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WEAK SPECTRAL EQUIVALENCE AND WEAK SPECTRAL
CONVERGENCE

GABRIELA DINEscu, Bucharest

(Received August 3, 1982)

In this paper we define the weak spectral pseudo-distance between two operators
in £(X) (X being a Banach space), starting from a formula of F. H. Vasilescu ([8]).
Using this pseudo-distance, we introduce the notions of weak spectral equivalence
and weak spectral convergence. We show (Theorem 2.21) that the weak spectral
equivalence is really weaker than the usual spzctral equivalence.

In this framework we prove some familiar results concerning the spectral equi-
valence as: the equality of spectra and of the subspaces XT(F) (for definitions see
Sec. 1), the permanence of the s.v.e.p. (cf. Definition 1.6) and of the decomposability
(see Theorem 2.16) as well as the connections with functional calculus and with
the similarity. On the other hand, we prove that the weak spectral convergence also
preserves the s.v.e.p. and the decomposability (see Theorems 3.8 and 3.9).

In order to obtain conditions upon which the weak spectral equivalence is preserved
by passing to subspaces and quotient spaces, properties of permanence of the local
spectrum are studied. Related to this, the notion of the Q-analytically invariant sub-
space is introduced and the formulas for the local spectrum in some particular
examples of quotient spaces are given.

1. PRELIMINARIES
Let us recall the definition of the Hausdorff distance between two sets and the
basic definitions from the spectral theory of operators in a Banach space.

a) The HausdorfI distance between two sets. Definition 1.1. Let A, B be two non-void
subsets of C. We define
5(4, B) = supinf|i — y| ,

i€A peB
p(A4, B) = max {6(4, B); 6(B, A)} .
The following properties are known or easy to prove:
Lemma 1.2.

a) 6(4,B) = 0< A4 c B;
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b) 5(4, B) = §(B, A) = 0<> 4 = B;
c) 5(4, B) = &(4, B).

Lemma 1.3. For non-void sets A, B, C in C,
3(4, B) £ (4, C) + 4(C, B),
p(A, B) < p(4, C) + p(C, B).
Lemma 1.4. Let {A,}, and {B,}; be two families of non-void sets in C. We have
3(UA,, Lﬂ)Bﬂ) = sup ir;f 5(4,, By) .

Remark 1.5. Adopting the conventions sup 4; = 0 and inf 2; = oo, where {4} is
ic9 13)
a family of positive (finite or not) numbers, Definition 1.1 and Lemmas 1.2, 1.3 and
1.4 include also the case when 4 or B (or both) are the void set. We obtain, for A
non-void,

00,4)=0; 6(4,0)=o00; 60,0)=0.

If we consider p(4, B) = max {6(4, B); (B, A)}, with A, B = C, void or ‘not,
p becomes an ““écart” ([4], § 1, Def. 1).

b) The single valued extension property and the decomposability. Let X be a Banach
space and let £(X) be the set of all continuous linear operators on X. Consider
Te £L(X).

Let Y be an invariant subspace for T. Denote by o(T) the spectrum of T, by T| Y
the restriction of T'to the subspace Y (T | Ye #(Y)) and by Te £(X) the co-induced
operator Ton X = X/Y.

Definition 1.6. (see [5]). The operator Te #(X) has the single valued extension
property (s. v. e. p.) if for any analytic function f : D, » X (D, = C open), the iden-
tity (AI — T)f(X) = 0 on D, implies that f(1) = 0 on Dy.

Denote by 2(X) the set of all operators in £(X) which have the s.v.e.p.

For Te ?(X), we say that a point A, € C is in the local resolvent ¢7(x) of xe X
if there is an analytic function 4 — x7(4) (necessarily unique) defined in a neigh-
bourhood of 4,, with values in X, such that (AI — T)x4(2) = x.

The local spectrum of x € X is o7(x) = Cor(x).

For F closed in C, we define

X(F) = {xeXlo‘T(x) c F}.

Definition 1.7. (see [6]). Consider Te #(X) and Y an invariant subspace for T.

Yis called analytically invariant for T if for every analytic function f: D, -» X
(D; = C open), the condition (I — T)f(4)e Y on D, implies that f(1)e Y on D,.

Yis called T-absorbing if for any 4 € o(T| Y) the inclusion {x | (I — T)xe Y} <
< Y holds.
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Yis called a spectral maximal space of T if for any subspace Z invariant for T,
the inclusion o(T| Z) = o(T| Y) implies Z < Y.

Definition 1.8 (see [5]). An operator-Te £(X) is called decomposable if for every
finite open covering {G;}, <;<, of o(T) there exist { Y;}, <;<, spectral maximal spaces

n

of T'such that o(T|Y) = G, (1 £ i< n)and X =Y Y,
i=1
We will denote by .@(X) the set of decomposable operators.
Note that 2(X) = 2(X) (see, for instance, [5], Ch. 2,1.4).

Definition 1.9 (see [8]). For Ty, T, € £(X), denote
(TN = Y (=) GTITTE,  dy(Ty, Ty) = Tim [[(Ty~ T 1
k=0 n— o

Remark 1.10. In [8], F. H. Vasilescu proved that, if T, T, € 2(X), then
dy(Ty, T,) = sup sup  inf |4 — /‘I .

xeX AeoTi(X) pesra(x)

In fact, a careful look at the proof of that result shows that the inequality

dy(Ty, T,) 2 sup sup inf ]}. - /1|

xeX AeoTi(x) peara(x)

remains valid for Tj, T, € 2(X).
Denote p(Ty, Ty) = max {d(Ty, To); dop(T2s Ty)} (see [1], [2]).

Definition 1.11. We say that Ty, T, € £(X) are spectral equivalent (or quasi-
nilpotent equivalent) if p(T}, T,) = 0. We denote this by T; ~** T, (see [5], Ch. 1, 2).

Consider Ty, T, € £(X) (n 2 1). We say that the sequence T, converges spectrally
to T, if p(T,, Ty) = 0. We denote this by T, —°° T, (see, for instance, [2]).

¢) Analytic residuum. The following notions were introduced in [10].

Definition 1.12. Let Te £(X). An open set Q < C is a set of analytic uniqueness
for Tif for any open set @ < Q and any analytic function f, : @ — X, the identity
(A = T) fo(%) = 0 on w implies that fo(4) = 0 on w.

znote by Q the maximal open set of analytic uniqueness for T; then S; = (Q
is called the analytic residuum of T.

Remark 1.13. S; = 0 if and only if T has the s.v.e.p. Note also that S; = o(T).
Definition 1.14. An analytic function f, : D, - X verffying the equation
(AI— T)f«(2) = x (e Dy)

is called a T-associated function for x € X.
For x € X, denote by d,(x) the open set of the points Ay e C with the property
that Z, has a neighbourhood where there exists at least one T-associated function of x.
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Denote
yT(x) = 0o4(x},

QT(X) = 51(-“) N Qp,
o7(x) = Cor{x) = y7(x) UST .

Remark 1.15. The T-associated function is not generally unique; however, it is
unique on o7(x).
If T has the s.v.e.p., then y(x) = o7(x) and o4(x) has the usual meaning.

