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Czechoslovak Mathematical Journal, 34 (109) 1984, Praha 

NOTE ON SPECTRAL THEORY OF NONLINEAR OPERATORS: 
EXTENSIONS OF SOME SURJECTIVITY THEOREMS 

OF FUCÎK AND NECAS 

FILOMÉNA PACELLA, Naples 
(Received March 8, 1982) 

INTRODUCTION 

In the years 1968 — 1972 many interesting resuhs were achieved in the field of 
spectral analysis of nonlinear operators, above all by J. Necas, S. Fucik and W. 
Petryshin (see [4], [5], [6], [7]j. 

Some of these results have been collected by J. Necas, S. Fucik, J. Soucek and Л^ 
Soucek in the second chapter of [1]. This chapter deals with the solution of nonlinear 
operator equations 

(1) XT{x}- S{x)=f X G X , feY 

in dependence on the real parameter Я, where Tand S are nonlinear operators defined 
on a real Banach space X with values in a real Banach space Y. 

The most important thing is to establish for which numbers Я the equation (l) has 
a solution in X, for each / G Y. 

This problem is solved in [1], provided S : X -> У is an odd completely continuous 
operator and T: X -^ F works "as the identity operator" (see Definition 1.1 of [1], 
Chapter IIj. 

The reason why T and S must possess these properties is that the main theorems 
obtained in [1] are based on the classical degree theory of Leray-Schauder which, 
as is well-known, concerns completely continuous operators. 

Thus, if we had another degree theory for a different class of operators, we could 
try to get, at least in part, the results of Fucik and Necas for (1), without supposing 
S to be completely continuous. 

This is the purpose of the present paper. 
In fact, in a recent paper of mine (see [3]), extending Canfora's degree theory (see 

[2]j, I have defined the topological degree for bounded weakly closed operators in 
Hubert and Banach spaces. 

To be more precise, if X is a separable Hubert space, S^ the ball with centre OEX 
and radius r > 0,1 consider operators of the following type: / — T : S^ -^ X, where / 
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is the identity and Г is a bounded weakly closed mapping satisfying the boundary 
condition: 

(2) there exist iC G ]0, l [ and aeX with |]Ö|| = 1 such that for all x e dS^ at least 
one of the following conditions is satisfied: 
I {x, T{x)) й K\\x\\'; 

Ua, X ~ T{x)) à 1 -К if {a,x)> 0, 
{{a, X - T(x)) g - ( 1 - К) if {a, x) < 0. 

If X is a reflexive separable Banach space with a strictly convex dual X', Tis again 
supposed bounded and weakly closed, but, instead of (2), it satisfies the boundary 
condition: 

(3) there exists ß e ]0, l [ such that ||Т(х)|| ^ ß\\x\\ for all x e dS,. 

For these operators I define the topological degree d{l — T; S/, 0) and prove that it 
has the usual properties. 

It is precisely on the basis of this degree theory that in the present paper the equa­
tion (1) is studied. 

The results obtained are, in some cases, similar to those of [1] (for instance, see 
Theorems 2.1, 2.2 and 2.5) whereas in other cases, they are either weaker or not com­
parable. 

Of course this is due to the properties of T which are different in the two theories. 
We now outline the contents of this note. 
In Section 1, after showing how the conditions (3) and I of (2) can be improved 

by putting К and В equal to 1, we introduce and recall some definitions and theorems. 
In Section 2 the theorems for operators AT — S are proved and the results obtained 

are compared with those of [1]. 
In the closing Section 3 we use the theory of Section 2 for establishing an existence 

theorem for a quasilinear elliptic (2m-order) equation with bounded measurable 
coefficients. 

1. PRELIMINARIES 

Let X be a separable Hubert space, S^ the closed ball with center OE X and radius 
r > 0, and T : S^ -> X Si bounded, weakly closed mapping such that 

(1.1) (x, T{x)) й II^P for all xEdS,. 

We want to prove that we can define the topological degree d{l — T; S/, 0) and that 
this degree is different from 0. 

Let us consider the sequence of mappings {Г„} defined by T„ = (n/(n + 1)) T. 
It is easy to see that, for all neN, T„ is a bounded weakly closed mapping satisfying 
the boundary condition 
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(1.2) (x, Т„(х)) = f x , - ^ ^ Г ( х ) ^ ^ — ^ | |xP for all x e OS,. 
\ n + 1 J n + 1 

Then, according to the theory of [3], we can define the degree d(l — T„; S/, 0) ф 0. 
Moreover, we have 

(l.3j d{J - T„; S,; 0) = d{I - T,„; S,; 0) for all n, meN . 

In fact, supposing n > m, we consider the family of mappings {Tj^gj-o^ij: 

T, : Я -> ^ , 4x) = t TXX) + (1 - 0 T„lx). 

