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THE LINEARIZED UNIFORM ASYMPTOTIC STABILITY 
OF EVOLUTION DIFFERENTIAL EQUATIONS 

JiRi NEUSTUPA, Praha 

(Received January 3, 1983) 

INTRODUCTION 

The study of stability of solutions of differential equations often leads to the fol
lowing situation: We are able to prove that the zero solution of some linear evolution 
differential equation of the type 

(0.1) 77 = M0̂ ^ 
at 

is stable (or asymptotically stable, exponentially stable, etc.) and we need to find out 
whether also the zero solution of a differential equation 

(0.2) ^ = L{t) и + N{î) и 

(where N[t) is a nonlinear operator) has the same property. If we study stability of 
the zero solution of the equation (0.2), we are interested in the behaviour of only 
those solutions of the equation (0.2) which are "near" to the zero solution and, 
especially if iV(r) U contains U in some sense only in powers greater than one, it can 
be expected that this term in the equation (0.2) should have only a minor influence 
on the behaviour of a solution U "near zero", because its magnitude is very small as 
compared with the magnitude of the term L{t) U. This idea is the starting point of 
a method of investigation of stability of the zero solution of the equation (0.2), 
based on the neglecting of the nonlinear term N{t) U in the equation (0.2). This 
procedure is usually called the linearization and the equation (O.l), resulting from 
(0.2) by the linearization, is called the linearized equation. 

Correctness of the method of linearization has been extensively studied for many 
types of differential equations and various types of stability. Many results concern 
the case when the linearized equation (O.l) is autonomous. Then in many special 
cases of the equation (O.l) the zero solution of this equation is uniformly exponentially 
stable if the spectrum of the operator L lies in a subset of the form {z I Re z ^ /c < 0} 
of the complex plane and this condition (together with some assumptions about 
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the operator N(t) and some other conditions which are usually more or less of tech
nical character) is often sufficient also for the uniform exponential stability of the zero 
solution of the equation (0.2). From works containing results of a similar type, we 
mention for example papers of G. Prodi [18], D. H. Sattinger [19] and H. Kielhöfer 
[11], [12]. The question of linearization in the case that the linearized equation is 
nonautonomous is studied, besides other problems, for various types of stability for 
example in articles of G. looss [7], O. A. Ladyzhenskaya and V. A.Solonnikov [14], 
A. Strauss and J. A. Yorke [23] (in this paper the authors deal with ordinary dif
ferential equations and their equation, corresponding to our equation (O.l), need 
not be even linear), J. Bartâk [ l ] , [2] and J. Neustupa [15], [16]. 

In this paper we examine the correctness of the method of linearization in the case 
of uniform asymptotic stability. Under certain conditions we show that the uniform 
asymptotic stability of the zero solution of the equation (0.1) imphes the same proper
ty of the zero solution of the equation (0.2). This main result is proved in Section 2. 
The restriction to the question of stability of the zero solution does not represent 
a great loss of generality, because the problem of stability of a generally"nonzero" 
solution can be mostly transformed quite simply to a similar problem concerning the 
zero solution. In Section 1, we list all necessary assumptions about the equations 
(O.l) and (0.2). Nonetheless, these equations remain very general throughout Sections 
1 and 2. Sections 3, 4 and 5 are devoted to applications of the results derived to some 
more special classes of differential equations, containing as particular cases for 
instance the Navier-Stokes equations, the wave equation, the equation of oscillations 
of a beam and the Timoshenko-type equation. 

1. SOME FUNDAMENTAL ASSUMPTIONS 

In order to prove the main theorem about the uniform asymptotic stability (see 
Section 2), we do not need any special properties of the operators L(t) and N(t), 
appearing in the equations (O.l) and (0.2). What we need are some properties of 
solutions of these equations. This is why we make assumptions not about the opera
tors L{t) and N(t), but about the solutions of the equations (O.l) and (0.2) in this 
section. However, in Sections 3, 4 and 5, where in several examples we shall deal 
with some special differential equations, the operators L[t) and N[t) will be specified 
in each example quite in detail. 

Let X be a Banach space with the norm denoted by ||*]]. (Sometimes, if there is 
a danger of confusion, we use the notation ||*||;̂ ^ instead of ||*||-) If J ^ £ i and 
M ^ X then ^"(J; M) (for n = 0, 1, ...) will be the set of n-times continuously 
dififerentiable mappings from J into M and C"{J; M) (for n = 0, 1, ...) will be the 
Banach space of all elements/from ^"(J ; M) with a finite norm 

i i / iu , . ) = isup||/<'->(oii. 
i = 0 te J 
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We suppose that every solution of any differential equation under investigation 
satisfies the differential equation in some sense on some interval i ^ <0, + oo) and 
its value at each point t e I is an element of the space X. If ||î^(0|| ^̂  bounded on the 
interval /, we denote 

||lt/j!i, = sup | | t / ( t ) i ! . 
tel 

It will be sometimes useful to denote the interval /, where U is a solution, by ^((7). 
We request neither a special smoothness of solutions, nor any special sense in which 
they have to satisfy the corresponding differential equations. We only suppose that 
the norm |1^(0|| of each solution U is the "right upper semicontinuous" function of 
the variable t (i.e. if t' e ^(U) and e > 0 are given, there exists С > 0 so that the 
inequality \\U{t)\\ < \\U(f)\\ + s holds for all t e {f, f + ^) n ^{U)) and the "left 
lower semicontinuous" function of the variable t (i.e. given t' e Qj{lJ) and e > 0, 
there exists (̂  > 0 so that \V{t)\ > \lJ{t')\ - s holds for all t 6 {f - ç, t' } n ^{U)). 

As we have already mentioned, we suppose that the equation (0.1) is linear. The 
equation (0.2) need not (and in all applications, described in Sections 3, 4 and 5, 
will not) be linear, but we assume that it has the zero solution, i.e. the mapping 
U{t) = Ox (where Ox is the zero element of Z) is its solution on the interval <0, + oo). 

Further, we shall use the following conditions: 

(i) There exists a dense subset X^ of the space X so that if т ^ 0 and x^ e X^ then 
there exists a solution F of the equation (O.l) on the interval <т, + oo), satisfying 
the initial condition F(T) = Xj,. 

(ii) There exists î ^ > 0 so that if U and Fare solutions of the equation (0.2) (and 
(0.1), respectively) on an interval <т, r> cz <0, + oo), |||и|||<^^^> g R^ and 

|||F|||<,,,> ^ Ä i , t h e n 

(1.1) \\U(t) - F(0|| й G{\\U{T) - F(T)| | , t - T, |!|C/|1|,,,>) , 

where G : <0, IR^} x <0, + oo) x <0, R^} -> <0, +(X)) is a function with the 
following properties: 
(ii)i G is nondecreasing in the second and the third variable, 
(11)2 lim G(a, ß, y) = G(0. ß, y) locally uniformly with respect to j5 e <0, + со) 

and r e <0, i?i>, 
(и)з G(0, ß, у) = o{y) for all ße(0,+ œ). 

(iii) Given т è 0 and xeX, there exists a solution F of the equation (O.l) on the in
terval <T, + со), satisfying the initial condition F(T) = x. 

(iv) There exists R^ > 0 so that if U and Fare solutions of the equation (0.2) and 
(0.1), respectively, on an interval <T, 0 c: <0, +oo), L7(T) = F(T), |||t/|||^,^,-, ^ R^ 
and ||lFJ||<,,,> g jRi, then 

(1-2) \H^)-muô{t-r,\\\u\\\,^^,y), 
where Ô : <0, +oo) X <0, R^) -> <0, + од) is a function with the following 
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properties: 

(iv)i Ô is nondecreasing in both variables, 

(iv)2 G{ß, y) = o{y) for all j? G <0, + oo). 

(Observe that (iii) => (i) and (ii) => (iv).) 