Definition 1.16. For Te #(X) and F closed in C, denote
X(F)={xeX l or(x) = F},
X(F)={xeX ‘ yi(x) = F}.

2. WEAK SPECTRAL EQUIVALENCE

a) The weak spectral pseudo-distance. Definition 2.1. Let Ty, T, € £(X). We define

STy, Ty) = sup (or,(x), o7,(x))

and
pw(Tl’ TZ) = max {(SW(TI’ TZ)) 5W(T2.~ TZ)} .

Remark 2.2. According to the facts mentioned in Remark 1.10, if T, and T, are
decomposable, then 6,(T,, T,) = d,,(Ty, T,) and if they have the s.v.e.p., then
3Ty, Tz) £ d(Ty, T,). The equality remains true if T, is decomposable and T,
is semi-decomposable (i.e. if T, has the s.v.e.p. and for every closed F, X (F) is
closed) ([12], Cor. 1 of Th. 6.4).

The above mentioned inequality is false if T} has not the s.v.e.p. and T, has this
property.

Example. Consider X = [?, T, the adjoint of the unilateral shift, T, = 0. One
shows that T} ¢ 2(x) and Sy, = D;, where D, denotes the unit disc centered at the
origin (see Appendix A, 1). Therefore o7,(x) = D; and

oT(x)={0 if x=0,
2 {0} if x+0.
It follows that
o(D,0)= o if x=0,
(3(0'1*[()6), O'TZ(X)) = {5§Dl’ {())}) =1if x+0,
hence 6,(Ty, Ty) = oo.
On the other hand,

dsp(Tl’ T,) = im H(Tl N TZ)["]

"= 1Tl =1
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Remark 2.3. It is easy to see that p,(T),, T,) = oo if and only if one of the opera-
tors has the s.v.e.p. and the other has not the s.v.e.p. (we use that fact that

sup 8(or,(x), o7,(x)) £ sup  sup |2 — p| < ).

Aea(T1) pea(Tz)
Remark 2.4. For every Te 2(X),

[ Tl» = 0,(T; 0)
(the proof is simple).

Remark 2.5. In general, 6,(T;, T,) = 0,(Ty, T)-

Example. Let U* be the adjoint of the unilateral shift on I* and let T, € £(I?)
be such that o(T,) = {40} with A, ¢ D, = {AeC| || = 1}.

We know that oy.(x) = D, for all x € [%. We obviously have a,(x) {1} for all
x € I\ {0} and o7,(0) = 0. Therefore

5,(U*, T,) = sup sup inf |4 — p| =

xel? Jeay*(x) pearo(x)
= max{sup sup |4 — Zo|; 8(Dy, 0)} = max { sup |4 = Zo|; 00} = o0

xel2  leD;
x*+0

and
8,(Ty, U*) = sup sup  inf |/1 - pl =

xel? peoTo(x) Aeau*(x)

= max { sup inf |4 — Jo|; 6(0, D)} = max {mfll — Ao|3 0} = mf]i — 2ol -
xel? 2eD;
x*0

Therefore, we obtain §,(Ty, U*) < o, (U*, Tp).
Lemma 2.6. For T,, T,, T; € £(X), the triangle inequality holds:

pw(Tb TS) é pw(T}n TZ) + pw(TZ: T3) .

Proof. It results immediately from Lemma 1.3 and the subadditivity of the
supremum.

Remark 2.7. p,, is a semi-metric (it is not a metric: p,(T, 0) = ||T||;, = 0 for T
quasi-nilpotent, T = 0).

b) The weak spectral equivalence. Definition 2.8. Let T}, T, € £(X). We say that
T, is weakly spectrally equivalent to T, if

pw(Tla TZ) = 0 .
We denote this by T; ~™ T,.

It is clear that ~" is an equivalence relation.

Remark 2.9. If T, and T, have the s.v.e.p., then the spectral equivalence T, ~*? T,
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implies the weak spectral equivalence T; ~* T,; we sha]l prove later (Theorem 2.21)
that this fact is true for any operators in #(X). If 7} and T, are decomposable, the
two notions are equivalent (cf. Remark 2.2).

Remark 2.10. T; ~" T, means that, for every x € X, p(or,(x), o7,(x)) = 0; o1 (x)
being compact, it follows from Lemma 1.2, b) that T; ~* T} is equivalent to or(x) =
= or,(x) for every x € X.

Proposition 2.11. a) If Sy, = S;, and yr(x) = y,,(x) for every xeX, then
T, ~ Ty

b) Conversely, if Ty ~* T,, then Sy, = Sr,.

If, moreover, y;,(x) N Sy, = yp,(x) N Sp, for every x€X, then yp,(x) = y7,(x)
for every xe X.

.

Proof. a) is obvious, by the definition of ¢,(x) and Remark 2.10.

b) We know that y7,(x) U Sy, = 77,(x) U S 1, for every x € X, in particular for
x = 0. But y;,(0) = 0 (obviously 67(0) = C for Te #(x)). Hence Sy, = Sq,.

It is known that A UB = AU C and AnB = A~ C imply that B = C. We
take 4 = Sy, = Sr,, B = y7,(x), C = y7,(x) and the statement follows.

This proposition has the following immediate interesting

Corollary 2.12. Let Ty, T, € #(X). If Ty ~* T, and T, has the s.v.e.p., then T,
has the s.v.e.p. as well.

Proposition 2.13. Let T;, T, € Z(X). If Ty ~" T,, then
o(Ty) = o(Ty).
Proof. For every x € X, o7 (x) = or,(x). Hence by [10], Prop. 2.4, Cor. 1,

o(T,) = UXaTl(x) =xl€JX or,(x) = o(Ty).

Proposition 2.14. Let Ty, T, € #(X) and let F be closed in C.
a) If T, ~™ T,, then
1° X7(F) = X1,(F);
2° X1,(F) = X1,(F) in each of the following cases:
0 Sy, cF (i=12)),
B) vr(x) A Sr, = y0,(x) 0 Sy, (V)xeX
b) Conversely, if Xr,(F) = X,(F) for every F closed in C, then T, ~* T,.
Proof. a) 1° Obvious.
2° a) Since Sy, = F, X1 (F) = Xr,(F) and one applies 1°.
B) By Proposition 2.11, b).
b) Obviously, xeXTZ(GTZ(x)) for every xeX. Therefore, by hypothesis, x €
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€ Xr,(or,(x)), that is, from the definition of X (.), o7,(x) = or,(x). The other in-
clusion can be proved in the same way.

Remark 2.15. A result similar to point b) was obtained for the spectral equivalence
([5], Ch. 2, Th. 2.2), but only in the case of decomposable operators (in this case,
the two notions of the equivalence coincide).

Theorem 2.16. Let T, T, € £(X). If T, ~¥ T, abd T, is decomposable, then T,
is decomposable as well.