Obviously, T, is a weakly closed operator and there exists a ball Sj^ {R > 0) such 
that T,{S,) Ç 5'^ for all t e [O, 1]. 

On the other hand, since we have 

{x, T,{x)) = {x, t T„(x) + (1 - 0 T,„{x)) й t - ^ , IIxP + (1 - 0 '" " ' " ' 
/1 + 1 m + 1 

u ( t - ^ ^ + (i- t)~^\\xP = -^^\\xP for all xedS,, 
\ n + 1 n + ij n + 1 

we can conclude that there exists X G ]0, 1[ (it is sufficient to take К = nj{fi + l)) 
such that 

(1.4) (x, T,{x)) uK\\xf for all t e [O, 1] and xedS,. 

The inequality (1.4), together with the other properties of the mappings T̂ , allows 
us to say, by the homotopy degree property (see [3]), that c/(/ — T ;̂ S'̂ ; O) is a con­
stant on [0, l ] . 

Thus it makes sense to define the topological degree of / — T with respect to S^ 
and 0 as the number (different from Oj 

(1.5) d{l - Г; S,; 0) = lim d{l - T„; S,; 0) = d{l - T,; S/, O). 

Now let X be a reflexive separable Banach space with a strictly convex dual X'. 
Proceeding as we did in Hilbert spaces, we can define the degree d{l — T; S/, 0), 

where Г : 5^ -^ X is a bounded weakly closed mapping satisfying the condition 

(1.6) II r(x)| | ^ ||x|| for all X e dS,. 

In fact it is sufficient to consider again the sequence {T„} (T„ = (n/(?? + 1)) T) 
of bounded weakly closed mapping such that 

\Tn{x)\\ = " . nx) 
n + 1 

è ||x|| for all x G ^ S , , 
n + 1 

and to observe that, for each и, the degree d(l — T„; S/, 0) exists and is equal to 1 
(see [3]). 
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Then we define d(l - T; S/, 0) = d(l - T„; S/, 0) = 1. 
Now it remains to be proved that the degree d{l - T; S/, 0) just defined (either 

in Hubert spaces or in Banach spaces) satisfies still the property: 

(1.7) d{I - T; S/, 0) Ф 0 => there exists y e S, such that Т{у) == у . 

Let us prove (1.7). First of all we notice that the sequence [T„] (T„ = («/(n + 1)) T) 
converges to T uniformly in the strong topology of X. 

In fact, we have 

(1.8) | |T(xj-T„(x) | | = Г ( х ) - - ^ Т ( х ) 
n + 1 = 1 - - ^ lin-)ll-o 

n + T 
uniformly with respect to x G 5^. 

The limit (1.8) implies that {T„} converges to Tuniformly also in the weak-topology. 
Hence, since (1.7) holds for 7],, there exists a sequence {y„} ^ S^ such that 

(1.9) y,= Tly,) for all neN . 

But X is reflexive and {y„} is bounded, so we can suppose y^^-^ y e S^. On the other 
hand, as Tis weakly continuous^) and {T|,} converges to Tin the weak topology, 
we have 

(1.10) T,,{y„) - T{y) ') . 

From (1.9) and (1.10) it follows that y„ — T{y) and thus y = T{y). So (1.7) is 
proved. 

Now let us recall some definitions and theoremiS. 

Theorem 1.1. (See [З] Corollary 6.1.) Let X be a reflexive, separable Banach 
space with a strictly convex dual X'. If T : X -^ X is a bounded weakly closed 
operator such that 

(1.11) lim sup % , ''"̂  - a a e [ 0 , l [ 
lklU-сю \\x\\x 

then I — T maps X onto X. 

Definition 1.1. Let X and 7be two real Banach spaces. The mapping T : X -> 7 is 
said to be a (K, L, a)-operator if 

i) Tis bijective, 
ii) there exist real numbets i C > 0 , a > 0 , L > 0 such that 

L||x||^ ^ |T(x)||y ^X| [x | | ^ foreach xeX. 

^) Tbounded and weakly closed => T weakly continuous. 
Ъ We have |<T„(7„) - T{y\ срУ\ <, |<T„(jJ - T(y,^), ç}] + |<Г(д) - r(v), (рУ\ for all 

(pe Y\ 
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Lemma 1.1. Let X and Y be two real Banach spaces, T : X -^ Y a (X, L, a)-
operator and S : X -^ Y a mapping. 

Then, for each real number Я Ф 0, we have: 
p') lim IIЯ Т{х) - S(x)||y = +00 => lim \y - ST"^(у/Я)||у = +оо; 

Il X 11 х - * GO l b 11 У-^ 00 

p") ij the mapping y eY -^ y — ST'^^yjX) e Yis onto, then the mapping AT — S : 
: X -^ Y is onto as well. 

Proof. The proof proceeds like that of Lemma LI of [ l ] , Chapter IL 
In the forthcomming definitions and theorems we suppose that X and Y are real 

Banach spaces and a is a real positive number. 