2. THE UNIFORM ASYMPTOTIC STABILITY AND THE 
LINEARIZATION THEOREM 

Definition 2.1. We say that the zero solution of the equation (0.1) is uniformly 

asymptotically stable with respect to the norm || • || if there exist ô > 0 and functions 

Ф : <0, ^> -> <0, + со) and cp : <0, + oo) -» <0, + oo) with the following properties: 
(a) Ф is a nondecreasing and cp a nonincreasing function, 
(b) lim (p{t) = 0, 

«-»• + 00 

(c) Ф(0) = 0 
so that if Fis any solution of the equation (0.1), т e ^(V) and | |F(T| | ^ ô, then 

(2.1) \\V{t)\\ S ФтЩ) cp{t - T) 

for all ? G <T, 4- oo) n ^ ( F ) . 
We recall that ^ ( F ) ^ <0, +oo) is the interval where Fis a solution of the dif

ferential equation (0.1). 
The uniform asymptotic stability of the zero solution of the differential equation 

(0.2) or of other differential equations would be defined quite analogously. 
Throughout Section 2, we shall deal only with stability with respect to the norm || • ||, 

and therefore we shall mention it no more. 
The uniform asymptotic stability is sometimes defined also in such a way that for 

each X E X such that ||x|| ^ ô and for each т ^ 0, the existence of such a solution F 
of the differential equation considered is required that F(T) = x, Fis the solution on 
the whole interval <т, +oo) and F satisfies an estimate of the type (2.1) for all te 
e <T, + oo). However, in what follows, we investigate the uniform asymptotic 
stability of the zero solution of the equation (0.2) and this equation is so general 
that we cannot prove anything concerning the existence of its solutions without ad
ditional assumptions. This is why we use the above definition of the uniform asympto
tic stability in this paper. Observe that the uniform asymptotic stabihty is here a pro
perty of an "a priori" character, because we must first assume that there exists a solu
tion F of the differential equation considered on a time-interval ^ ( F ) , this solution 
is "sufficiently small" at a certain instant т e ^ ( F ) (i.e. || F(T)| | ^ ô) and then we may 
conclude that the estimate (2.1) is valid for all f e <т, -Ь oo) n ^ ( F ) . 

The main result of this section is the following theorem: 

Tlieorem 2.1. Let the conditions (i) and (ii) or the conditions (iii) and (iv) he 
fulfilled and let the zero solution of the linear equation (0.1) he uniformly asympto-
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ticaUy stable. Then the zero solution of the equation (0.2) is uniformly asympto
tically Stahle as well. 

Proof. We confine ourselves to the case when the conditions (i) and (ii) are ful
filled. The proof in the other case would be quite analogous and in several points 
even less complicated. 

Let the symbols a, Ф and cp have the same meaning as in Definition 2.1. First we 
prove several lemmas. In all of them, we suppose the conditions (i) and (ii) to be 
fulfilled and the zero solution of the equation (O.l) to be uniformly asymptotically 
stable. 

Lemma 2.1. Ф(а) > Oforœe (О, ^>. 

Proof. Suppose the contrary. Then there exists (X^G(0,Ô} SO that Ф(<Х1) — 0 
and according to the condition (i) there exists a solution F of the equation (O.l) so 
that ||F(0)|| G ( 0 , ai>. Due to (2.1) we have ||F(0)1| ^ Ф(||^(0)||), and using also the 
property (a) from Definition 2.1, we get 

0 < | ! 7 ( 0 ) | 1 ^ Ф ( | | 7 ( 0 ) | | ) ^ Ф ( а 1 ) = 0 , 

which is not possible. 

Lemma 2.2. There exists К ^ i and a function i/̂  : <0, + oo) -> (0, 1> with the 
properties 
(d) ф is a nonincreasing function, 
(e) ^(0) = h 
(f) lim \l/{t) = 0, 

(g) \j/{t^ 1/̂ (̂ 2) ̂  ^{h + ^2) {for all ^ 1 ^ 0 and 2̂ ^ O), so that if Vis any solution 
of the equation (O.l) and т e ^ ( F ) , then 

(2.2) \\Vit)\\èK\\V(r)mt--c) 

for all r G <T, + 00) n ^ ( F ) . 

Proof. Let F be a solution of the equation (O.l), т G ^ ( F ) and let | |F(T) | | > 0. 
Since the equation (O.l) is linear, the function W(t) = ô ^(0/li^('^)|| ^̂  ̂ ^^^ ^ solution 
of the equation (O.l) on ^ ( F ) . We have ||W^(T)|| = S and so it follows from (2.1) 
that 

(2.3) II W{t)\\ й Ф{\\ W{T)\\) cp{t -T) = Ф{О) cp{t - T) , 
\\V{t)\\S\\V{r)\\0(ô)cp{t^T)jô 

for Ï G <T, + 00) n ^ ( F ) . 

Let us define i/̂ (0) = ^ and 

Щ = Г Г cp{<r) daljilt cp(0)) (for 0 0 ) . 

261 



It can be easily proved that the function ф has the properties (d), (e), (f), (g) and that 

(2.4) ф{1) è (P{t)l{2 ф(0)) (for t^O). 

We prove for instance (g): Let î ^ 0 and /2 ^ 0- Suppose that 1̂ > 0 and Г2 > 0, 
otherwise the inequality (g) is evident. One of the numbers t^ and 2̂ is greater than 
or equal to (t^ + t2)J2. We can assume without loss of generality that it is the 
number r^. Then we have 

t h 1_ Г ' '̂  ^(^) da 1 s Ф{ч + ^2). 
, 2(̂ 1 + r2)^(0)Jo 

< 

Put 

(2.5) К = 2 Ф{0) срЩд . 

Due to (2.3) we have 1 ^ Ф{о) (рЩд and thus, X ^ 2. The estimate (2.2) follows 
immediately from (2.3), (2.1), (2.4) and (2.5). 

Lemma 2.3. / / U is a solution of the equation (0.2) and there exists S ^ 0 so that 
\\U{S)\\ = 0, then \\U(t)\\ = Ofor all t ^ S (hence U is also a solution of the equation 
(0.2) on the whole interval <^, + 00)). 

Proof. Suppose that there exists &Q > S so that ||^(i9o)|! ^ ^• 
It is a consequence of the property (и)з of the function G that there exists Уо ^ 

e(0 , Ki> so that 

(2.6) G(0, ^0 - ^, У)1У й i (for all у e (0, 70» • 

Using the right upper semicontinuity and the left lower semicontinuity of the 
function ||t/(0||5 ^^ ^^y show that there exists С e <5, .9o> so that 

(2.7) 0 < \\U{Q\\ = \\\u\y,,y ^ уо . 

It follows from the condition (i) that for a given г > 0 there exists a solution V 
of the equation (O.l) on <,9, + 00) such that || F(i9)|| ^ 8. If e is chosen so small that 
8 ^ RiJK then ||IF|[|<Ô ç> ^ jRi, and using also the condition (ii), we get: 

||c/(Oi й IIKOII + GiMs) - v{s)\\, с - s, MUy) ^ 
й K\\V{9)\\ ф{С - 3) + G{\\V{9)\\, С - 5, |||C/|||<9,o) й ' 

^ Кеф{С -9) + G{e, 9^ - 9, l||C/l||<,,ç>). 

Since this is valid for all e Ê (0, RiJK}, we also have 

\\U{C)\\ uG{0,9o-9,\\\u\y^^y). 
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Due to (2.6) and (2.7), this yields 

mow è [G(0' »0 - 9, l!lt/i||<,,o)/il!t/||!<.,o] • ii!t̂ !ll<.,o й 
è il!|t/|i!<.,o = i||t/(OII, 

which is a contradiction. 

Now, we can turn our attention to the uniform asymptotic stabihty of the zero 
solution of the equation (0.2). We shall prove that 

(2.8) there exists zl > 0 so that if (7 is a solution of the equation (0.2), т e S){U) and 
0 < \\U{T)\\ й Л, then 

| | t / (0 | |<2X| i t / (T) | |V(^(^-T)) 

(for ^G<T, +oo )n^ (C / ) ) . 

Suppose that (2.8) is false. Then for each J > 0 there exist a solution U of the 
equation (0.2), т G 2J[U) and t^ e <т, + oo) n ^ ( l / ) so that 0 < \U{T)\ ^ Л, 

(2.9) |lL/(ro)||==2K||[/(T)||V(^(^o-T)), 

(2.10) \\Щ\\ < 2K\\U{T)\\ ^{Ф{1 - T)) (for t G <T, g ) . 

(The existence of such a ÎQ that we can write " = " instead of " ^ " in (2.9) follows 
from the left lower semicontinuity of the function ||[/(f)||.) 

In what follows, it will be useful to work only with J > 0 so small that 2KA ^ Ri> 
i.e. A ^ Ril{2K). Then we have 

(2.11) \\U{t)\\ й 2K\\U{T)\\ V(iA(r - T)) й 2KA й R^ 

for all t G <T, Го>. 

Let ßo be such a positive number that 

(2.12) K^{ф{ßo))йi. 