Proof. The proof will proceed in several steps.
a) By Corollary 2.12, T, and T, have the s.v.e.p..
b) 1° By Proposition 2.14, a), X1 (F) = Xy,(F) for every F closed in C. Denote
Yy = X1 (F) = X4,(F).
2° Y = Xp,(F) is invariant for T,; hence Ty(Y;) < Y.
3° Because T is decomposable, Y, = X (F) is a spectral maximal space for T,
for every F closed, F < o(T;) ([5], Ch. 2, Th. 1.5) hence for every F closed in C.
Indeed X,(F) = X1,(F 0 o(T,)) ([5]. Ch. 1, 1.1) and F n o(Ty) = o(Ty).
Therefore Yy is closed. On the other hand, Y, = X, (F) and T, has the s.v.e.p..
It follows ([5] Ch. 1, Prop. 3.8) that Y} is a spectral maximal space for T, and that
o(T, | Ys) = F.
4° It follows that
o(T, | Y¢) = F (V)F closed (from 3°)
T,(Y:) = Y (VF) closed (from 2°).
Hence ([5], Ch. 2, Th. 2.6) T is decomposable.

Proposition 2.17. Let T,, T, € £(X) and let f: D — C be an analytic function
defined on a neighbourhood of o(T;) U a(T,), nonconstant on every component of D.
If Ty ~¥ T, then f(T,) ~" f(T5).

Proof. From [11], 1L, 3.15 and 3.17, it follows that f(y7,(x)) = ypry(x) (x € X)
and f(St,) = Sy, (i = 1, 2). Therefore

TrrolX) = Ve o(X) U Syry = frr(x) © f(S7,) =
= f(rrdx) v Sz,) = for(x)) (i =1,2)

and op,(x) = o,(x) implies that a,)(X) = 0 4r,)(x) for every x e X.
Now we show how the similarity preserves the local spectral properties.

Lemma 2.18. Let Te £(X) and let U be an invertible operator in £(X). The
following equalities hold:

a) St = Sy-11p,
b) yr(Ux) = yy-17u(x) (¥)x € X.
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Proof. a) Let o = 2 and let f: w — X bz an analytic function with
(I —U'TU)f(2) =0 on w. Hence U™ (Al = T)uf(Z)=C on o and, U™'
being injective, (4 — T) U f(4) = 0 on w.

Define fy : @ » X by fy(4) = U f(%). It is easy to prove that fy is an analytic
function. Moreover, (A — T) fy(2) = 0 on ;  is included in Q, so that fy(2) = 0
on w. By the injectivity of U we obtain f(4) = 0 on w. Hence ® = Qy-iry, so that
Qp < Qy-1py-

The converse inclusion can be proved in the same way, using fU()_) = U_‘f().).

b) We prove that 6(Ux) = dy-17y(x)-

Let Jg € 04(U;) and let D be a neighbourhood of ,, for which there exists an
analytic function f : D — X with (Al — T)f(4) = Uxon D,or U (Al — T)f(4) =
= x on D. Define f;, : D - X by fy(4) = U™' f(); fy is an analytic function and
UM -T)ufy(A)=x on D, or (I — U 'TU)fy(4) = x on D. Therefore
Lo € Sy-igu(%)-

In the same way the converse inclusion can be proved.

Corollary 2.19. Let T, U € £(X), U invertible. We have
orf(Ux) = oy-ipp(x) (V)xeX.

Proposition 2.20. Let T;, T, € #(X) and let U € £(X) be invertible. If Ty ~™ T,
then UTT\U ~" U™ 'T,U.

Proof. By hypothesis, oy (x) = or,(x) for every xeX, therefore or (Ux) =
= o1,(Ux) for every x € X. From Corollary 2.19 we obtain oy -17,y(X) = oy-ir,0(x)
for every x € X, thatis, U'T\U ~¥ U™ 'T,U.

We observe that in [5] Ch. 1, § 2 we can separate the existence from the uniqueness
of the extension of the resolvent; we obtain

Theorem 2.21. If T,, T, € £(X) and Ty ~* T,, then Ty ~" T.

Proof. We shall prove that y; (x) = yr,(x) for every x € X and that Sy, = Sy,

a) yr,(x) = yr,(x) forllos as in [5], Ch. 1, Th. 2.4.

Let Ay € d7,(x); there exist an open neighbourhood D of 4, and an analytic function
Xy : D - X such that (AI — T;) x,(4) = x on D. We take D, = dr,(x) and construct
an analytic function x, on D with (0] — T,) x,(4) = x on D. It follows that A, €
€ d7,(x).

The other inclusion is proved in the same way.

b) In order to prove that S, = Sy,, we use the proof of The. 2.3, Ch. 1 from [5].

Let Dy = Qr, and let f : Dy — X be an analytic function with (A1 — T,) f(1) = 0
on D;. One constructs, for every 4y € D, an analytic function g, on C\ {/10} which
verifies (uI — T;) g,(1) = f(4o) and puts

h;_(u>=i.j 91 4

2 J g soj=re € = 4
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which is an analytic function on Int D(1,, ro) = Dy; in particular, h;, is an analytic
function and verifies (ul — T,) h; (1) = f(%) on Int D(4q, ro).

Now, D; = @, and (Int D(4y, ro))\ {40} = Dj. It follows that g, = h, on the
open connected set (Int D(Ay, ro))\ {4}, therefore we can construct an analytic
function

0 _ dao(1) for p# 4o,
Siol) = {lzlo(y) for u=1,,

which verifies (ul — T,) 1 (1) = (o) on all C. By [7], 2.1(c), f;,, must be 0.
Zy being arbitrary, (1) = 0 on D, hence D, = Qy,.
In conclusion, Q, < Qr, the other inclusion being proved in the same manner.

c) Properties of permanence of the local spectrum. In order to obtain some results
concerning the permanence of the weak spectral equivalence by passing to subspaces
and quotient spaces, we are interested in the behaviour of the local spectrum in these
cases.

It is known that, if Te ."Z(X) and Yis an invariant subspace for T, then

1° Sty © St yre(x) 2 ye(x) (x € X);

2°S; = S;Ua(T|Y): Sp = Spuo(T|Y): y2(%) = ye(x) = y(%) v o(T| Y)
(x € X) (see for instance [3]. 1.1).

First we shall study conditions upon which the equality o4,(x) = o5(x) holds
for xe Y.

For this purpose we introduce a notion which generalizes the notion of the ana-
lytically invariant subspace.

Definition 2.22. Let Te #(X) and let Y be an invariant subspace for T. Let Q be an
open set in C. We say that Yis Q-analytically invariant for T if for every open set
o < Q and every analytic function f: w — X which verifies (AI — T)f(%)€e Y for
every A € w, the function f is Y-valued.

Remark 2.23. A C-analytically invariant subspace is analytically invariant for T.

Remark 2.24. The subspace {0} is Q-analytically invariant for T if and only if Q
is a set of analytic uniqueness for T (see Def. 1.12). The subspace Yis Q-analytically
invariant for T'if and only if Q is a set of analytic uniqueness for Te £(X][Y).

Examples. 1) If Y is an invariant subspace for T, then Y is o(T)-analytically
invariant for T. .

Indeed, let @< o(T’) and let f: — X be an analytic function with (A — T) f() e Y
for every € w. Now Zew < o(T) and (A — ) f(2) = 0 implyf(—l) = 0, that s,
f(ex.