Definition 1.2. An operator F : X -^ Y is said to be a-homogeneous if F(tx) = 
= t"" F{x) for each t ^ 0 and all x e X. 

Definition 1.3. An operator F : X -^ У is said to be a-strongly quasihomogeneous 
with respect to FQ : X -> У, if: 

t,\0, x„--Xo=>t:F[-A-^Fo{xo)eY. 

Now we introduce the following definitions: 

Definition 1.4. An operator F : X -^ У is said to be a-weakly quasihomogeneous 
with respect to FQ : X -^ Y, if: 

^ „ ^ 0 , x,-^Xo=>t:Ff^\-Fo{xo)EY. 

Definition 1.5. Let Tand S be two operators from X to У and Я a real number dif­
ferent from 0; A is said to be an eigenvalue for the couple (T, S) if there exists XQ G X, 
Xo Ф 0 such that 

Я r(xo) - 5(xo) = 0 . 

Definition 1.6. A mapping F : X -^ Yis said to be regularly surjective if F(X) == Y 
and for any JR > 0 there exists r > 0 such that ||x|[;^ ^ r for all x e X with 
\\Ф)\\у ^ •̂ 

2. MAIN THEOREMS 

Lemma 2.1. Let X and Y be two reflexive Banach spaces. If T : X -> Yis a weakly 
closed [K, L, a)-operator and S : X -^ Y is a bounded weakly closed mapping, 
then ST~^ : У-> Y is bounded and weakly closed as well. 

Proof. Let us prove that T~Ms weakly closed. In fact, 
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T \y„) - zj T '{T{x„)) = x„ - zj ^ ' ^ ^^^ 

The operator ST~^ : Y -* У is weakly closed as well. In fact, since T~^ is weakly 
continuous, because it is weakly compact^) and weakly closed, we have: 

(57" 

It is trivial to see that ST ^ is bounded. 

Lemma 2.2. Let X and Y be two real Banach spaces and T : X -^ Y a (K, L, a)-
operator. If S : X -^ Y is a mapping such that 

(2.1) lim sup ^ ^ = Л G [0, + oo[ 
ll^llx-*«) 

then for |Я| > AJL"^) we have 

(2.2) lim IIЯ Т(х) - 8{х)\\у = оо . 
Н^Нх-̂ оо 

Proof. Since |Я| > AJL^Q can find a number у > 1 such that |A| > Лу/L. Let us 
suppose that (2.2) is not true. Then there exist M > 0 and a sequence {x„] with the 
property 

(2.3) ||x„||;, -^ 00 and ||Я T{x„) - S{X„)\\Y й M for all neN . 

This last relation implies that 

Я T(x,) S(x„) . _ „ \, ^ — ,, / -> 0 for « -> 00 . 
Ых Ых 

Hence, by (2.1), we have 
(2.4) lim sup H i ^ y i l ' ' = A . 

On the other hand, since Tis a (K, L, a)-operator we also have 

ШТ(^>и\ь>у-Ь=уА for all neN. 

This is a contradiction with (2.4), which proves the assertion. 

Theorem 2.1. Let X and Y be two reflexive Banach spaces. Moreover, let Y be 
separable and have a strictly convex dual Y'. Let T : X -^ Y be a weakly closed 

^) As X is reflexive the bounded operator T ^ : У—> X is weakly compact. 
^) In particular, if ^ -- 0, (2.2) holds for all X Ф 0. 
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(X, L, a)-operator and S : X -^ Y a bounded weakly closed mapping such that 

(2.5) limlMl = 0. 
llxlHoo \\x\\x 

Then, for each Я ф 0, ЯТ — S is regularly surjective. 

Proof. Let us prove that AT - S maps X onto Y. By Lemma LI it is sufficient to 
show that the mapping I - ST~^('jX) : У-> Fis surjective, and to prove this it is 
sufficient, in virtue of Theorem LI, to get 

(2.6) Iiml^?:;M = 0. 
\\y\\-^^ \\у\\г 

If (2.6) were not true, there would exist г > 0 and a sequence {y„} cz F such that 

(2.7) lim |[j;„|L = oo and -иУп ST 
Y 

Then, since Tis a (К, L, â!)-operator, there would exist another sequence {x„} c: X 
such that 

(2.8) XT{x^) = y, /hence х,,==Т-'(ЩУ 

ЩЦх^^хй \\1Т{х„)\\у^\Х\к\\х„\\'х. 

From (2.7) and (2.8) it would follow that 

(2.9) ||x„||;, -^ GO and i|5(x„)||, ^ г||ЯТ(х,)||^ ^ в|Я| L||x„||^ . 