Firstly, suppose that ÎQ G (T, T + 2^o)- Let г > 0 be given. It is a consequence of 
(ii)2 that there exists â  > 0 so that if aG<0, a^), j^ G <0, 2j5o> and 7 G < 0 , Ki>, 
then G(a, ß,y) ^ s + G(0, ß, y). According to the assumption (i), there exists a solu
tion Fof the equation (O.l) on <т, +co) such that ||1/(T) - F(T)| | ^ a^ and | |F(T)| | й 
^ ||t/('î^)||- Using the inequality (1.1), we have 

\\U{to) - V{to)\\ й G{\\U{r) - F ( T ) | , to - T, |1|C/|||<,,,„>), 

\\U{to)\\ = 2K\\U{T)\\ V(^(ro - T)) ^ ||F(to)|| + 

+ G(||L/(T) - F ( T ) | , f o - T , p \ \ \ , . , , J u 

è K\\V[T)\\ Ф{1О - T) + e + G(0, Го - т, î||t/|l|<.,J ^ 

^ K|lt/(T)|| >/,((o - T) + 8 + G(0, fo - T, |l|t/ll|<.,,„>) . 
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Since e was an arbitrary positive number, we conclude 

2К\\Щт)\\ V(^(fo - t)) й K\\U{x)\\ ф(1о - T) + 

+ G(0, fo - T, !||[/|||<,,,„>) ^ K\\U{r)\\ ф{1о - T) + 

+ G(0, 2^0, 2K\\U{T)\\) ^ К\\и(г)\\ ^{^[t, - т)) + G(0, 2^o, 2/С| |Цт) |) , 

K\\U{r)\\ V('A(2)9o)) ^ J^iC/(T)|| VC-Al̂ o - t)) ̂  G(0, 2)8o, 2 К | | Ц т ) | ) , 

(2.13) iVW2/^o)).^'^ifip. 
Let us denote ö'(^, у) = sup [G(0, j ^ , cr)/ö-]. It follows immediately from (ii)i and (ii)3 

<re(0,y> 

that ^ is a nondecreasing function in both variables and hm g(ß, у) = 0 for all ß ^ 0. 
(2.13) implies that ^"^ '̂' 

(2.14) i^{ф(2ßo))йg{2ßo,2KA), 

Secondly, let ÎQ ^ т + 2ßQ. Then there exist a natural number n and a real number 
h e {ßo, Ißo) such that ô can be expressed in the form IQ = x + ßQÜ + h. Let г > 0 
be given. Denote again by â  such a positive number that G(a, ß,y) ^ в + G(0, ß, у) 
for all a e <0, a^), ß e <0, Ißo} and у e <0, R^y. The condition (i) implies that there 
exists a solution V„ of the equation (0.1) on the interval <т + ßon, ÎQ} such that 
j|t/(T + ßon) - Vlx + ßon)\ S a, and ||F„(T + ßon)\\ й \\U{z + ßon)l (It follows 
from Lemma 2.3, (2.8) and (2.9) that \\U{T + ßon)\\ > 0.) Using the inequality (1.1), 
we obtain 

Mto) - K(to)\\ й G(||C/(T + ßon) - Kit + ßon)\\, h, |||C/|||<.+,„„,,„>) , 

\\U{to)\\ g ||F„(fo)|| + e + G(0, h, \\\U\\\^ 

x +ßon,toy) > 

\\U{to)\\ й K\\V„{x + i?on)i| m + e + G(0, Й, |||t/|||<.+/,„„,,„>) ^ 

^ Kpi-c + ßon)\\ ф(к) + 8 + G(0, h, 2K\\U{t)\\ ^{^{ßon))). 

Since 8 was an arbitrary positive number, we have 

||C7(fo)|| й K\\U{x + ßon)\\ ф{к) + G(0, h, 2К\\ C/(t)| ^iФ{ßon))) . 

Similarly, we can derive the inequahty 
| | [ / (T + ßoi)\\ ^ K\\U(T + ßo{i - 1))|| il^ißo) + 

+ G(0, î o, 2K |m^) i ^/{Ф{ßo{i - 1)))) (for / = 1, 2, ..., n). 

Thus, using (2.12) and the property (g) of the function ф from Lemma 2.2, we also 
have 

\\U(to)\\ = 2K\\U(x)\\ VOK^o - t)) й K\\U{x + ßon)\\ ф{К) + 

+ G(0, h, 2K\\U{x)\\ sJi^ißon))) й iV('A(^)) P{-^ + ßon)\\ + 
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+ G(0, h, 2К\\и{г)\\ ̂ Щп))) й W W ^ ) ) {К\\и(т + ß,{n - 1))|| ^{ß,) + 

+ G(0, /?о, 2Х|1/(т)|| V(^(iSo(n - 1))))} + G(0, /,, 2К|£/(т)|| VC-ACî o«))) ^ 

^ a)V('A(/'))VW/5o)) | Ц т + ß,{n - 1))| + 

+ Ui^ißo)) G(0, ̂ 0, 2К||17(т)|| V(^(iSo(n - 1)))) + 

+ GiO,h,2K\\Uiг)\\^{ф{ßon))) ^ ... ^ (i)"" V('A(/'))(VWo)))''||С/(т)|| + 

+ t(дЧiФ{h)) Шißo))У-^ G(0, i3o, 2K\\U{r)\\ ^{^{ß,{n - ;)))) + 

+ G(o, Й, 2K | |C / (T) | | VC-ACiSo»))) й Ш""^ VC-ACî o« + Й)) Ilt^WII + 
+ t{^)4{^{ßo{j - 1) + h)) G(0, До, 2X||[/(T)|| V(«A(i3o(« - 7)))) + 

j = i 

+ G(0,/i,2K||t/(t)||V(.A(M)) = 
= (i)"^ vwiSo« + Й)) iic/(t)ii + Ê œ v w o O - - 1 ) + Й)). 

"'" ' ^̂̂  + 

2^PWIIVWon)) 
^ (i)""^ VC-AĈSo« + h)) \\U{x)\\ +Ш^^то{п - 1) + Й)) . 

G{Q,ß„2K\\U{x)\\^{^{ß,{n - })))) 2^^,,^, . 

^ Ш""̂  v(^(^on + Й)) |[t/(T)ii + î œvC'ACiSo» + h)). 
G(0, Jgp, 2K||[/(T)|| V(.A(igo(n - j)))) 2K\\U{x)\\ ^ 

2K\\U{':)\\^{^{ßo{n-j))) VWo)) 

. Лтп . H)) '^D f̂ g f a 2X||.(.)|| • 
Hence 

[2к V(*(<. - <)) - ( i ) - " V(Wo» + *))] llüWII s 

i = 1 2К II 1/(т) Il ̂ {il/{ßo{n - J))) y/il/{ßo) 
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and since to — т = ßon + h, we get 

2K - W - i < ^ ^ j.,,.jG(0,ß„2K\\U{T)U(^ißo{n-j)))) 

^"' ~ ^^{ßo)) j=^ 2K\\u{x)\\ v(^(^o(n - m 
+ 2K G{0,h,2K\\U{r)\\^{^{ßon))) 

^{ф{к)) 2Ji:||[/(T)||V(^(iSon)) ' 

v w o ) ) j = i 
9^^ 9fe" " 

= ^ „ J ^ ^ [1 _ (X)"] g(2ß„ 2K\\U{t)l , 
^{^{2ßo)) 

2K-l< ^ g(2ßo, 2K\\U(i:)\\) 

and finally, we have 

(2.15) 2K-1S. -JTTJZ^ 9{2ßo. 2КЛ) . 
v(^(2/5o)) 

Now, it is seen that we can make the right-hand sides of the inequalities (2.14) and 
(2.15) arbitrarily small by chosing a sufficiently small ^ > 0. Thus none of the ine
qualities (2.14) and (2.15) can be satisfied for all Л G ( 0 , R^I(2K). This is he desired 
contradiction. Hence (2.8) must be true which together with Lemma 2.3 imphes the 
uniform asymptotic stability of the zero solution of the equation (0.2). щ 

We have used the linearity of the equation (O.l) only in the proof of Lemma 2.2, 
in particular when deducing the inequahty (2.2). (But later we have used this inequality 
only for ||^(т)|| ^ R^.) If the function Ф from Definition 1.1 is such that 

(2.16) there exist R2 > ^ and с > 0 such that Ф(а) g ca for all a e <0, î 2>» 

then we can derive an inequality of the type (2.2) (which will be valid only for 
| |F(T)| | ^ R2) also in the case that the equation (O.l) is nonlinear. Thus, if we use 
R[ = min [i?i, R2] instead of R^ and if we proceed in the same way as in the proof 
of Theorem 2.1, we can prove the following proposition: 

Let the conditions (i), (ii) and (2.16) or the conditions (iii), (iv) and (2.16) be 
satisfied and let the zero solution of the equation (O.l) (which need not be linear here) 
be uniformly asymptotically stable. Then the zero solution of the equation (0.2) is 
uniformly asymptotically stable as well. 
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3. APPLICATIONS TO CERTAIN DIFFERENTIAL EQUATIONS 
IN BANACH SPACE 

Let XQ be a Banach space with the norm ||*|[o. Suppose that the operator L{t) 
from the equation (0.1) has the form 

L{t) = Ä + B{t), 

where ̂  is a linear operator from XQ into itself such that it is the generator of a semi
group of operators e^^ of the class CQ in XQ. 