2) Denote by A the example from [6], 2.28, that is:

Let U* be the adjoint of the unilateral shift on 1> and let A€ C\ {0} with |1| < 1.
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Denote by E, the eigenspace corresponding to the eigenvalue 4. We know (see Ap-
pendix A, 1) that Q. = {]]1] > 1}.

E, is not analytically invariant, but it is ©y.-analytically invariant.

The first statement is proved in [6]. Let us prove the second one.

Let w = Q. and let f:@— I* be analytic and such that (ul — U*) f(n) € E; on o.
We fix pew and denote f(u) = {x,},5o. Hence px,_y —x, = —ri""' (n 21,
re C), so that -

X, = b [1*'xe + (r — Axo) " — ra"].
u—4a

Because {x,} € I, it follows that |x,|> — 0; p being of modulus greater than I,
we have x, = 0 and r = 0. Hence f(u) = 0€ E,.

The following result is a generalization of ([6], Theorems 3.7 and 2.26) which
prove that a spectral maximal space is analytically invariant for 7, if T has the s.v.e.p..

Proposition 2.25. If Te #(X) and Y is a spectral maximal space for T, then Y
is Qp-analytically invariant for T.

Proof. Yis T-absorbing, cf. [6], Th. 3.7. Now the proof follows that of Th. 2.26
from [6]. T

Letw = Qrand let f : @ — X be an analytic function with (AI — T) f(4) € Yon o.

Because Y is T-absorbing, it follows that f(4) e Y for ie a(T[ Y).

Now let 2€o(T| Y) n w. There exists (AI — T|Y)~'. Denote

A=A -T)f(A)eY;

(AI — T)™* y() makes sense and is in Y.

We have

y(A)y =@ = T)(AI = T)" ' p(2), y(A) = (A =T)f(2).

It follows that. (AI — T)[f(2) — (A — T)™' y(4)] =0 for lew no(T
< Qp. Hence f(4) = (A — T)"' y(A) e Y,

Y) <

Proposition 2.26. Let Te #£(X) and let Y be an invariant subspace for T. If Y
is Qr-analytically invariant for T, then for every x € Y,

ory(x) < or(x).

Proof. We prove that ¢7(x) = ogy(x), that is Q3 N 7(x) = Qpjy N d71y(x). We
know that Q; < Qg y.

Let G be a connected component of d7(x); we know that G = Q7 or G = S;. We
take G < d7(x) N Qr = Qqjy; let us show that G < dpy(x). Because G <= Qy,
there exists a unique analytic function f: G — X satisfying (I — T)f(4) = xe Y.
Now G = Q; and Y is Q-analytically invariant, therefore f(1) € Y. In other words,
f: G — Yverifies the required relation, hence G < 67y(x).

Proposition 2.27. Let Te #(x) and let Y be an invariant subspace for T. If Y is
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Qq-analytically invariant for T and Qry = Qr, then for every x € Y,

ory(x) = og(x).

Proof. By the previous proposition, ¢7(x) = o7|y(x). Now, ozjy(x) = d75(x) 0
A Qryy = Oqy(x) 0 Qr = 84(x) N Qp = ¢4(x), using the hypothesis and the in-
clusion d7y(x) < d4(x).

We now give an example showing that without the additional hypothesis in Pro-
position 2.27 (i.e. Qpy = Q) the equality opy(x) = g4(x) may fail.

We use Example A.

It is easy to prove that Sy« g, = 0, o(U* | E,) = {4} and therefore oy, (x) € {1}.
On the other hand, oy.(x) = D, for every x € E;. Hence oy.,(x) F ou+(x). Note
that E, is Qu.-analytically invariant, but {4| || > 1} = Quu § Quuz, = C.

Corollary 2.28. If T has the s.v.e.p. and Y is analytically invariant for T, then

orir(x) = o1(x)
for every x e X.

Proof. Q; = C = Qpy and Y is C-analytically invariant.

Example. Denote by B the following example. Let K be a compact set in C,
A(K) = {f:K - C|f bounded}, ¢(K) = {f : K - C | f continuous}. Let M, be
the multiplication by x in #(K): M, f(x) = x f(x) for every x e K.

We can show that M, € 2(%(K)), ¢(K) is analytically invariant for M, and for
every f e €(K),

( ) GMxl‘f(K)(f) = GMx(f) = supp f
see Appendix B, 1—4).

Proposition 2.29. Let Te .,Z’(X), let Y be an invariant subspace for T and x € Y. If

1° Sqyy = Se 0 o(T| Y),

2° }’T]Y(x) = 'VT(X),

3°a7(x) = o(T| Y) L y4(x)
then

ory(x) = o7(x).

Proof. Recall that we always have 6, y(x) = 67(x) and Qp)y > Q7. We have to
prove that orjy(x) = or(x), that is, d7)y(x) N Qrjy = 64(x) N Q7.

Let us prove that 57jy(X) N Qrjy < d7(x) N Q7.

Let A€ dpy(x) N Qrjy; we have 2e€dr(x) n Qpy and we have to show that
A€ Q.

If Aeo(T | Y), then by 3° (e2(x) = o(T | Y) " 6(x)) we obtain Aegr(x) = 57(x) N Qr,
hence A€ Q.

If A€ o(T| Y) and we suppose that A ¢ Q,, that is A € Sy, by 1°, A€ Sy, which is
false.
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In order to prove the reverse inclusion, let 2 € d7(x) N Qr; we have € d4(x)
N Qpys by 2°, A€ d7(x) 0 Qpyy.

The example described right after Proposition 2.27 shows that condition 3° cannot
be omitted in Proposition 2.29.

Remark 2.30. Note that Proposition 2.29 gives another proof of Corollary 2.28.

Remark 2.31. Condition 2° in Proposition 2.29, yry(x) = y7(x) (x € Y), is fulfilled
if the set of values of every function T-associated with x is contained in Y.

This inclusion holds if Yis a spectral maximal space for T (the proof is similar to
that of [5], Ch. 1, Prop. 3.5).

Since in Example A condition 2° is not fulfilled, we conclude that E, is not a spectral
maximal space for U*. In fact, we can prove this directly. Let e C\ {0} with
|A| < i.to = A 1,4y = At,+ A" Hence {t,},5€ I*\E, (see [6], Ex. 2.28). Consider
the subspace of /Z defined by

Z = {r{'lu}n;o + 1{tn}ngo | r, 0 € C} .

We show that Z is invariant for U*, o(U* | Z) = {1} = o(U* | E,), but Z 2 E,
(see Appendix, A, 2).
We now study condition under which the equality 6(%) = a7(x) holds for a fixed

xeX.

Proposition 2.32. Let Te #£(X), let Y be an invariant subspace for T and x € X.
1°If O'(Tl Y) < o4(x), then o4(%) = a7(x).

20 If o‘(TI Y) < o4(%), then o4(x) = a4(X).

3° If o(T| Y) < or(x) N o4(X), then 64(X) = o4(x).

Proof. 1° We prove that o7(x) < o4(x).