Obviously (2.9) contradicts (2.5); so (2.6) holds. At this point, to show that 
XT — S is regularly surjective, it is sufficient to prove that 

(2.10) for all R > 0 , there exists r > 0 such that 

||x||;^ S r for each xeX with ||A T{x) - S{x)\y g R . 

Suppose that there exist Я > 0 and a sequence {x„} Ç X such that 

(2.11) ||^/i||z "^ QO and IIЯ T(x„) — S'(x„)||y ^ R . 

From (2.5), in virtue of lemma 2.2, it follows that 

(2.12) lim ||Я T(x) - S{x% = oo for all Я Ф 0 . 
l l^ l lx->oo 

The contradiction between (2.12) and (2.11) proves (2.10) and hence the assertion. 

Theorem 2.2. Let X and Y be two reflexive Banach spaces, with Y separable and Y' 
strictly convex. Moreover, let T and S be, respectively, a weakly closed (X, L, a)-
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Operator and a bounded weakly closed mapping such that 

(2.13) Пт$ирЩ^ = AE]0, +OO[ . 
l |x| |x-c« | x | | ^ 

Then, for |Я[ > AjL, the operator AT — S is regularly surjective. 

Proof. Let us prove that XT ~ S maps X onto Y. Of course it is sufficient to 
consider such X that 

(2.14) there exists y > 1 with |Я| > y(^/L) > AJL. 

From (2.13), in virtue of Lemma 2.2, it follows that 

(2.15) lim ||Я Т(х) - 8{х)\\у = +оо , 

and hence, by Lemma 1.1, we get 

(2.16) iim 
IbllY-^CO 

У - ST-^ = +00 . 

Let ZQ be a point of Fand m > (у + l)/(y — l) an integer. The limit (2.16) guarantees 
that 

(2.17) there exists R > 0 such that 

\\y\\y ^ ^ y-ST-'i^ > w Zo ^ 0 . 

On the other hand, for (2.13), once the number 

]уА > 0^) 
^m + 1 у J 

is fixed, there exists R' > 0 such that 

(2.18) ||x||^ ^ R=> \\S{X)\\Y <{A + S) | |X||^ . 

Obviously we can suppose that in (2.17), R is greater than К\Х\ R'"". Then we have 
(Def. 1.1, iij 

(2.19) b Y ^ R j - i > R' 

Now we consider the operator [ST ^{yJX) + ZQ] : SJ^ Я Y-^ Y; it is bounded 
and weakly closed. 

^) Since m > (y + 1)/(у — 1), surely s is positive. This is the reason why we must suppose 
A > 0; therefore (or A = 0 it is necessary to provide a different proof, by Theorem 2.1. 
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By (2.17), (2.18) and (2.19) we also have 

й 

K'(i)- II Y 

m \\ \XJ\ 

( -
-){A + >) 
mj | - ( 1 

r 

Y 

)|| 

--'(i) + ll^oljy < 
W 1 

r('4)IK'(i) 
^^••(ï)ll 

1 + - W 
\Y ^ 

+ 

< 

X m 

for all Л* e ÔSR 

m/ LA m 

Finally, we obtain 

(2.20) 

\\ST' "jl-" 1 + 

A + l 
1 \ V î̂ + 1 

1 1 
- - ] у л 

у. 

ш\ 
1 

+ — 
m 

у у < \\у\\у ') 

for all у Е ôSi^, since |Я| > уЛ/L. 
The inequality (2.20) allows us to consider (see Section l) the degree 

d{l - ST^^yjÀ) - zo; SR; O) which is equal to 1. Thus, by the degree property 
(1.7), we can say that there exists yeS^ such that y = ST'\ylX) + ZQ. Since ZQ 
is an arbitrary point of У, this implies that / — ST~ ^(y/A) is surjective and so ЯТ — S 
is surjective as well. 

Moreover, AT — S is regularly surjective. In fact, if this were not true, then pro­
ceeding like in the previous theorem we should find a sequeiice {x„} Ç̂  X such that 

\\x„\\x^œ and \\XT{x„)-S{x„)\\yuR, 

a contradiction with (2.15); this completes the proof. 

Theorem 2.3. Let X be a reflective Banach space and Y a separable reflexive 
Banach space with a strictly convex dual Y'. Moreover, let T : X -^ Y be a weakly 
closed (K, L , ayoperator and S : X -> Y a bounded weakly closed mapping. 

If S is an a-weakly quasihomogeneous mapping with respect to SQ : X -^ Y, 
then there exists finite 

Л + — - - - уА- A \ (m + 1) — - - уА ^ ^ 
, , w + 1 m + 1 11 m + 1 m— I уА ^ ^ 
^ ' m L\X\ m\- mL\X\ " m L\X\ " 

oW^ уА 
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hm sup " ^ ^^- = A , 

and for Ul > AJL, XT — S is regularly surjective. 

