E_j of G contains v_2 but v_1 not. This shows that v_1 and v_2 are adjacent in G, and then $V_1 \subset V_2$ properly only when v_1 is a pendant vertex of G. Thus, when choosing \mathscr{V}_{\max}^d from \mathscr{V}^d only the sets corresponding to pendant vertices of G are dropped out. But then the sets of \mathscr{V}_{\max}^d correspond to the vertices of the original graph G', and the theorem follows.

Previous result can be sharpened for τ_2 -coverings of a finite set A. The sets of a τ_2 -covering \mathcal{M}_2 of A are the maximal cliques of the graph $(H)_2$ derived from (A, \mathcal{M}_2) , and hence the graph representing a τ_2 -covering is also the representative graph of the maximal cliques of $(H)_2$. According to the result concerning the representative graphs of maximal cliques of some graph [2, Chpt. 17:4, Proposition 5], we can write

Theorem 12. A graph G is the representative graph of a τ_2 -covering \mathcal{M}_2 of a finite set A if and only if there exists in G a family $\{Q_i \mid i \in I\}$ of cliques such that

- (i) each edge of G is covered by a Q_i ;
- (ii) $\{Q_i \mid i \in I\}$ satisfies the Helly property.

Finally we will characterize finite matroids by means of k-ary relations. A matroid on a finite set A is a couple (A, \mathcal{C}) , where $\mathcal{C} = \{C_i \mid i \in I\}$ is a family of subsets of A having the properties

- (8) $\emptyset \notin \mathscr{C}$ and if C_i , $C_i \in \mathscr{C}$, $C_i \neq C_j$, then $C_i \not\subset C_j$ for every pair $i, j \in I$;
- (9) if C_i , $C_j \in \mathcal{C}$, $C_i \neq C_j$, $b \in C_i \cap C_j$ and $a \in C_i \setminus C_j$, then there exists $C_s \in \mathcal{C}$ such that $a \in C_s \subset (C_i \cup C_j) \setminus \{b\}$.

The sets from $\mathscr C$ are called circuits of the matroid $(A,\mathscr C)$. Note that $\mathscr C$ need not be a covering of A, but because $\emptyset \notin \mathscr C$, it is the covering of a subset $A' = \{a \mid a \in C_i \in \mathscr C\}$ of A. According to (8) and Theorem 4, $\mathscr C$ is a τ_k -covering of A' for some finite k. Thus the characterization of a matroid $(A,\mathscr C)$ as a k-ary relation reduces to the characterization of $(A',\mathscr C)$ as a k-tolerance T_k having $\mathscr C$ as the corresponding τ_k -covering of A', and, in particular, to the characterization of (9) as a special property of T_k . (9) means the transitivity of T_k corresponding to $\mathscr C$ such that if $(a,b,\ldots,b),(c,b,\ldots,b) \in T_k$, then $(a,c,\ldots,c) \in T_k$. In the case $k=1,\mathscr C=\{A'\}$, and in the case k=2, there is no pair $C_i \neq C_j$ in $\mathscr C$ such that $b \in C_i \cap C_j$, and hence the cases $k \geq 3$ remain. When $k \geq 3$, the transitivity does not ensure the existence of a set C_s containing a such that $C_s \in (C_i \cup C_i) \setminus \{b\}$, and thus something more is needed.

Let B be a finite set, \mathcal{M}_k a τ_k -covering of B and T_k the corresponding k-tolerance on B. If $\mathcal{M}_k \neq \{B\}$, then $\mathcal{M}_k^c = \{B \setminus M_i \mid M_i \in \mathcal{M}_k\}$ is a family of non-empty subsets of B satisfying (5). Clearly \mathcal{M}_k^c is a τ_m -covering of $B^c = B \setminus \bigcap \{M_i \mid M_i \in \mathcal{M}_k\}$ and it

determines an *m*-tolerance T_m on B^c . We call this relation the co-*k*-tolerance of T_k in *B* and denote it by T_k^c . By using co-*k*-tolerance we can characterize matroids as *k*-tolerances as follows