Let Ay € o7(x), that is, 4y ¢ o7(x); by hypothesis, 1o e Q(T! Y), hence there exists
(AI — T)™* for 1 in a neighbourhood D, of 4,. We want to show that 1, € ¢4(X) =
= 5T(X) n -QT-

Let D = D, be an open neighbourhood of 4, and § : D — X an analytic function
with (i — T)§(2) = O. Therefore (Al — T)g(A)e Y and g(A) = (A — T| Y)""'.
.(Al = T)g(A)e Y by hypothesis. It follows that g(1)e Y or g'(4) = O. Hence
Ao € Q1.

As Ao € 84(x), it follows that there exists an analytic function f: V;, — X with

(A = T)f(2) = x on V,,. Therefore f:V, — X, defined by f(2) = f(%), is an
analytic function and it verifies (] — T) f(4) = % on V.

(If x € Y, then 64(%) = C, so that the second part of the proof is not necessary.)

2° Let 4o ¢ 04(%); we know that there exists (4 — T| Y)™* on a neighbourhood
D, of A,. We have to show that 2 € o7(x) = d7(x) N Q7.

Let g : D — X be an analytic function on a neighbourhood D < D, of A, with
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(M — T)g(%) = 0. By hypothesis, we can write g(2) = (Al = T)"' (Al = T)g(2) =
= 0, so that g(4) = 0. It follows that 1, € Q.
Bzcause 4q € ¢7(X), there is a neighbourhood D, of 1, and an analytic function

J:D, - X such that (A — T) (1) = % on D;. We can write f(1) = Z S = Ao
for every Ae D,.

We have to find elements b, € d, (n 2 0) such that the analytic function f(A) =
=Y b,(A — 4,)" verifies (A1 — T) f(2) = x.

n=0

From

x= = T)j(2) = = T)Y a,(2 — ) =
n=0
= (odo — Tdy) + Y (dy—y + Aod, — Ta,) (2 — Ao)"
n=1
and from the fact that 4, € Q4, it follows that
(hof = T)do =% and (%l — T)d, = —d,_, (n=1).

The first equality implies

(1) (Al = T)ag=x+y

with y € Y. Now we use the hypothesis 44 € Q(TI Y). For y e Y there is o, € Y with
(2l = T)ao = y. 1t follows from (1) that

(Al = T)(ag — 0g) =x and by =ag—a,, ageY.
In the same way we obtain b, € d, such that (A, — T) b, = —b,_, and thus the

analytic function f which verifies the required equality. Hence 44 € QT(X).
3° Follows from 1° and 2°.

Corollary 2.33. Let Te #(X), let Y be an invariant subspace for T and xe X \ Y.
If Y is analytically invariant and O‘(Tl Y) < 64(X), then

o1(X) = o7(x).

Proof. By the first hypothesis, T has the s.v.e.p.. Now, it is easy to prove that
o7(%) = o4(x) (even without using the second condition).

Remark 2.34. It is known ([6], Prop. 2.8, 2.1 and 1.15) that, for Te #(X) and Y
analytically invariant for T, o(T| ¥) < o(T) and a(T) < o(T). The hypothesis in
Corollary 2.33 implies that a(T] Y) < o(T).

We give three examples related to Proposition 2.32 and Corollary 2.33. In the first
one, the second condition of Corollary 2.33 is not verified and we construct an ele-
ment x which verifies the equality o4(%) = o4(x) and another which does not verify
this equality. In the second example, the second condition of Corollary 2.33 can
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be fulfilled or it can fail. In the third, the condition 3° of Proposition 2.32 is always
verified and the equality o7(X) = o4(x) is obvious.

Examples. 1) We use Example B. Let f€ Z(K)\ ¢(K). In #(K) = #(K)[%¢(K)
we denote by f the class of f.

Denote D, = {x€K | f is discontinuous in x}.

We observe that D is invariant for classes (that is, for every g e f, D, = D,);
the converse is not true: one takes f; and f, as below, which are not in the same class,
but have the same set of discontinuity.

We show that o (f) = D, (see Appendix B, 5—6). On the other hand, we prove
(Appendix B, 3) that g, (f) = Supp f.

Let x, € K and

f1(%0) = Xxoy(X) »
1 for x = x,,
fz(x) = {2 for x # x,.
Hence ‘

o (f1) = o (f1) = {xo}
O'Mx(fz) = ‘{xo} , but GMx(fz) =K

We remark that o(M, | 6(K)) & ox () (i = 1,2).
2) Consider again Example B — the multiplication by x on ﬂ(K) but with another
subspace. Let F be closed in C and

Yy = {fe%(K)|Suppf < F}.
Denote by M% the co-induced operator of M, on %(K)|Yy.
We show (Appendix B, 7—9) that Yy is analytically invariant for M, (hence M
has the s.v.e.p.) and that a(Mx[ Yp) = Int F. It is easy to prove that o(My) = K.

For every f e B(K)\ Y, denote E = K\Int F and Supp; f = {x€ E ]f(x) + 0}.
We have
ox(fF) = D; U Suppg f
(see Appendix B, 10).
If we choose f € #(K)\ Y, such that D, o Int F, then the second condition of
Corollary 2.33 is fulfilled. It is easy to prove that, in this case, D, U Supp; f = Suppf

(that is oy < (f7) = op (1))

On the other hand, if we consider

)1 for x=x,,
fo(x)_{z for x % x,,

with x, ¢ F, then we have oy #(f§) = KNInt F and o, (f) = K; note that the
second condition of the Corollary is not fulfilled.

3) Consider Example A. Denote D; = {1eC||i] £ 1

We know that oy.(x) = D, for every x € [%. It is easy to prove (Appendix A, 3)
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that o(U* | E;) = {4}, Sy» = D; and o(U*) = Dy, where U* denotes the co-induced
operator of U* on I?/E;. Therefore (%) = D, for every x € I|E,.

It follows that the condition 3° of Proposition 2.32 is fulfilled. The equality of the
local spectra is obvious.

d) Properties of permanence for the weak spectral equivalence. Using the results
obtained in c), we can give now some conditions under which the weak spectral
equivalence is preserved by passing to subspaces or quotient spaces.

Proposition 2.35. Let T; € #(X) and let Y be an invariant subspace for T; (i =1, 2).
Supposethat Y is Qp -analytically invariant for T; and QT‘_‘Y = Qg fori=12.
If Ty ~¥ Ty, then Ty | Y ~" Ty | Y. .

Proof. Apply Proposition 2.27.

Proposition 2.36. Let T, € £(X), let Y be an invariant subspace for T,(i = 1, 2).
Suppose that

1° Spyy = Sr, 0 o(Ti | Y) (i = 1,2),
and for every xeY,

2° yr, (X) Yr: “(’C) } =1 2) .

3% or, (x) (%) ’

If Ty ~* Ty, then T,|Y~"T,| Y.

Proof. Apply Proposition 2.29.

Corollary 2.37. Let T;e 2(X) and let Y be an analytically invariant subspace
for T, (i = 1,2). If Ty ~* Ty, then T, | Y ~* T, | Y.

Proposition 2.38. Let T; € #(X), let Y be an invariant subspace for T; (i = 1, 2).
Suppose that, for every xe X\ Y, o(T;| Y) < o7(x) 0 o7,(%).
If T, ~" Ty, then T, ~ T.