Proof. The second part of the assertion is a consequence of the previous theorems. 
Let us prove that there exists a finite 

lim sup J№) 

If this were not true, there v^ould exist a sequence {x„} ^ X such that 

(2.21) I W U - с ю and Щф>п 
\\x 
II " I I 

for all neN. Obviously we can suppose that the numerical sequence {||x„||ĵ :} is 
increasing. 

On the other hand, the bounded sequence v„ = ^nl\\^n\\x would have a subsequence 
(denoted again by {f„}) convergent, in the weak topology, to a point VQ eX. 

Then, putting f„ = l/||x„|l \ 0, by the a-weak quasihomogenity of -S v^ith respect 
to So vv̂e should have 

i.e. the sequence 5'(х„)/||х„||^ would be bounded. This is a contradiction with (2.21), 
so the assertion is proved. 

Theorem 2.4. Let X and Y be two reflexive Banach spaces with Y separable and Y' 
strictly convex. Let T'.X-^Y be an a-homogeneous weakly closed {K.L.a)-
operator and S : X -^ Y an a-homogeneous bounded weakly closed mapping. Then 
i) there exists a finite lim sup ||'S'(x)||y/||x||5i' = Л and so AT — S is regularly sur-

jective for Щ > AJL\ 
ii) Я Ф 0, ЯТ— iS is regularly surjective => Я is not an eigenvalue for the couple 

{T, S). 

Proof. Let us prove i). Suppose that the lim sup is not finite. Then there exists 
a sequence {x„} Ç̂  X such that 

(2.22) I W U - o ) and Щ}^>п. 

If v̂ e put v„ = x„l\\x„\\x and consider a suitable subsequence, v/c have v„ -^ VQEX 
and hence S{v„) -^ S(vo), because S is weakly continuous. Thus {S(v„)} is bounded; 
but the homogeneity of S and (2.22) yield 
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\P/t|U/ \\^n\\x 

a contradiction with the boundedness of {5(f„)}. This proves i). Let us prove ii). 
Let AT — S be regularly surjective; if Я v̂ ere an eigenvalue for the couple (T, <S), 
there would exist a point XQ Ф 0 belonging to X, such that ÀT(XQ) — S(XQ) = 0. 
Moreover, denoting by {t„} a sequence of real positive numbers convergent to 0, and 
putting v„ = XQIÎ^, we should have 

(2.23) lim ||î „i|x = +00 . 

Then, from the homogeneity of S and T, it would follow that 

Я T{v„) - S{v,) = i I ( ^ ^ ^ Ь : - ^ ^ = 0 for all n GiV , 

and this would imply that 

IIЯ T(v„) — S(t;„)||y < 8 for each e > 0 and all neN , 

whereas, by (2.23), for any r > 0 there exists v^eN such that ||Î̂ „||A: > ^ for all n > v^. 
This contradicts the assumption that ЯТ — S is regularly surjective; so Я is not an 
eigenvalue for (Г, S) and the assertion is proved. 

Remark 2.L Under the assumptions of Theorem 2.4, from ij and ii) it follows 
that, for |Я| > AjL, Я is not an aigenvalue for the couple (T, 5). 

Theorem 2.5. Let X and Y be two reflexive Banach spaces, with Y separable and Y' 
strictly convex. Let T : X -^ Y be a weakly closed (X, L, a)-operator and S :X ^ Y 
a bounded weakly closed mapping which is b-weakly quasihomogeneous with 
respect to SQ : X -^ Y. 

Then, if a is greater than b and Я is different from 0, AT — S is regularly sur-
jectire. 

Proof. By Theorem 2.1 it is sufficient to show that 

(2.24) lim 1Ю1Ь:=0. 
' ll^llx-o) \x\\x 

Let us suppose that this is not true. Then it is possible to find ii > 0 and a sequence 
{x„} Ç X such that 

(2.25) IU„||x-^oo and ' '^^7 ' '^ ^ e for all neN. 
\\M\X 

If we put Vn = x„l\\x„\\x and suppose like in the previous theorems that the sequence 
{||x„||;̂ } is increasing and there exists a point VQ eX such that t;„ -^ Vo^ we have 
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(2-26) ЩЦ^ = lf%^ - So(.o) . 
Y и'' Il Y 1!^ 

On the other hand, since a is greater than h, we obtain 

llx 11'̂  

From this last relation and from the boundedness of {S(x„)/||x„||^} (deduced from 
(2.26)) it follows that 

IIV 11'' l l v 11^ IIV II*' 
"-*°o ||-^'t||x P n | | x "-*« I F n P 

which is a contradiction with (2.25). This proves (2.24) and hence the assertion. 