LetXi be the domain of definition of the operator A and let it be equipped with the 
graph norm 

(3.1) \\x,\\ = |xo|i + \\Ax\\o. ^ 

Since A is the generator of a semigroup of the class CQ, Xi is dense in XQ and A is 
closed in ZQ. Hence X^ is also a Banach space. 

We suppose that X is such a Banach space that X^ я X ̂  XQ. Assume that there 
exist constants c^ and C2 such that 

(3.2) УЦ^ й с, ê '̂||x|U 
for t ̂  0 and X E X^. It is known that a similar inequality is valid if we use the norms 

10 o^ 11 
instead of || • Ц;̂: (see e.g. [10]). 

For ^ ̂  0 let B(t) be a linear operator from XQ into itself with the domain of defini
tion D(B) independent of t and containing X^. Suppose that Q'^*B(S) xeX^ for all 
xeZjL, r > 0, 5 ̂  0 and that there exist p > 1 and functions /ci(r), k2{t) (defined 
for ^ > 0) so that ki e Li((0, r)), /C2 e L^((0, r)) for all г > 0 and the inequalities 
(3.3) y%s)xluk,{t)\\xl, 
(3.4) y%s)x\\^^k2{t)\\x\\^ 

hold for all X e X^, t > 0 and 5 ^ 0 . 
Suppose that N(t) is a nonhnear operator from XQ into XQ with the domain of 

definition D(N) independent of t and containing X^. Let e'^'iV(s) x e X^ for all xeX^, 
t > 0, s ^ 0 and let there exist a > 0, Я > 0 and a function k^(t) (defined for t > 0) 
so that k^ E Lj((0, r)) for all r > 0 and the inequality 

(3.5) | |e^W(s)x| | ; ,^/c3(0| |A-| |r° ' 

holds for а1И > 0, 5 ̂  0 and XEX^ such that ЦхЦ;̂  ̂  R. 
By solutions of the equations (0.1) and (0.2) on any interval / ^ <0, + 00) we shall 

mean functions from ^ ^ ( / ; X^) n ^^ ( / ; XQ), satisfying the given equation on / . 
It is proved for example in [16] that if т ̂  0 and Xj eX^ are given then there 

exists a solution F of the equation (O.l) on <т, +oo), satisfying the initial condition 
F(T) = Xi (and this solution is even unique). Thus, the assumption (i) from Section 1 
is satisfied. 
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If we want to apply the results from Section 2, we must also verify the condition 
(ii). Put R^ = R and let U, F be solutions of the equation (0.2), (O.l), respectively, 
on <T, t} such that |||̂ |||<t,f> й ^ i and |||F|||<^^> S Ri- According to the above, there 
exists a solution Ж of the equation (0.1) on <т, 4-oo) such that W[T) = I/(f). More
over, 
(3.6) ||[/(0 - F(0|U й \\U{t) - W{t)\\^ + \\Wit) - V{t)l. 

First we shall estimate the term \\U(t) — ^(^)||x' Making use of the semigroup Q^\ 
we can write 

U{t) - W(t) = Ге^^^-^>Б(сг)[С/((7) - Pf((7)]d(7 + {\^^'-''^N{(t)U{a)d(7, 

\\U(t) - W{t)\U й {'hit - a) \\U(a) - W{cT)\\^da + Г + k,{t - a) \\U(a)\\'/^da, 

Choose a natural number m such that 2'"/(2'" ~ 1) < p and set a = 2'"/(2'" - 1), 
b = 2"". Hence ija + 1/fe = 1 and if we use the Holder inequality, we get 

• [ [ \H<y) - Wi^Wx dcrj" + j ' k,{t - <r) ||С/(а)||Г" da ^ 

й I I kl{t - cr)da\ i l \\U{a) - W(a)\\''^da\ 

+ \\\u\\\i:fJ'k,{t-ff)àcT. 

Denote 

(3-7) ' f{t)=\\Uit)-W(t%, 

г с - I -lb/a 
(3.8) е ( « - т ) = 2*-Ч k',{cr)da\ , 

(3.9) Xi(f-T) = 2 * - i r r ' /сз(а)ааТ. 

By virtue of the inequality (и + vf g 2''~*(м'' + v'') we obtain 

/ ( 0 g e{t - T) ï'f{a) d<r + |||t/|||(|,:,">* Xi{t - T) . 

Since ^ is a nondecreasing function, we also have 

m ^ Q{t - r)Çfic^)d^ + MW^'^Oxp - T) 
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for .9 e <т, ty. Thus, if we use the generalized Gronwall-Bellman inequality, we get 

m ^ |||C/ii,:>""'W - r)Г\г{cr)e^^'^-'>'da + хр - т ) | , 

and this yields 
(3.10) \\U(t) - W(t)l ^ 

й \\\иШ:.у' и - т) r ' \ i ( a ) e^" - ' ^d<r + x.{t - r)V'\ 

Now we shall estimate the second term on the right-hand side of (3.6). We have 

W{t) - V(t) = e^"-'>[U{r) - F(T)] + 

+ I" e^^'-"' B(a) lW{a) - V{G)] da . 

Using (3.1) and (3.4), we get 

\\W{t) - V{t)l й с, е-('->|1/(т) - F(T)||;, + 

+ k2{t - G) Il W{G) - V{G)\X àa . 
J T 

Denoting 
(3.11) ; f , ( ï -T) = 2 ' ' - ' [c,e-<'- '>]\ 

we can derive the inequahty 
(3.12) \\W{t) - V{t)\\^ ^ 

й \\и{г)- V{r)\\^ Lt - T) Г \,{a)t'''-^^'da + X2it - Л'" 

in the same way as the inequality (3.10). (3.10) and (3.11) imply 

(3-13) Pit) - nO!U ^ 

^ ll|t̂ ill<J,t>"* k ' - )̂ г \i('T)e'<'-'"d(7 + x,{t - d'" + 

+ \\U{x) - V{x)\\x Ut - ^) [' ' X2{^) e"̂ '̂-̂ '" da + Xiit - t ) | . 

If we set G(|1/(T) — 1̂ (т)||л;, t — x, |||L'||i<t,r>) to be equal to the right-hand side of the 
inequality (3.13), it is not difficult to find out that the function G has the properties 
(ii)i,(ii)2 and (и)з. Therefore, the condition (ii) from Section 1 is also fulfilled and 
hence the following theorem holds: 
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Theorem 3.1. Let the zero solution of the equation 

(3.14) ^- = AV+ B(t)V 
dt 

be uniformly asymptotically stable with respect to the norm \\'\\x- Then the zero 
solution of the equation 

(3.15) "^ = ÄU + B{t) и + N{t) и 
dt 

has the same property. 
We will show that several important equations of mathematical physics may be 

considered as special cases of the equation (3.15) in the following three paragraphs. 
We also choose a concrete space X there. 

3.1. THE NAVIER-STOKES EQUATIONS 

Suppose that Q is a bounded domain in £3 with a hpschitzian boundary dQ. 
Let S^(ü) be the set of all infinitely differentiable vector-functions defined in Q and 
having the zero divergence and a compact support in Q. The Banach space XQ will 
be the closure of ^(Q) in ^2(^). Further, denote by JI(Q) the closure of ^(Q) in 
Wl{Q). Let P be the orthogonal projection of ^2(^) onto XQ and Ä = vP * A 
(where v is the kinematic coefficient of viscosity appearing in the Navier-Stokes 
equations, and Л is the Laplace operator). Put X^ = i î (^) n W2{Q) and let the norm 
in X^ be given by (3.1). We choose the Banach space X to be identical with X^ and 

i-iU = IMii-
Suppose that 17 G C^(<0, + 00); XQ) n C°«0, + сю); Z j ) is a solution of the 

Navier-Stokes boundary value problem: 

(3.1.1) ~ + {U,V)U = F - -gradp + vAU {in Q), 
dt Q 

(3.1.2) divU = 0 ( i n ß ) , 

(3.1.3) (7|,^ ^ UQ . 