Proof. For xe X\ 'Y, o4,(X) = o1,(X) by Proposition 2.32; obviously for x € Y,
o1,(X) = op,(X) = Sy, = Sy, by Proposition 2.11, b).

Corollary 2.39. Let T;e #(X), let Y be an analytically invariant subspace for
T; (i = 1, 2). Suppose that for every xe X\ Y, o(T;| Y) < op(%) (i = 1,2).
If Ty ~™ T, then Ty ~* T.

3. WEAK SPECTRAL CONVERGENCE

a) The semi-metric p,,. In 2, a) the semi-metric p, was defined and some of its
properties were established, while in 1, a) was defined p(4, B) for two sets 4, B = C.
Restricted to nonvoid compact sets, p is a metric (the Hasudorff metric).

Consider now £(X) with the topology generated by p,, and " = {K = C ] K com-
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pact} with the topology given by the metric p. With respect to these topologies, we
have

Proposition 3.1. a) The map X : £(X) > A" defined by X(T) = o(T) is a con-
traction.

b) For every x € X, the map X, : £(X) —» A" defined by X (T) = o4(x) is a con-
traction.

Proof. a) We use Lemma 1.4:

5(G(Tl)’ o(Ty)) = 6(U or,(x), L{("Tz(y)) =
xeX ye
= sup inf 6(0T1(x)’ aTz(y)) < sup 6(0’11()(), GTz(x)) = 5W(Tl’ TZ) >
xeX yeX xeX
therefore p(o(T}), o(T2) < p,(Ty, T,) by symmetry.
b) For a fixed x, obviously ’

8(or,(x), o1,(x)) £ sup (07, (x). o7.(x)) = 6.(T:, T2)
so that p(or,(x), o7,(x)) < pu(Ty, To).

Remark 3.2. With the notation from Sec. 1, for T, T, € Z(X), the following
inequalities hold:

P("(Tl)’ o(T2) £ pulTy, 1) < p(T1, To)
P(Url(x)a UTz(x)) = Pw(Tn Tz) =< P(Tp Tz) .

The inequalities between the first and the third terms are known ([1], II, Prop. 1.4
and 1.7).

For non-void 4 in C and r > 0 denote

C(4,r) = {1eC|dist (4,2) £ 7} .

Lemma 3.3. Let Ty, T, € £(X) with p,(Ty, T,) < &. For i,j = 1,2, i # j,

a) or(x) = Clar[(x),¢) (V)xeX,

b) X1 (F) = X1 (C(F, ¢)) (V)F = C closed.

Proof. a) is obvious from the definition of p,.

b) Let x € X (F), thatis, o7,(x) = F. We need x € X1,(C(F, ¢), that is, o7,(x) =
< C(F, ).

Let A ear,(x) = Clor,(x), ¢) (by a)); or,(x) being compact, there is p e oy (x)
with |1 — p| < & But op,(x) = F. Thus we obtain, for A€oy, (x), a ueF with
|2 — u| < e. 1t follows that o7,(x) = C(F, ).

b) Weak spectral convergence. Definition 3.4. Let T, T, e £(X). We say that
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the sequence {T,,} converges weakly spectrally to Ty if
lim p,(T,, To) = 0.

n—oo

We denote this by T, »" P T,

Remark 3.5. Note that the weak spectral limit is not unique, but any two limits
of a sequence are weakly equivalent.

Remark 3.6. If T,, T, € Z(X), it is obvious that the spectral convergence (see
Definition 1.11) implies the weak spectral convergence. This is not true if T, ¢ 2(X).

Example. Let U* € £(I?) be the adjoint of the unilateral shift and T, = (1/n) U*.
In this case T, - 0, but T, +""°F 0.
Indeed,

00, T;) = (T, 0) = T (T, ~ 03| = T — |(U#)] ¥ = 1
m— o m—-ow N

1
= [U*]sp = =,
n n
therefore it converges to zero.
On the other hand, §,(T,, 0) = sup d(or,(x), 0o(x)). For x =0, o (0) =
xeX

= 0¢1/mu+(0) = (1/n) 0y«(0) = (1/n) D, = Dy, and Dy, is not void (D, =
= {4] [4] £ 1/n}), but 6(0) = 0, because 0 € 2(X).

We obtain §(ar,(0), 54(0)) = 6(Dy/m) @) = oo for every n, therefore 6,(T,, 0) and
Pu(T,, 0) are infinite. Hence p,,(T,,, 0) + 0.

Proposition 3.7. If T,, T, € #(X) and T, >~ T, then
lim p(o(T,), o(T)) = 0.
Proof. This is a consequence of Proposition 3.1, a).
Theorem 3.8. Let T,,, To € £(X) with T, »¥~*® T,. If all T, (n = 1) have the s.v.e.p.,

then T, has the s.v.e.p. as well.

Proof. Let ¢ > 0 and n 2 n, such that p,(T,; Tp) < &. We have 4,(Tp, T,) =
= sup &(ar,(x), o7,(x)) < & so that for every x, d(or,(x), o7,(x) < &. In particular
xeX

for x = 0: 6(Sr,, St,,) < &. By hypothesis, Sy, = 0. If we suppose Sy, # 0, then
(St 0) = 0 < &. Therefore Sy, = 0.

Theorem 3.9. Let T,, Ty e £(X) with T, >¥  T,. If all T, (n 2 1) are decom-
posable, then so is T,.

Proof. Tj has the s.v.e.p. by Theorem 3.8.
Now the proof is similar to that in [2], Th. 2.7, using Lemma 3.3 instead of [2],
Cor. 2.5 and Proposition 3.1 instead of [2], Prop. 2.2.
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Remark 3.10. The previous Example shows that £(X) is not complete in the
p.-topology.
Indeed,

1 1
pw(Tm Tm) = l- -
n m

-0

for m, n - oo. Suppose that p,(T,, T,) - 0. By Proposition 3.7, lim p(a(T;,), o(Tp)) =
= 0. But 6(T;,) = D(y,,y and lim p(D(y ), {0}) = 0. The limit in " being unique,

it follows that o(T;,) = {0} and hence Sy, = 0. But this is impossible (the proof is
the same as in the previous example).

APPENDIX

Some of the results (Al, B3) are known, but we give them for the sake of com-
pleteness.

A. THE ADJOINT OF THE UNILATERAL SHIFT

Let I? be the space of square-summable sequences (of complex numbers) and U €
e &(1?) the unilateral shift on %, given by

U(éo; 51’ 527 '-') = (Oa 60, 613 "') ’ {C"}n € 12 .
Let U* be the adjoint of U. Hence

U*(ém 61& 62: . ) = (61a §2$ 53’ ) H {én}n € 12 .

1. U* has not the s.v.e.p. Let v = {A[ |/1| > 1} be an open set and f : w — I? an
analytic function such that (A1 — U*) f(4) = 0 on ; thatis (A — U*) {f,(1)},z0 =
=0 on w. We obtain Af(4) — f,+1(4) =0, so that f,(1) = A" f4(4). Suppose
fol?) * 0.

We have {f,(4)},s0 € I?, that is the series i 122 | fo(D? = |fo(A)]? i |4]>" must
n=0 n=0

be convergent, which is impossible, because |1
hence f,(4) = 0 (Y)n.