R e m a r k 2.2. In the theory concerning the Fredholm alternative for nonlinear 
operators (see [ l ]) S. Fucfk and J. Necas obtained, on the basis of the Leray-Schauder 
degree theory, the following theorem (see [ l ] Theorem 1.1 page 56): 

Theorem 2.6. Let X and Y be two real Banach spaces. Let T : X -^ Y be an odd 
[K, L, a)-homeomorphisnP) and S : X -^ Y an odd completely continuous operator. 
Then for each Я + 0 such that 

lim IЯ T{x) - S{X)\\Y = 00 , 

IT- s maps X onto Y. 
This theorem is basic (in Fucik-Necas's theory) for establishing other important 

theorems, like theorem analogous to Theorem 2.2 (but with S completely continuous, 
see [ l ] Theorem 1.2, page 57) and the theorem about the Fredholm alternative (see 
[ l ] Theorem 3.2, page 61). 

Let us show by an example that we cannot extend Theorem 2.6 to bounded weakly 
closed operators. 

Let Я be a separable Hubert space and {̂ „jneN ^n orthonormal basis in H. Thus, 
for each x e X, we have x = Y^i^i^h where â - = (x, Ci). Let us consider the transfor­
mation L: X -> X defined by 

L{x) = Yji^i^i+i ^^^ all X 6 Z . 

It is easy to see that L is a linear bounded weakly continuous operator such that 
||x|| = | |L(X)|| for all X eX. Moreover, Lis one-to-one but it does not mapX onto X; 
in fact, if X = Yji^i^i ^^ different from y = Y^ißt^t^ ^^ l^^st one of â  is different from 
the corresponding ßi and, consequently, L(X) Ф L{y). On the other hand, L does 

)̂ A (K, L, ö)-homeomorphism is a (K, L, ö)-operator which is a homeomorphism (see [1] 
page 54). 
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not map X onto X because all j e У with ( j , ei) different from 0 do not belong to 
L{X); in fact ЦХ) includes just those points z eX v^hich have (z, e^} = 0. 

Now let us denote by / the identity operator. Of course / is a weakly closed (1 ,1 , l)-
homeomorphism and / — L = 5 is still a linear bounded weakly continuous operator. 

Moreover, if we put Я = 1, we have 

(2.27) 

lim IIЯ/(x) — S{x)\\ = lim ||x — (x — Lx)\\ = lim ||Lx|| = lim ||x|| = oo . 
\\х\\-ш \\х\\-^<ю Н^1Н«> 11^11-00 

Thus all the assumptions of Theorem 2.6 are satisfied (with S bounded and weakly 
closed) but Я/ — S' = Lis not surjective. 

R e m a r k 2.3. In the spectral theory of [ l ] concerning completely continuous ope­
rators, S. Fucik and J. Necas succeeded in proving the contrary of the assertion ii) 
of Theorem 2.4. They obtained the following theorem: 

Theorem 2.7. Let X and Y be two reflexive Banach spaces, T:X -^ Y an odd 
(K, L, ayhomeomorphism which is an a-homogeneous operator, and S : X -^ Y 
an odd completely continuous a-homogeneous operator. 

Then 

(2.28) Я(фО) is not an eigenvalue for the couple (T, S) => XT — S 

is regularly surjective. 

The p r o o f of Theorem 2.7 (see [ l ] Theorem 3.2, page 61) is based, essentially, 
on the homogeneity property of Г and S and on Theorem 2.6. From this we imme­
diately understand that if we wanted to extend Theorem 2.7 to bounded weakly 
closed operators, we could not proceed like in [ l ] when proving (2.28), because 
Theorem 2.6 does not hold for bounded weakly closed operators. Then we could try 
to obtain (2.28) using another method; let us show, by an example, that this is not 
possible. 

Let Я be a separable Hilbert space and L, I, S, the operators defined in the previous 
remark. The number Я = 1 is not an eigenvalue for the couple (/, -S). In fact, the 
equation Я I{x) — S[x) = 0 has only the solution x = 0, because I — S = I — 
— (/ — L) = L is a linear injective operator. 

Moreover, / and S are both 1-homogeneous operators, but ÀI — S = L does not 
map X onto X, as we have seen above. This means that Proposition (2.28) is not true 
in general, if we suppose S' only bounded and weakly closed. 

3. AN APPLICATION 

Let X = [xi,..., x„) be a point of JR" and Q an open bounded subset of Я" with 
a boundary of class C^'". 
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Consider the real Sobolev space H^^'^Q) n Щ'Щ = Ж (with p > n > \) 
endowed with the norm 

h\W= И =l\\D^'"ul+ \\ul ЫЕЖ, 

where |[ • Ц̂  is the usual norm in IF(Q). 
Let (Xi(x, z), ..., a„(x, z), y(x, zj be n + 1 functions satisfying the following con­

ditions^): 

(3.1) aj , ..., (x„, у are measurable in x for all z and continuous in z uniformly with 
respect to x; for instance: for each e > 0 there exists S^ > 0 such that 

1 '̂ ~ ^1 = E l̂ a - ^1 < г̂ =^ |a/(x, z') - a,-(x, z'')| < e 
| a | ^ 2 m - l 

for all XE Q ; 

(3.2) aj , ..., a„, y, are bounded and we have 0 < m S oii{^, z) ^ M < +oo, i = 
= 1, ...,n, 0 < m S у{х, z) -^ M < +00 for all (x, z). 