Theorem 13. A non-empty family $\mathscr{C} = \{C_i \mid i \in I\}$ of subsets of a finite set A is the family of circuits of the matroid (A, \mathscr{C}) if and only if \mathscr{C} is a τ_k -covering of A or of $A' = \{a \mid a \in C \in \mathscr{C}\}$ determining a transitive k-tolerance T_k such that (10) holds if $k \geq 3$:

(10) Let (a, b, ..., b), $(c, b, ..., b) \in T_k$ and $(a, c, b, ..., b) \notin T_k$. Then for every two points a' and c', for which (a, b, a', ..., a'), $(c, b, c', ..., c') \in T_k$ it holds: $(b, x_1, ..., x_{k-1}) \in T_k^c$ for every k-1 elements $x_t \in A'$ for which $(a, b, a', x_t, ..., x_t)$, $(c, b, c', x_t, ..., x_t) \notin T_k$.

Proof. Let T_k be a transitive k-tolerance on a set A or on its proper subset A', and let $\mathscr C$ be the τ_k -covering corresponding to T_k . As noted before, (8) holds for $\mathscr C$. The cases k=1,2 are clear because of the considerations before. Hence, let $k\geq 3$, $C_i \neq C_j$, $b\in C_i\cap C_j$ and $a\in C_i\setminus C_j$. Because $C_j \notin C_i$, there is in $C_j\setminus C_i$ an element c for which $(a,c,b,...,b)\notin T_k$ but (a,b,...,b), $(c,b,...,b)\in T_k$. According to the transitivity of T_k , a and c are in the relation T_k , but the set C_s containing a and c need not be from $(C_i\cup C_j)\setminus \{b\}$. Let us choose $a'\in C_i\setminus C_j$ such that $a'\neq a$, and if there is not, a' from $C_i\cap C_j$ such that $a'\neq b$, and if there is not, we put a'=a. The element c' is choosen analogously. All the elements $x_i\in A'$, for which $(a,b,a',x_i,...,x_i)$, $(c,b,c',x_i,...,x_i)\in T_k$, are then outside from $C_i\cup C_j$. Because of (10), these elements constitute in common with b a class of C^c of T_k^c , the complement $C=A'\setminus C^c$ of which belongs to $\mathscr C$. Thus $a\in C\subset (C_i\cup C_j)\setminus \{b\}$, whence $\mathscr C$ is the family of circuits in the set A (and in A', too), and $(A,\mathscr C)$ is a finite matroid. If k=3, T_3 can also be represented as a 4-tolerance, and the proof above is then certainly applicable.

The transitivity of T_k on a set A defined above does not imply non-intersecting sets in \mathcal{M}_k of T_k . The following transitivity, where $(b_1, a_2, a_3, ..., a_k)$, $(a_2, b_2, a_3, ..., ..., a_k) \in T_k$ imply $(b_1, b_2, a_3, ..., a_k) \in T_k$ gives non-intersecting sets in the τ_k -covering \mathcal{M}_k of T_k , and hence such a k-tolerance is a k-equivalence on A.

In the book [6] Pogonowski presents applications of 2-tolerances to linguistics. Some applications of [6] can be developed further by using k-tolerances given in this paper.

References

- [1] Aigner, M.: Kombinatorik II. Matroide und Transversaltheorie, Springer-Verlag, Berlin—Heidelberg—New York, 1976.
- [2] Berge, C.: Graphs and hypergraphs, North Nolland, Amsterdam-London, 1976.
- [3] Chajda, I., Niederle, J., Zelinka, B.: On existence conditions of compatible relations, Czech. Math. J., 26, 1976, 304-311.
- [4] Chajda, I.: Partitions, coverings and blocks of compatible relations, Glasnik Mat., 14, 1979, 21-26.
- [5] Leutola, K., Nieminen, J.: Binary relations, flou relations and application, Control and Cybernetics, 9, 1980, 155–162.
- [6] Pogonowski, J.: Tolerance spaces with applications to linguistics, UAM Press, Poznań, to appear.

Authors' address: Department of Mathematics, Faculty of Technology, University of Oulu, 90570 Oulu 57, Finland.