Hence w < {A]|4| > 1} implies that @ = Qu., so that {] |4| > 1} = Q..

Now, for every 4 # 0 with |4| <1 we have (Al — U*){A"},50 =0 and the
function 4 — {A"},, is analytic and +0. Hence A does not belong to any open set
of analytic uniqueness w;A € NCw = (Jw = CQy» = Sy*.

Therefore {4/ 0< |4| <1} = Sys, so that by passing to the closure, {4| |4 < 1} = Sye,
or {i]|4] > 1} = Qua. Hence Qu. = {4] |2 > 1} and Sy = {AeC||2] < 1}.

We have denoted by E,, the eigenspace corresponding to 14(0 < |/10| < 3).

> 1. We conclude that fo(4) = 0,
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2. E, is not a spectral maximal space for U*. Define, for 1,€ C\ {0} with
|| <45 to = Aoy tur1 = Aot, — A and

Z = {r{‘ig}"go + fx{t,,},,go I r, d€ C} .
a) Z is invariant under U*.
Let Z = {rdg + at,},s0€ Z.

U*(Z) = {r'{?)-l—l + (xtn+l}n§0 = {rlr(lfl + aj'otn - al’(;}ngo =

={(rdo — ) 25 + (atdo) ty}nz0€ Z .
b) Z 3 E,, obviously.
¢) o{U*| Z) = {0}, that is, for every 2 # Ao, (M — U* | Z) is invertible.
o) Let ze Z with (AI — U*)z = 0.
Notethatt, = 26" — ny*',z = {z,} 50 Withzo = 1 + alg, 2, = rip + adp*' —
—oniy~' (n = 1)and (AI — U*)z = 0.
Therefore, for every n > 1,

Arkg — 2t = o= 2agtt + 25T — ndg + mddgT),
FAS(A — Ao) = ady (A — /10)(—},3 + n).

We divide by 257 '(2 — 4o) # 0 and obtain 12, = a(n — 13).

If we suppose o =+ 0, letting n — oo, we obtain a contradiction. Therefore o = 0,
so that » = 0. It follows that z = 0.

Hence (A1 — U* | Z) is injective.

B) Let y = {rody + aot,},. Let us find r and « in C such that (A — U*¥)z =y
where z = {riy + at,},s0.

Take

T'o *o

and r = — .
A=l A=l ()h — 10)2

- { roko %oy 4 _oln }
A—2 (A—10)* 4-=1 #30
and (A — U*) z = {rodf + aolyfnszo = J-

Hence (A — U* [ Z) is also surjective.

3. a) It is obvious that o(U* | E;) = {4}.

b) We know that o(U*) = o(U*) U o(U* | E;) and o(U*) < o(U*) U o(U* | E,)
(see, for instance, [6], Prop. 1.14). Hence D, < o(U*) U {A} = Dy, that is o(U*) U
v {4} = Dy, so that 6(U*) = D,(a(U*) being closed, it cannot equal D, \ {4}).

c) U* has not the s.v.e.p., because E, is not analytically invariant for U*. Hence
Sy« # 0. It is known (see, for instance, [3], Prop. 1.1.1) that Sg. = Sy. U a(U*I E))
and Sy. < Sy. U o(U* | E;). Therefore Sy. = D, and D; < Sg. U {4}, so that
Sy L {A} = D, and we conclude in the same way that Sy. = D,.

Therefore
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B. THE MULTIPLICATION BY x IN #(K)

Let K be compact in C, #(K) = {f:K - C|f bounded} with the sup-norm
denoted by | |, and (K) = {f: K - C | f continuous}.

Let M, € Z(#(K)) be defined by M f(x) = x f(x) (V) x e K.

It is known that o(M,) = K.

1. M, has the s.v.e.p. Let D be an open connected set in C and let h : D — %(K)
be an analytic function with (11 — M,) h; = Oforevery A€ D, thatis (A — x) h,(x) =
= 0 for every A€ D and x e K.

Let ® = D nCK; it is an open set. Suppose that it is not void. For A e w, xe K
we have 4 — x = 0, so that h,(x) = 0 for every x € K, thatis h; = 0 for every 4 € w:
because h is analytic and w is open in D, it follows that h = 0 on D.

If =0, then D = K. Fix Ayoe D. We have (A, — x) h,(x) = 0. For x = 4,
we have h,(x) = 0, so that i, (x) = w;,;,)(x). Note that we can take a;, = 1. We
show that such a function cannot be analytic with respect to 4 (it is not continuous).

Let 0 < ¢ < 1 and let A fulfil |2 — Zo| < & Therefore

Hhao - hA”o = SUIF h;.g(x) - h;.(x)l = SLLP ,Xuo}(x) - Xu)(x)| =

= sup 21{8.

xeK

0 for x+1, x=+ 4,
1 for x=1 or x=4

2. 4(K) is analytically invariant for M,. Let » be an open setin C and g : 0 —
— #(K) an analytic function with (I — M,) g, € ¢(K). Therefore (I — M,) g, =
= f, with f:w — ¢(K) analytic (f,(x) = (4 — x) g,(x) and g, is analytic). We
have to prove that g, € 4(K).

For every x + 4, g,(x) = f(x)/(4 — x), hence g, is continuous on K \ {1}. From
the definition of f; we have f;(4) = 0 (1 £ o n K).

Because f;:w — %(K) is an analytic function, we have f; =3 a, (4 — x)'

n=0
with a,,€ 4(K), a,, = f.. the series being convergent whenever ]/l - x[ <
< dist (x, Fr o).

Therefore f(x) = f an(x) (A — x) = i ap(x) (2 — x)" (because a, o(x) =
=fx)=0)and "=° "=

{AE—X); ="§1am(x) (A—xy1;

hence lim f;(x)/(2 — x) exists and is equal to a, ,(x).
Aox

For u # A, pin the domain of convergence of the series, we have

_ L)
gu(}”) - m .
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Hence there exists

lim g,(4) = lim Su?) ) =a; ,(4)-

noa ni fH—

On the other hand, g, is analytic, so that g,l(,t) = hm g,,(l) Hence g,(1) = a; (%)
and g, is continuous also in 4.

3. For every fe B(K), 05, (f) = Supp f. We prove that oy (f) = C\ {x|f(x) # 0}.

Let 2o € C~\ {x|f(x) # 0}: there is a neighbourhood V}; of A, with the property
that f(x) = 0 for every x e K n V,,. We take V,, open With the property that 2, e
eV, <V, c V. Denote d = dist (V,,CV}). Define g:V,, — #(K) by

S(x)
gix) =<4 — x
0 for x = 4.

Note that g(x) = 0 for every xe K n V; (because A€V, = V)). For xeK n
ALy} g,(x)| = [f()(2 = x)| < | f[o/d because ieV, and x¢ V.
Therefore |g,]o = [f]o/d. that is g, € B(K).

It is obvious that g is analytic as a function of 4 and that (A — x) g,(x) = f(x).

Hence €\ Suppf < op (/)

Let now A€ {x | f(x) # 0}. Suppose that there exist a neighbourhood ¥, of % and
g:V, — A(K) with (2 — x) g,(x) = f(x) for every x e K. For x = 4, f(4) + 0 and
0.g;(2) = f()- This is a contradiction. Hence 1 € 6, (f).