Let us put C(M) = {D"w}|a|^2m-i C(w) W = {̂ "̂  ^(•^j)|a|^2ш-1 ^ud considcr the 
quasilinear elhptic operator 

L{u) = (-1)"^ f Ф, C{u)) DY'U + 7(x, ^{u)) и . 

In order to study the equation 

(3.3) Lu=f, fen{Q), иеЖ 

we introduce the operator T: Ж -^ U{Q) defined by 
n 

T{u) = ( -1) ' " s ^^ '̂w + " иеЖ . 

It is well known that Tis a continuous Hnear operator (thus bounded and weakly 
continuous) bijective between Ж and U(Q). Therefore it is a weakly closed (Kp, Cp, 1)-
operator, where Kp and Cp are "the best constants"^) such that 

cj|w||^ ^ | | rw| |^^X^| |w| |^ fprall иеЖ. 

We expHcitly remark that c^ < L 
The next lemma will be very useful later on. 

^) We set z = {^a}|a|^2m-i = { (̂ai»...'an)} ̂  ^ ^ whcre S is the number of such a 
that |a| ^ 2m - 1. 

^) "The best constants" means that 

sup •f;;^^ and X ,̂ = sup 
Cp i/e.?r ЦТ^Ц^, иеЖ \\U 
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Lemma 3.1. Let {м„] be а sequence in Cl'"~^{Q) ^^). / / {u„} converges in C^*""^ 
to a function t /e €^'""^(0), then the functions (Xi(x, C{u„)), y{x,C(u„)) converge 
uniformly to the functions а^(х, C(w)), y{x, C(w)). 

Proof. We prove the assertion for y; the same proceeding will be valid for â . 
As {i/„} converges to и Cj'"~^((2), once 8 > 0 is fixed and the corresponding ĝ is 

found, there exists v e N such that ^ JD" u„{x) ~ W^ u{x)\ < r\ for all n ^ v 
j a | ^ 2 m - l 

and xeQ. Hence, in virtue of (3.1), it follows that 

\y{x, {D^ u„{x]]) - y{x, {£)"' u{x)})\ = \y{x, ^{u„)) - y{x, С(м))| < e 

for all n ^ V and x eQ \ 

the assertion is proved. 

Lemma 3.2. The operator L: Ж -^ LF is bounded and weakly closed. 

Proof. Of course Lis bounded. For showing that Lis weakly closed it is necessary 
to prove that 

(3.4) 
Lu > => w = Lw 

u„ --LP wj 

Let us start by observing that the sequence {w„} is bounded in Ж and so, by a theorem 
of Rellich-Kondrachov (see [8]) there exists a subsequence {w„̂ } convergent to и 
in C^^~^{Q) (remember that p > n). Then, from the previous lemma, we have that 
the coefficients a^(x, C(WnJ), у{^^ С(^„^)) converge uniformly to а^(х, C(w)j, y{x, C(«)). 

Moreover, since {u^} converges to и in the weak topology, we have 

и . (3.5) i ) ? X - ^ , Z ) > , u„ 

Let X be a function from U{Q) (l/p + 1/^ = 1); by writing <x, cp} instead of Jß ХФ» 
we obtain 

\<X, Lu„:) - <z, Щ g X <z, a;(x, C(«J) D?"-"«. - «,.(x, С(и)) ВГиу\ + 

+ |<Z, 7(x, C(«„J) «„, - y{x, C(«)) «>| ^ Ё |<z, Ф , C(« J ) о?-««, -
i = 1 

- a,(x, C(t/)) Df-t/,„^>| + |<%, a,(x, C(t̂ )) D f X . " a,(x, C(t̂ )) D^w>| + 

+ |<X, 7(^, C(w„j) u,, - r(x. C(wj) t/„,>| + |<X, y{x, ^[u)) u„^ - y{x, C{u)) uy\ ^ 

t sup la,(x, C{uJ} - aix, C(t/))| \\xl \\Df^^uJ^ + 
i=l Q 

loj ^i^m-if^Q-^ = {uE €^"""^(0) : D̂ w is bounded in 0 for |a| g 2m - 1} is 
a Banach space with the norm |[w||Св^--* = Z ^̂ P̂ l̂ ""^! (̂ ^^ M ) -

\a\^2m-l Q 

42 



+ 1|<Х, ф , С{и)) [D]'"u„, - D]"'u-\y\ + sup \у{х, C(M„J - у{х, C(uj)| . 
1 = 1 D 

• Ы<1 hnu\p + | < Ь 7(->C, C(w)) K , ^ - W]>| -> 0 fo r /C -> 00 

by (3.5) and the uniform convergence of a,(x, C(w„̂ )) and y[x, C(w„J)-
Then Lw„̂  -^ Lu in L (̂iQ) and hence we have w == Lw in (3.4), as we wanted to 

show. 
At this point we can prove the following existence theorem. 

