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STEFAN PORUBSKY, Bratislava 
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In 1889 Voronoi [8] (or see [4]) proved the following remarkable congruence for 
the Bernoulli numbers Bj. (in the even index notation): 

и ^2k ~ PiklQik "^^ith relatively prime P2k ci^id Q2k is the 2k^^ Bernoulli number 
then 

(1) {a'" - 1) P,, ^ Ika'^-'Q.'ls''-' M mod N ') 
s=i LA '^J 

for an arbitrary modulus N and a relatively prime to N. 
This congruence was later re-discovered (or re-proved) by many authors in various 

forms, e.g. [1], [2], [6] or [7], however, in the case of a prime modulus. In 1966 
Slavutskij [5] proved the following generalization of (l): 

(2) 2(a"^ - Ij -^' - 2^^"-^ Y r - i - + (1 - a) J5,„„iiV modiV , 
m s=i LA/̂ J 

where 7 У > 1 , а Ф 0 , m > l are integers with a relatively prime to N. 
In this note we will deduce an extension of (2) from the distribution property of 

Bernoulli polynomials and discuss some connections with the known results. 

Theorem. Given a positive integer N and a rational number с prime to N (i.e., the 
denominator and the numerator of с are relatively prime to Â ) then 

(3) (c^' 

and 

(4) 

for all /c = 1,2, 3, ... . 

^ - 1 ) -

c - 1 
2 

' к s=i INJ 

) [л] denotes the greatest integer in x. 



We preface the proof of the theorem by the following two famihar lemmas. 

Lemma 1. For positive integers N and к we have 

N-l 

2 Xi ^^^"^ = O m o d N . 
x = 0 

Proof. The result is trivial for к = 1. Let therefore к > I. Then 

ï---f.l(T)--'="i(T:/)-
We now show that the rational number N-^ ^jj is iV-integral for j > 2. If j = 3 this 
can be easily seen. If j > 3 then for every prmie p dividing N and j we have 

{j - 2).ord,{N)^j - 2 ^ J ^ ^ o r d , ( ; ) . 
log 2 

as desired. 

Finally, the Clausen-von Staudt theorem implies that the least common denomina­
tor of non-zero numbers from among the Bernoulli numbers ^2^-2? ^2к-з^ ..., B^, BQ 
is a product of primes to the first degree, and Lemma 1 follows immediately. 

Lemma 2. For positive integers N and к we have 

N- 1 

X; x^^ = NB2J, mod N . 
jc = 0 

Consequently, if N possesses the property that for every prime p dividing N we 
have p — I )( 2k then 

N-l 

Y. x^^ = 0 mod N . 
jc=0 

The p roo f of Lemma 2 follows by obvious modifications of the preceding one. 
In what follows the terminology and notation is borrowed from [3]. 
One of the essential features of the Bernoulli polynomials Bf^(X) is the fact that 

the family of functions 

Ei^\x) = M^-^^ Bf, ( ( ^ ) ) , M an integer 

(with {t} denoting the fractional part of t) defines a distribution on the projective 
system {Z/MZ} ordered by divisibility. This means that the following relation is 
satisfied for 3; G Q/Z: 

(5) M-̂  I вМу + А)-В, 
xmodM \ \ M// 

«My». 



This relation is, however, nothing else as a rewritten form of the well-known result 
due to J. L. Raabe, 

a = 0 \ M J 

Given a rational number c, с ф 1, prime to the integer N, we regularize this dis­
tribution defining 

EZ\X) = £Г(х) - ."ЕПС-'Х) , X e Z/MZ . 

If D(/cj is the least common denominator of the coefficients of the polynomial Bj^X) 
then a routine computation ([3], p. 38) gives 

(6) EZ\X) - X- ^£<«Дх) mod - ^ Z \c, 1' 
к. D(k) L с 

Proof of the theorem. Since the theorem is true for с = 1, we can suppose 
с Ф 1. Let 

d = Y\ pOrdp(kD(k)) ^ 

p\N 

Then 
к . D{k) = d. D 

with an integer D prime to N. It is plain that the rational number с is also prime to Nd. 
On the other hand, the distribution property (5) yields 

xeZI'NdJ. X 

= X ЕГ{Х) - С* I ЕГ{^) = (1 - ĉ ) ^f . 
X X к 

Using (6) we get 

(1 _ c') ^ Jj^x'-'E';^{x) mod- Z L Л . 
к x=o ^ L ^J 

Since D and с are prime to N, we can write 
r> Nd-l 

(1 _ c') ^ ЕЕ X ^ ' " ' CcX^) mod N . 
/C л: = 0 

Note that Е[^,^\Х) is iV-integral ([3], Theorem 2.l(i), p. 39j. Therefore 
Nd-l N - 1 d - 1 

X x'-i £(^^V) = S К и ' + tNf-^EZf{w + tN) ̂  
x=0 w=Ot=0 

^ Y^w'-'l^ E[''f,\w + tN) mod N = 
>v = 0 t = 0 



the last equality being again a consequence of (5). If x = 0, 1, ..., iV — 1 then 

E i » . - e . { c ( 9 ) - i } . ( I - c ) . . . c [ £ ^ ] с 
+ -

Combining the above resuhs we obtain 

(7) ( j - c ^ ) ^ ^ ; ^ ^ - ' ' - ^ 
к w = 0 N 

^ w^ ^ mod N . 
M' = 0 

After the substitution c\-~> c~^, which is a bijection on the set of rationals prime to N, 
our lemmas give the desired results, as stated in theorem. 

It is evident that our theorem implies the congruence (2). Moreover, if iV is a prime 
then our approach is different from that used by Johnson [1] and leading to no 
restrictions on the modulus N. Johnson's result is contained in the following one 
which is a consequence of (7) rather than of the theorem itself. 

Corollary 1. Under the hypotheses of Theorem we have 

^ ^ 2k s^i IN] 

provided N is odd, or N is even with N(c — 1) = 0 mod 8. 
If N[c — 1 j Ф 0 mod 8 and N is even, the congruence of Corollary 1 need not be 

longer true, take for instance 

к = 2, N =- 6, с = 7 . 

Thus, in a certain sense, our theorem gives a best possible generahzation of Voronoi's 
original congruence. "The best one" is the following: 

Corollary 2. Under the hypotheses of Theorem we have 

2k 2 2 x=i 

N-l 
cx 
N 

modiV 

for к = 2,3, ... . 
It is clear from the last congruence that the case 'W is even and N(c ~ 1) ф 0 

mod 8" is the only one in which iV(c — l) cannot absorb, if necessary, the whole 
denominator of the second term, that is, the only case in which the second term on 
the left hand side does not vanish mod N, and thus it leads to multiplication by 2. 

The p roo f of C o r o l l a r y 2 follows from (6) by using the following refinement 
of Lemma 1 : 

-1 0/^ _ 1 
2 3 

whose 

4 

proof is 

2 

left to the reader 



The following generalization of a congruence of Vandiver ([5] or [6]) can be proved 
using Johnson's ideas of [1]: 

Corollary 3. Given a positive integer N and an integer с prime to iV, then 

к v=i s=i 

It is plain that for integral c, (3) is equivalent to the congruence of Corollary 3. 
As to (4), it does not seem to be generally known. For instance, it gives the following 
"odd index" analogon of the previous congruence: 

Corollary 4. / / N possesses the property that for every prime p dividing N we 
have p — I )( 2k, then 

c - l [uN/c] 

^ ^ ŝ ^ - 0 mod N 

for every integer с prime to N. 
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