It follows that {x |f(x) + 0} < oy (f), so shat {x_D‘(x) + 0} < oy (f), or

on(f) = C~N{x|f(x) = 0}.

4. For every fe%(K), oy ex(f) = Supp f. The proof is the same as above;
g, 1s continuous for f continuous.

We recall that, for fe #(K), D, = {xeK If is discontinuous in x} and that we
denoted by f the class of f in 2(K)/%(K).

for x % 4

5. For every gef, D, = D,. Suppose that D,\D, + 0. Let xe D,\D,. We

know that ¢ = f + ¢ (c € 4(K)); c and g are continuous in x, but f is not. This is
a contradiction.

Analogously, D,\D, = 0.
6. For every f ¢ B(K)\%(K), o (f) = D,. We show that
om(f) = C\D; = (C\K)uInt {x eK | f continuous in x} .

Let Ao € op(f): there exist @ — 4, and an analytic function ¢ : @ - B(K)|%(K)
with (Al — M,) g, = f for every 1 € . Therefore

) (4 = x)g:(x) = f(x) + ¢4(x)

for every A€ w, x e K, where ¢, € 4(K) and 1 — ¢, is analytic.
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On w N K, the function x — ¢,(x) is continuous. This follows immediately from
the inequality

[0:(%) = @(x)] = [@x(x) = @AX)] + |@x(x) = @u(x')]
and from the analyticity of ¢, (for the first term) and from the continuity of ¢ (for
the second).

If ie w N K, we take x = A in (1); we obtain f(1) = — ¢,(1), therefore f is conti-
nuous in 4; hence x e K\ Dy.

If fe \K, then e C\K. Therefore oy (f) = C\D,.

Let now Joe C\ D, = (C\K) U Int {x € K | f continuous in x}.

If 2o € C\K = o(M,), then 1, € ox.(f)-

If 2 € Int {x € K | f continuous in x}, there exists V,, = V,, = ¥} = {x|/ con-
tinuous in x}, so that there exists V;, = V;, = V. with f |;M continuous.

Define ¢ : K — Ccontinuous and such that cfy,, = ~/ly, and g, : V;, > B(K) by
J(x) + e(x)

g.(x) = A—x
0 for 1 =x.

for 1+ x,

Note that g,(x) = 0 on V,,, so g, is bounded, (A/ — M,) g, = .

It follows that A, € oy (f); therefore C\D; < gy (f) = C\D, and C\ D,
and gy (f) are open sets. We conclude that oy (f) = C\ Dy.

We denote Yy = {fe%(K)|Suppf = F} for F closed in C.

7. Ypis analytically invariant for M. Let f: D — %(K) be an analytic function
with (I — M,)f, € Y for every € D. Therefore (A1 — M,)f, = g, with 1 > g,
analytic and g, € Yy for every 4 € D. We can show as in the case of %(K) that f, is

continuous. Now, we know that (21— x) f;(x) = g,(x) for every x € K; it follows that
Supp f; = Supp g, = F. Hence f; € Y;.

8. Y; = Yrr. Note that if f is continuous, then {x \f(x) + 0} is an open set.
Hence, if we require Supp f = F, F cannot have the void interior (F > {x | f(x) % 0}).
Now the following equivalences are obvious:

Suppf < F<{x|f(x) # 0} ¢ F< {x|f(x) + 0} = Int F <

< Suppf cIntF,
and the statement follows.

9. o(M, | Y;) = Int F. a) We prove that Int F < o(M, | Y;), whence IntF
c a(M xl YF).

Let 4 € o(M, | Yz); it follows that (Aol — M, | Yy) is surjective, thus for every
g €Yy, in particular g with Suppg < F, there is fe Y with (o — M,)f = g,
or (4, — x)f(x) = g(x) for every x e K. Note that Suppf = Supp g = F, so that
{x|f(x) # 0} c Int F.
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From f(x) = g(x)/(2 — x) it follows that the problem of existence of f(x) is not
trivial only at the points at which g(x) # 0, that is, at those at which f(x) % 0. 4,
must be different from those points, therefore 1, € C Int F.

b) We prove that o(M, | Y;) = F. This, in virtue of 8, implies that o(M, | ¥;) <
< Int F.

Let A, € CF. We prove that (1, — M, l Yr) is invertible.

Indeed, let f € Yz with (1,] — M,)f = 0, thatis (o — x) f(x) = O forevery x e K.
Let x be such that f(x)=0, thatis x € Int Supp f = F. Because A, €CF, we also have
Ao — x * 0, a contradiction. Hence f/ = 0.

Let now g € Y. Define

9(x)
—— for x * Ay,
f(x) =144, —x

0 for x = 4,.

Therefore (2] — M,)f = g and Supp f = Suppg = F, 2o ¢ F, hence f € Yj.
Denote E = X \1Int F and Suppgf = {x€ E | f(x) # 0}.

10. For every f € B(K)\ Y, oy, (/") = D; U Supp f. We prove that
o r(fF) = (CNK) U [K\(D; U Supp:f)] .
a) Analogously to 6 we show that
(CNK) U [K~(D; U Suppef)] = om (fF)-
We obtain ¥, from the continuity of f; on the other hand, A, ¢ Suppg, f, therefore

there exists W, such that f(x) = 0 for every xe K\Int F, x € W,

Now we define a continuous mapping ¢ : K — C, such that C’m = —f|m
and ¢ = 0 outside W,, n V.

Let xe K\Int F; if xe W, n V,,, then f(x) =0, so that ¢(x) = 0 as well. If
x ¢ W,, NV, then ¢ = 0 by definition. Therefore x € K\ Int F implies ¢(x) = 0,
so that {x | ¢(x) % 0} = Int F = F, hence Supp ¢ = F.

It follows that ¢ € Y, which was required.

b) Let now 4, € o5, #(f*). We have to show that 1, e CKU(K nCD; n C Suppg f)-
If 4, € CK, we have nothing to prove.

If 1, € K, we use the hypothesis: there is an open set @ — 1, and there is an analytic

function A : w — A(K)F with (¥ — ME) hf = fF on o, that is
(1) (2 = x) hy(x) = £(x) = 9i(x)

with 4 — g, analytic, g, € Y for every 4 € w.
We show as in 6) that A, € K\ D, .It remains to prove that 1o e K\ Suppe f =

=KnCt{xeK\Int F[f(x) # 0} = K n Int({x |/(x) = 0} UCK U Int F).
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We know that 4, € K and that there is an open set @, ® — 4,. Let us prove that
wc {xlf(x) =0} UCK U Int F.

Let 4 e w; if AeInt F, the proof is finished. If AeCInt F = CF and A e(K, the
proof is also finished. Let 1€ K, 2 eCF.

We know that Supp g, < F, so that g, being continuous, {x ’ g,(x) # 0} < Int F,
hence (F < {x , g,(x) = 0}. Hence g,(4) = 0 and, taking x = J in (1), we obtain
f(%) = 0, what we needed.

The rest of the proof proceeds as in 6).
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