Theorem 3.1. If M < т({1 + Cp)/(1 - c j ) then L is regularly surjective; so the 
equation (3.3) has a solution for each f e U{Q). 

Proof. Let us put 

a^x, z) = а;(л;, ^) - r , c{x, z) = y{x, z) - r / = 1, ..., n , 

where r is equal to ^(M + m). 
Of course the functions ai and с satisfy again the condition (3.1); we also have 

/^ 4̂ m — M ^ / V ^ ,^ M — m , 
(3.6) = m — r S ai[x, Z) ^ M — r = / = ! , . . . , « , 

m - M ^ . N/71^ M - m = m — r < c(x, z) < M — r = . 
2 ^ ' 2 

Thus we have 
п 

Lu = ( -1) '" ;^ а^(х, С{и)) + rD^'^ii + [с(х, C(w)j + г] w = (гГ - S) w , 
i = 1 

п 

where 5w = - ( - 1 ) ^ I a,.(x, C(w)) D?'"« - c{x, C{u)) u, 
i=i 

By Lemma 3.2 it follows that S (which is of the same type of L) is bounded and 
weakly closed; it also satisfies the inequality 

(3.7) | |S„ | | ^^^^1^L_^ |„ | [^ иеЖ 

and hence we have 

(3.8) hm sup Y i r ^ ' 
l|ui|->co \\щ\ж 2 

Therefore, by Theorem 2.2, we can say that, for 

the operator AT — S is regularly surjective. 
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In particular, since M is less than m((l + c^,)/(l ~ Cp)), we have 

M -{• m M — m I 
л= г = > / с 

2 2 1 

and, thus, гТ — S = Lis regularly surjective. The assertion is proved. 

R e m a r k 3.1. If a,(x, z) = a,(x) and y(x, z) = y(x) (i.e. if Lis linear and therefore 
1-homogeneous) the number r of the previous theorem is not an eigenvalue for the 
couple (T, S) (see Theorem 2.4). This, since L = rT — S is linear, implies that L is 
one-to-one and hence bijective. 

R e m a r k 3.2. In the linear case we could get the same result by making use of the 
classical perturbation theory. 

In fact, with the same notation as in Theorem 3.1 we have 

Lu = {-iyt Ф) ^^" + yw " = (- If i [«.w + ̂ ] ^^^ + 
+ [c[x) + r'ju = rTu - Su . 

Moreover, because \\Su\\p ^ ^(М — m) ||w||, it is obvious that 

I! ell _ ll'^^L ^ ^ - ^ 
|Plk(^,LP(ß)) - sup Ь -

иеЖ \\U\\ 2 
as well as 

|i('^'^)"^IU(^,LP(ß)) = sup ''^'' = — (see footnote 9)) . 
иеЖ \\гТи\\р rCp 

Then, if we suppose M < ((1 + Cp)j{\ — Cp)), like in Theorem 3.1, we have 

,11, M - m ^М + m I .„. ^ч-1||ч-1 

and this, via the perturbation theory, yields that rT — S = Lis bijective. 

R e m a r k 3.3. If, instead of (3.1), the coefficients a^(x, z), y[x, z) of L satisfy the 
condition 

(3.1)' a^(x, z) G C^^(ß X R') , y{x, z) e C%Q x i?^) 

(and also (3.2)), then the equation (3.3) can be solved, at least for m = 1, by having 
recourse to a classical proceeding based on the Leray-Schauder Theorem. In fact, 
if we introduce the mapping 

T'.vej^-^ T{v) = и^еЖ such that 

L,(w,) = {-iyt Ф^ C(t̂ )) D^-u, + 7(x, Civ)) u,=fe U{Q) , 

44 



it is easy to show that this mapping is completely continuous, on the basis of Rellich-
Kondrachov's theorem and the inequality 

(3.9) ||w|]^ S c^\\L,u\\p for all иеЖ , 

This last inequahty is certainly valid since the coefficients of L^ are regular (of class 
C '̂") for (3.1)'. In (3.9) the constant c^ depends, at least for m = 1, on the modulus 
of continuity of the coefficients (see [U]) . 

Thus we can find, in a ball "large enough", a fixed point ŵ  = f of T which, of 
course, is a solution of (3.3). 

Nevertheless, under the assumption (3.1) the coefficients of L^ are only bounded 
and measurable, and under this conditions, in general, we have not inequalities 
(in U) of the type (3.9) (see [lO] for an extensive study of this question). 
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