It is known that the question of stabifity of the solution Ü may be transformed to the 
question of stability of the zero solution of the problem given by 

(3.1.4) — + (£7, V) L/ + ((7, V) L7 + (C/, V) L/ = - - grad q + v AU (in Q), 
dt Q 

(3.1.2), and by the boundary condition 

(3.1.5) U\,o = 0-

The system (3.1.4), (3.1.2) and (3.1.5) contains two unknowns: U and q. But the func
tion q will not be important in the sequel. Applying the projection P to the equation 
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(3.1.4) and denoting 
B{t) и = ~P[{Ü{t), V) (7 + (и, V) Ü{t)] , 

NU = -Pl(U,V)U], 

we get the equation (3.15). The term P grad q is equal to zero, because grad q is 
orthogonal to XQ in L2{Q) (see e.g. [13]). It may be easily verified that any function 
K e ^ ' ( ^ ( K ) ; Z o ) n ^ ° ( ^ ( F ) ; Z i ) is a solution of the problem (3.1.4), (3.1.2), 
(3.1.5) for t e ̂ {V) if and only if it satisfies (3.15) for t E ^ ( F ) . 

It is shown for example in [8] and [9] that the operator Ä is the generator of 
a semigroup e"̂ ^ of the class CQ in XQ, Q'^^VE X^ for VE}\{Q) and there exists a non-

decreasing function к on (0, + oo) so that 

(3-1.6) ь^'уь^'^тш 
for all r > 0, Гб(0, ту and VE}\(Q). Further, it may be shown by means of the 
Holder inequality and the Sobolev embedding theorem that there exist constants C3 
and 1̂4 such that, if VEX^ and 5 ^ 0 , then 

\\Щ\},,п) ^ c^\\V\\\ . 
These estimates together with (3.1.6) easily imply that the inequalities (3.3), (3.4) 
and (3.5) are satisfied (the number R concerning the inequality (3.5) may be chosen 
arbitrarily). Thus we can use Theorem 3.1 and if we take into account the relation 
between the equation (3.14) (or (3.15)) and the boundary value problem given by 

dV 1 
(3.1.7) — + (F, V) L/ + (L/, V) F = - - grad ^ + v AF (in Q), 

dt Q 
(3.1.2) and (3.1.5) (the boundary value problem given by (3.1.4), (3.1.2) and (3.1.5), 
respectively), we can state 

Theorem 3.1.1. / / the zero solution of the linear boundary value problem (3.1.7), 
(3.1.2), (3.1.5) is uniformly asymptotically stable with respect to the norm l'\\x^ 
then the zero solution of the problem (3.1.4), (3.1.2), (3.1.5) has the same property 
(and consequently, the solution U of the Navier-Stokes problem (3.1.1), (3.1.2), 
(3.1.3) is uniformly asymptotically stable with respect to the norm \\'\\x ^^ well). 

3.2. THE WAVE EQUATION 

The equation treated in this paragraph has the form 

(3.2. î) и ff — u^^ = a(t, x) и + b(t, x) Uf + c{t, x) u^ + 
3 

+ J] dij{t,x,u,Ut,u^)uiUj 

(for r e <0, + 00) and x E <0 , 7T>). The symbols u^, 1/2 and u^ mean м, u^ and u^. 
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We assume that the functions a{t, x), b(t, x) and c(t, x) are defined for r G <0, + oo) 
and X e <(0, n} and that they are continuous and bounded together with their 
second derivatives with respect to x. Further, we assume that the functions dij{t, x, i/, 
Uf, u^) {i,j = 1, 2, 3) are defined for Г e <0, + oo), x e <0, к}, и e E^, u^ e E^ and 
u^ G £ i and that they together with all their second derivatives with respect to the 
variables x, u, u^ and u^ are continuous and bounded on each set of the type 
<0, + oo) X <0,7C> X ^ — r,ry X { — r,ry X < —r, r>, r being an arbitrary positive 
number. 

We shall study the equation (3.2.1) with one of the following boundary conditions: 

(3.2.2) u{t, 0) = u{t, n) =0 (for t^O), 

(3.2.3) u^{t, 0) = u{t, n) =0 (for r ^ 0 ) , 

(3.2.4) u,{t, 0) = u,{t, n) = 0 (for t^O), 

We shall also suppose that c(t, 0) = c{t, к) = d^sit, 0, 0, 0, u^) = ^зз(^, тг, О, О, 
и^) = О (or c{t, 7г) = ^зз(^? 71, О, О, и^) = 0) for all ^ G <0, + oo) and и^ e Е^ if we 
deal with the boundary conditions (3.2.2) (or (3.2.3), respectively)). 

Observe that if we have to study the problem given by the equation (3.2.1) and, for 
example, by the boundary conditions 

(3.2.5) u^{t, 0) + (XQ u{t, 0) = u^{t, n) + a„ u{t, тт) = 0 , 

we can easily transform it to the problem given by an equation of the type (3.2.1) 
and the boundary conditions (3.2.4), substituting u{t, x) = v(t, x)e"^^''^ (where x is 
a sufficiently smooth function defined on <0, n} and such that x'(0) = ao, x'(^) = ^n) 
into (3.2.1) and (3.2.5). 

Set Xo = {[v,, V2]\ V, G C^«0, Tc»; V2 G C ^ « 0 , TT»; V,{0) = v,{n) = i;,(0) = 
= V2{TI) = 0 or V\{Q) ~ V^{TI) = V2{n) == 0 or v\((S) = v\{n) = 0 if the boundary 
conditions (3.2.2) or (3.2.3) or (3.2.4), respectively, are considered}, 

IIC^i' ^iWo = max \vi{x)\ + max \v\{x)\ + max |Î;2(X)| (for [v^, V2'\eXç^), 
^е<0,я> хе<0,я> д:е<0,л> 

^ = ^ 0 . | |[^1' ^2~\\х = \\\уи ^гМо , 

X,^D{A)=^X^r^{\y,,V2'\\v,eC\^,ny)^ Ü, G СХ<0, тг»; i;;'(0) = t;';(7i) = О 
or 1̂ 2(0) = ^ï(^) == о or 1̂ 2(0) = V2{n) = 0 in the case of the boundary conditions 
(3.2.2) or (3.2.3) or (3.2.4), respectively], 

A[v^, V2~\ = [v2, v'[] (for [i;i, V2'\eX^) , 

11^1' ^2]|ii = ||[t;i, t;2]||o + 1 И К , t^alllo (for {v,, 1̂ 2] e X ^ ) , 

^ ( 0 [t^i, У2] = [0, a{t, x) v^ + b{t, x) V2 + c{t, x) t;;] , 

Щ [V,, V2] ^ [0, j] dij{t, X, V,, V2, V[) ViVj] 
i 

(where V3 = v[ and [„^^ VijeXo)-
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It may be easily verified that и e ^^{3){u)\ C^«0,7Г>)) n ^\9{u)\ C^«0, тт») is 
a solution of the equation (3.2.1) (with one of the boundary conditions (3.2.2), 
(3.2.3) and (3.2.4)) if and only if U = [w, w J e ^\9{u)\ X^) n ^\9{u)\ Z Q ) (where 
we consider the same boundary conditions in the definition of the spaces XQ and X^) 
is a solution of the equation (3.15). 

The operator A is the generator of a semigroup e^' of the class CQ in XQ such that 

(3.2.6) (e^T^i' ^2])(-^) = Ц Vi{^ + r) + v^{x - r) + 
Çx+t n 

t;2(^) ^^5 '̂i(-^ + t) — yi(x — r) + V2{x Л- t) Л- V2{x — i)\, 
I x-t J 

fx+t 

+ 

where the symbols v^ and 2̂ niean the functions v^ and 1̂2 with an extended domain 
of definition so that they are odd and 2H-periodic functions on (—00, +00) in the 
case of the boundary conditions (3.2.2); even 4TC-periodic functions on (—00, +00) 
such that i^i(x) -— —VI(2K — x) in the case of the boundary conditions (3.2.3); 
and even, 27i-periodic functions on (— 00, + 00) in the case of the boundary conditions 
(3.2.4). 

The validity of the inequality (3.2) follows immediately from the properties of the 
semigroup e^^ 

It may be easily verified that ^(5) : X^ -^ X^, N{s) :X^ -> X^ for all 5 ^ 0 and by 
virtue of (3.2.6), it is possible to find out that all inequalities (З.З), (3.4) and (3.5) 
are satisfied (with a = 1 in (3.5) and R > 0 being arbitrary). 

Thus, we can use Theorem 3.1 obtaining 

Theorem 3.2.1. Let the zero solution of the equation 

(3.2.8) Uf^ — u^^ = a{t, x)u + b(t, x) u^ + c{t, x) u^ 

(with one of the boundary conditions (3.2.2),(3.2.3) or (3.2.4)) be uniformly asympto
tically stable with respect to the norm 

\\u(t, •)! = max \u(t, x)\ 4- max \u^(t, x)\ + max \u^(t, x)\ . 
дгб<0,п> дсе<0,п> д:е<0,я> 

Then the zero solution of the equation (3.2.1) (with the same boundary conditions 
as in the case of the equation (3.2.8)) has the same property. 

3.3. THE EQUATION OF OSCILLATIONS OF A BEAM 

In this paragraph v̂ e shall deal with the equation of the form 

(3.3.1) u^f + u^xxx = <̂ (̂ ? x)u + b(t, x) Ut + c(t, x) u^ + 

+ d(t, X) U^^ + Y ^lA^^ ^^ ^> ^0 ^x^ ^xx) UiUj 
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(for t G <0, + oo), X G <0,7i>). The symbols Wj, «2? ^h ^"^ ^4 ^^ (3.3.1) mean u, ŵ , u^ 
and w^̂ . 

We suppose that the functions a(t, x), b{t, x), c(f, x) and (i(r, x) are defined on 
<0, + oo) X <0, Ti>, they are continuous and bounded together with their second 
derivatives with respect to x and c(t, 0) = c(t, TI) = 0 for all t ^ 0. Further, we assume 
that the functions eij(t, x, u, Uj, u^, u^^) (/, / = 1,2, 3, 4) are defined for Г G <0, + ос), 
X G <0, я>, ue El, u^e El, u^e E^ and u^^ e E^ and that they and all their second 
derivatives with respect to the variables x, w, u^, u^ and u^^ are continuous and 
bounded on each set of the type <(0, + со) x <(0,7г> x < — r, r}^, r being an arbitrary 
positive number. Moreover, we shall need the equalities езз(^, 0, 0, 0, u^, O) = 
= езз(^ тс, О, О, Мз? о) = О to be satisfied for а1И ^ О and u^e E^. 

We require all solutions of the equation (3.3.1) to satisfy the boundary conditions 

(3.3.2) u{t, 0) - u^^{t, 0) = u{t, n) = w^ (̂r, Ti) = 0 (for ^ ^ 0 ) . 

Set 
^ 0 = {[vu ^2] I ̂ 1 G Ж|((0,7i)), V2 G L2((0,7i)); v,{0) ^ 14(71) = 0) , 

{[vi, V2], [wi, W2])o = [vi{x) wl{x) + t;2(x) W2(x)] dx , 
J 0 

II[^4. ^2]||o = ibu V2], [Vi, î 2])o (for [vi, V2]. [wi, W2] GXO) , 

X = {[vi, V2] I vi e WliiO, Tu)), V, G Wl{{0, n)) ; 

. ,(0) = vl{0) = vi{n) == vl{n) = 0} , 

!l[̂ l̂  ^2]||x = I ГИ(^) + ^li^) + ^i'W + V',\X) + . f (X) + V'^ix)-] dxl 

(for [ Î ; I , I ; 2 ] G X ) , 

Xi ^ D{A) = { [ . „ .2] I vi G ̂ 2'((0, n)l V, G ^2^((0,7i)) ; 

^i(O) = t'i(O) = ^i(^) = ^i(^) = ^2(0) = V2{n) = 0} , 

APU ^i] = [i^2. -4'*^] (for \yi, V2\eXi) , 

l lbi . î^2]||i = lir^i, ^2]|io + \A[vi, Î;2]||O (for [1̂ 1, t̂ 2] e ^ i ) > 

^ ( 0 [^1' ^2] — [Ö, <я(̂ , x) üj + b{t, x) г;2 + c(f, x) v\ + öf(̂ , x) v'[\ , 
4 

M O [^1' ^2] = [0, Z ê X ,̂ X, t;i, г;2, î^i, î i) v^v^ 

(where v^, == v[, v^ = i;f and \_Vi, 1̂ 2] GXQ) . 

The problem (3.3.1), (3.3.2) is equivalent to the equation (3.15) in the sense that 
и = [wi, U2] G ^^(^( [ / ) ; Xi) n ^^(^(C/); X^) is a solution of (3.15) if and only if 
и^е^^Ци); Wt{{0,n)))n^\^{U);Wl{{0,n))) is a solution of the equation 
(3.3.1), Ui satisfies (3.3.2) and ôuijdt = U2-
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ît may be verified that (•, 'jo is a scalar product on XQ, X^ is dense in XQ and the 
operator Л is a closed operator from XQ into XQ. Let Я > 0 and (Я/ — Ä) [y^, v^^ = 
= [wi, W2] ([t^i, Î;2] e ^ i . [>^1. "̂ î] eXo). Then 

((Д/ - A) [i;i, 1^2], [t^i, t^2])o = ( [wi , W2], [i^i, V2\)o , 

I [Я i;f (x) - v"2{x) v'[{x) + Я vl{x) + ^^^x) D2(X)] dx й ||[wi, W2]||o ||[î^i, ^2||o , 

This implies that |[(Я/ — ^)~^||xo->xo = ^M ̂ ^^^ therefore, according to the Hille-
Yosida-Phillips theorem, A is the generator of a contractive semigroup e^^ of the class 
Co in XQ, 

In order to show that (3.2) is satisfied, we shall prove the following lemma: 

Leeima 3.3.1. There exists C5 > 0 such that 

(333) JQ^bu V2]\\x й CsWiv,, V2]\\x 

for all [t^i, V2] EXJ^ and t ^ 0. 

Proof. Set 
^0 = {^1, V2] I V, E Wl{{0, nj), V2 e Wl{{0, n)) ; 

v,{0) = vliO) = v,{n) == vl{n) = 0} , 

^1 = {[^b v,~\ I .1 G Wl{{0, Tu)), .2 e ^2((0, n)) ; 

ri(O) = üi(0) = 1̂ 1(71) = v[{n) = 1̂ 2(0) = vliO) = V2{n) = vl{n) = 0} . 

Using again the Hille-Yosida-Phillips theorem, we can show that ^[y^ is the generator 
of a contractive semigroup of operators 5^ of the class CQ in YQ. If [0^, V2] E Y^ then 
Stlvi. V2] = e^^[i;i, 02]-

Let [i^i, 1̂ 2] EX^ and let e > 0 be given. There exists [y^, v^ e 7^ so that 

\\_Vi, 1̂ 2] ~ [^1^ 2̂]111 < jS- We have 

||e^T^i' ^2]|U ^ ll^^'^i ' ^2] - e^ t^ i , 1;2]||х + 
+ ||e^'[t;i, 1̂ 2]||x S const. ||e^'[üi, ^2] - e^*[ri, 02]||i + 

+ ||S,[i;i, 02]lU = ^o^st. | | [Î ;I , V2\ - P i , î52]||i + 

+ ^sll-^fPi, Î^2]||FO ^ const, s + C5IIP1, t;2]||ro ^ 

g cost, e -b C5||[i;i, ^2] - i^i, V2~\\YO + ^sllL^i. ^^2]||УО ^ 

^ const, г + C5||[0i, 02] - [^1, î̂ ^2]||i + ^sllL^i. Î^2]||X й 
^ const, г + с^г Л- c^\\y^, ^iWx • 

Since e was an arbitrary positive number, the inequality (З.З.З) must hold, щ 
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The operators B[s) and N(s) transform X^ into itself (for all s ^ O) and if [1;^, V2] e 
e X i and t > 0, then 

| |е^ 'Б(5)[ .„г; ,] | | , ^ ||5(s) [i;,, . , ] | [ , = ||B(s) [t;„ . ,] | |o + 

+ \\A B{s) [Î;I, Ü2]||O = Il [О, avi + bi;^ + et;; + ао'[]\\^ + 

+ ||[f/t;i + bv2 + сг̂ ; + dv'i, 0]||o g const. ||[i^i, t;2]||i . 

Thus, the inequality (3.3) is satisfied. Similarly, by using the ideas from the proof of 
Lemma 3.3.1, it may be shown that also the inequalities (3.4) and (3.5) are fulfilled 
(where a = 1 and R > 0 may be chosen arbitrarily; but note that the constant in the 
inequality (3.5) depends on this R). 

Hence we can apply the Theorem 3.1. Taking into account the relation between 
the equation (3.14) (the equation (3.15)) and the problem given by the equation 

(3.3.4) Utt + ŵ cxxx = Ф-> ^)u + b{t, x) u, + c{t, x) u^ + d{t, x) u^^ 

and the boundary conditions (3.3.2) (or the problem given by the equation (3.3.1) 
and the boundary conditions (3.3.2), respectively), we conclude 

Theorem 3.3.1. Let the zero solution of the problem (3.3.4), (3.3.2) he uniformly 
asymptotically stable with respect to the norm 

\Н^^ Oll = 1 Ь%х) + u]{t,x) + ul{t,x) + w?,(^x) + ulJ^t.x) + i/^,,(r,x)]dxl . 

Then the zero solution of the problem (3.3.1), (3.3.2) has the same property. 

4. APPLICATIONS TO CERTAIN DIFFERENTIAL EQUATIONS OF 7V-TH 
ORDER IN HILBERT SPACE 

In this section we shall treat differential equations of the type 

(4.1) • u(">(0 + " E a,(^) «^"(0 + " l 5,(0 «<'X0 = 
i = 0 i = 0 

= F{t,u){tlu'{tl.,,,u^'^~'\t)). 

Let us remark that the stability and the correctness of equations of a very similar 
type are investigated in [2]. 

We suppose that Я is a Hubert space with the scalar product (*, •)я and the cor
responding norm (•, •)д. Л : Я ~> Я is a linear selfadjoint operator with the do
main of definition D{Ä) and the spectral resolution of identity E{s). Further, we 
assume that inf 8р(Л) > 0. 

If/ : 8р(Л) ->• £ i is a continuous function then we can define 

D{f{Ä)) = j x e Я | Г |/(5)|^ à\\E{s) x | | | < + Л 
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and 

(4.2) f{Ä) X = Г / (s) dE(s) X (for X G D(f(A))) . 
Jsp(^) 

We assume that â  (i = 0, 1 , . . . , n — 1) are continuous real functions defined on 
Sp(A) and such that 
(4.3) |a,(s)| uces^"-''^" 

for some constant c^, i = 0, 1, ..., n — 1 and s e Sp(^). Hence а,(Л) are operators 
defined as is indicated in (4.2). 

Let us denote by m^(r, т, 5) (/ = 0, 1, . . . , n — 1, т ^ 0; Г ̂  т; se Sp(^)) the 
solutions of the ordinary differential equation 

d" "~^ d-̂  
(4.4) — '^ + E ^X^) —: ^ = 0 (for r 6 <T, + 00)) , 

d "̂ j = o d̂ -' 

satisfying the initial conditions 

(4.5) - ^ m,(T, T, s) = ô,j {j = 0, 1, ..., n - 1) . 
d r 

Suppose that there exist constants c-j and со so that 

(4.6) —7m„_i (^0 , s ) 
d r 

(n-j-l)/n ^ C7 e 

for f e <0, + 00), J = 0, 1, ..., n - 1 and s e 8р(Л). In [2], the term "the operator 

^ u{t) = w "̂>(0 + X «/(^) u^'^ {t) 
i = 0 

is of the type со" has been used if the inequality (4.6) is satisfied. 
Further, let Bi(t) (Ï = 0, 1 , . . . , n — 1; te <0, +00)) be linear operators from 

2)(^(«-0/«) into D(^^/") such that if t;e D(^^"~'^''") is given then the mapping 
t h-̂  Bi{t) V belongs to ^ ^ « 0 , + 00); H) and 

(4.7). \\Ä'^^ Blt)w\\H й CS\\Ä^"-''^"^H 

for some constant Cs, г = 0, 1, ..., n - 1, f e <0, + 00) and w e 1)(Л^"""* /̂"). 
The nonlinear operator F on the right-hand side of the equation (4.1) is assumed 

to satisfy 
F : <0, -hoo) X D(A) X i)(^^"-^>/") x ... x D(^^^") -> Z)(^i/"), 

there exist R > 0, Cg ^ 0 and a > 0 so that 

(4.8) \\A^'"F{t,Vo,...,v„},)\\„ й с.ША^'-'^'^УУ^'' 
i = 0 

for a lH è 0 and [î o, .••, t^n-i] e 2)(Л) x ... x /)(Л^/") satisfying 
rt-i 

Zl 
1 = 0 
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Fut X = D{A)x D{Ä^"~^^^")x . . . X 1)(Л^/"), andif I / = [wo, t/i, ..., w„_jGjr , 
put 

\\и\и-1\\А^"-'>'"и4н-
i = 0 

We shall also suppose that F is a continuous mapping from <0, +00) x {[/ e Z | . 
. \\U\\x й R} into D(^^/") (where we consider the norm ||^^^"-||я in D{Ä^^'')). 

As solutions of the equation (4.1) on an interval / ^ <0, + 00) we shall regard only 
n 

functions from f)^\l; D(A^"~'^^'')), satisfying (4.1) on L Sometimes we shall use 
/ = o 

the symbol ^(u) again in order to denote the interval where и is a solution of (4.1). 
It is obvious that if we denote 

U{t) =[u{t),u'(t),..;U^"-'\tJ], 

L[t)V = L{t)[vo....,v„_2,v,_,'} = 
n- I n- 1 

= [vi, ••; v„_i, - X a{A) V; - X B-it) vi] , 
1=0 1=0 

= [0, . . . , 0 , F{t,VQ,v^, ..., t?„_i)] 

(for V=ïvQ,v^,...,v^_^'\eX), 

then the equation (4.1) can be rewritten in the form (0.2). Also, due to (4.8), 

(4.9) \\N{t)lJ\\^ S c.Wuf/" 

and hence the equation (0.2) has the zero solution. 

Lemma 4.1. Let т ^ 0 and x = [XQ, XJ, ..., x„_i] E X. Then there exists a solu
tion V of the linear equation 

(4.10) v^"\t) + " S а,(Л) u<'>(0 + 1 5 , ( 0 u^'\t) = 0 
i = 0 i = 0 

on the interval <т, + ос), satisfying the initial conditions 

(4.11) v^''iT) = Xj (7 = 0, 1 , . . . , ^ - 1) . 

P r о о f. It may be shown that г is a solution of (4.10), (4.11) if and only if it satisfies 

(4.12) v(t)=\m,(t,T,A)xi-
i = 0 

- Г m„.,{t + T - (7, T, Л) ["X Bj{cr) v^J\cj)] da . 
Jx J = 0 

(The implication (4.10), (4.11) => (4.12) follows from Theorem 2.1.1 in [2]). 
It will be sufficient even to prove the existence of a function v, satisfying (4.12), 
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only in П ^t^'^ ' +00); /)(/4^''~'^/")), because using the "good" properties of the 
i = 0 

functions m,- and the operators Bj[t), we can show that then the right-hand side of 
(4.12) (and hence also v) belongs to ^"(<т, + oo); H). 

Let Г > 0. Denote 
/ j - i 

Yr = n "^ '«T, T + T); £)(/!<"-'•'/")), 
f = 0 

n - 1 

i = 0 f6<T,T+r> 

n - 1 

t = 0 

^(i;) (?) = m„_i(r + T - (T, T, Л) J'((j) I;((T) d(T , 

n-l 

w{t) = X; ^i{t, T:. ^)xi. 
1 = 0 

Then (4.12) (for t e <T, T + T>) is equivalent to the relation 

(4.13) V ̂  w - ^{v) 

in Yj. First, we show that if Tis small enough then (4.13) has a solution in Yj. We 
have 

n-\ (ГГС I d̂  P 
И^Нкт ^ Z max J 5^^"-'^/" — m„_i(r + т - (т, т, s) . 

i=o^6<t,t+T> U,LJsp(^) И^' I 
. d||£(5)^((T) .((7)11^1'''dcrj^ 

^ " Z max I f c ^ e ' ^ ^ ' - ' ^ T f s2/'^dl|£(s)^(cT)i;((T)||^] 'dcrj = 

= Z max 11 C7 е^^^-'^>||Л'/" ^»((7) г;((т)||н der I g 

^ « max C7 e^^ '̂-'̂ Vg [ Z Цл^""-''̂ /" г^^'Х^)||я] ^^ = 
f 6 < T , T + r > J ^ j = 0 

n - l 

= С7С8пТе^^ Z max ЦЛ "̂"̂ "̂ /" 1̂ '̂Х )̂1|я = ^7C8wTe^^||i;||y^ . 
j = 0 (ге<т,т+Г> 

Choosing T small enough, we may achieve that the operator ^ is contractive from YY 
into itself and thus, due to the Banach fixed point theorem, (4.13) (and consequently 
also (4.10), (4.11)) has a solution v in Yj. 

Similarly, we can prove the existence of a solution v of (4.10) with the initial con
ditions 

b^%x + T) = v^\x + T) (/ = 0, 1, . . . , « - 1) 
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also on the interval <т + Г, т + 2Г>, and it may be easily checked that the function 
equal to v on <т, т + T> and to i) on <т + Г, т + 2Г> is a solution of (4.10), (4.11) 
on <T, T + 2Г) . We can proceed in this way and prove the existence of a solution of 
(4.10), (4.11) on the whole interval <т, + oo). щ 

It follows from Lemma 4.1 that the condition (iii) from Section 1 is satisfied. In 
what follows, we show that also the condition (iv) is fulfilled. 

Put R^= R and let U and V be solutions of the equation (0.2) and (0.1), respectively, 
on <T, r> c: <0, +сю) so that U(T) = V{T), |||C/|||<,,,> S Ri and |||F|||<,,,> ^ R,. 
Then it is obvious that U and F have the form U(t) = [u{t), u'(t), ..., u^"~^\t)] and 
V[t) = {y(t), v'(t),..., v^"~^\ty\, where и and v are solutions of the equations (4.1) 
and (4.10), respectively, on the interval <т, t}. Using the expressions for the solutions 
и and V in the form analogous to (4.12) we can write 

u{t) - v{t) = - Г m„_i(r + T - a,r,A) {"Z Bj{cr) [u'''\a) - v^J\a)]} da + 
J t J = 0 

m„_i(t + T — Ö-, T, Л) F((j, w(o-), w'(ö-), ..., M "̂~̂ (̂ö-)) der, + 

î = 0 

n-l rt г (• 

= ̂  M „ 2 ( n - i ) / n 

Sp(^) d^ 
Tm„.^{t + T - (T, T, s) 

. dl|£(s) X V ) ["̂ X̂̂ ) - ^^^"»]||я1''' da j=o J 

» = 0 JTUSP(A) 

+ 

• 7 m „ _ i ( r + T - Ö-, T, s) 

+ 

. dl|E(5) F{a, u{a\ U'(CT), ..., u^""^>(^))||è]'' ' citr g 

й £ Гс7е-^-^>ГГ 5^/"dl l£(5)sW)[u^^)(a) - i;^^>(c7)]||àl'''d(7 + 
»=oJ, Usp(X) i = o J 

n - l /»t r p •11/2 
X c, e-('-"> 5̂ /" d||£(5) F(t7, и{а), u'(a),..., u'"-'Xcf))\\% da = 

J = Ojz Usp(A) J 

= П Гс7е"<'-''>||Л1/''"ХВХ<Т) [u">((7) - г(^»] | |нс1а + 

+ nï'cy e«f'-<"||^i/" F{a, u{a), u'{a),..., и^"-'\0))\\ц da g 
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J t J = o 

j = o 

^ е - ( ' - ) Г ||и((т) - У{а)\\^ da + пс,с^ е (̂̂ -̂ > Г 111/(<т)|Г' der , 

+ п 

+ 

Similarly, we have also for all В e <т, Г): 

\W) - У{Щх й c.csn e-('-'> Г \\U{a) ~ V{a)\\^ der 

J T 

Using the generalized Gronwall-Bellman inequality, we obtain 

|C/(9) - F(9)|U й ïc,c,n,-^'-^^ï' iC/(cT)ir^dcr1 + 

+ ïc,c,n e - ( ' - ' Г |1/(сг)|Г^ d a l [c,c,n e«»<'-'>] . 

^ С7С9П e'f'-'* Г Щ с г ) | Г ^ der exp [С7С8П e'^C-'X^ - т)] . 

Since this is valid for all 9 e <т, (>, we also have 

111/(0 - F(01U й c,c,n e-C-^) Г ЦЦст)!!-^^ da exp [c^c« e^^-^^ (t - т)] , 

11 /̂(0 - nOlU ^ ^7^9^ e-(-^> (r - T) ||lt/|||<\-:,Sexp [C7C8 e-( '-X^ ~ т)] . 

If we denote by G{t - т, ||1 /̂||1<г,г>) the right-hand side of the last inequality, we can 
see that it has all the properties required in the condition (iv) and hence the condition 
(iv) is satisfied. Thus, using Theorem 2.1 and taking into account the relation between 
the equations (4.10), (4.1) and the equations (O.l) (0.2), respectively, we obtain 

Theorem 4.1. Let the zero solution of the equation (4.10) be uniformly asympto
tically stable with respect to the norm 

i = 0 

Then the zero solution of the equation (4.1) has the same property. 
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Several special examples of the equation (4.1) are shown in [2]. Observe that 
among the special cases of the equation (4.1) we can include also for instance the 
Timoshenko-type equation 

и^Щ + обИ'^^ u\t) + а^Л u{t) + b,{t) u"Xt) + 

+ ^^(0 Л'^^ w"(0 + b^{t) u'Xt) + 
+ b^{t) A"^ u'{t) + b,{t) A"^ u'{t) + 

+ b^{t) uXt) + ^7(0 A^'"" u{t) + ^8(0 A'l^ u{t) + 

+ b^{t) A"^ u{t) + bio(0 u{t) = F{t, u(t), u^t), u'Xt), u'W ' 

where â  > 0, a2 > 0, aj — 4a ^ 0 and b^, ^2, ..., b-̂ Q are bounded continuous 
functions on <0, +oo). 

5. APPLICATIONS TO THE NAVIER STOKES EQUATIONS 
IN SPACES OF CONTINUOUS FUNCTIONS 

In this section we shall treat again the system (3.1.4), (3.1.2), (3.1.5). We shall 
suppose that ß is a bounded or unbounded domain in £3 with a compact boundary 
dQ of the class Ĉ "̂ "̂"̂  (for some a G (O, l)). Assume that the solution Ü of (3.1.1), 
(3.1.2), (3.1.3) belongs to С^ + ̂ ">'̂ -'("/̂ >(0 .̂) for all T > 0 (where Qj = Q x (0, T)) 
and that there exists c ^ > 0 so that 

(5.1) | ^ 2 + (а)Д+(а/2) ^ ^^^ ^^^^ ^jj T > O) . 

As solutions of the problem (3.1.4), (3.1.2), (3.1.3) and the linearized problem 
(3.1.7), (3.1.2), (3.1.3) we shall regard only functions U satisfying the corresponding 
equations and boundary conditions and such that U e C^ + ('^)''^ + (^/^')(^Q X / ) for every 
compact interval I Я ^(U). 

Set 
X = ( F e C^"'^^X^)|divF= 0 i n l a n d Fl^ß = 0} , 

X, = X n C^^^'^XQ) . 

Let the operators A, B(t) and N{t) be the same as in 3.1 and let L{t) be again equal 
to A + B{t). 

It follows from Theorem, 9.1 in [21] that given VQEX^ and т ^ 0, then there 
exists a unique solution F (for / e <т, +oo)) of the linear system (3.1.7), (3.1.2), 
(3.1.3) (and hence also a unique solution of the equation (O.l)), satisfying the initial 
condition F ( T ) = FQ. This result implies that the condition (i) from Section 1 is 
fulfilled. Denote by ^(t, т) VQ the value of the solution Fat the time t. It is also proved 
in [21] (p. 218) that there exist constants Сц > 0 and у e E^ (not depending on VQ) 
so that 
(5.2) | |^(r,T)Fo|U = |^0 ,T)Fo | i^ («>^ 

g cn(t - x)-^'^ e-'f'-'>|Fo|<j"' (for t^x). 
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Now we shall verify the condition (ii) from Section 1. Let U and F be solutions 
of the equations (0.2), (0.1), respectively, on an interval <т, ^>. Using (5.2) and the 
expression for the solutions U and К as in [21], p. 182, we can write 

U{t) - V(t) - ^(f, T) [U{T) - F ( T ) ] + Г Цt, (T) NU( (7 ) d(j , 

\\U{t) - F(0|U й c,,{t - тГ'^',У^^~Щт) - V{T)P + 

+ Г c,,{t - a)-^/^ ê ^̂ -̂̂ |̂NU((T)|̂ «> d(7 . 

It may be easily shown that there exists 0^2 > ^ so that 

for all и e Ci+f">(ß). Thus, we have 

\\U{t) - V{t)\\, й c,,{t - т)-'^^е'"-'>||1/(т) - F(T) |U + 

(^_^)-1/2еКг-) | | [ / (^) | |2^ст, 

\\U{t) - F(0|U ^ cii(^ - т)-^/^е^^-^^||1/(т) - F(T) | | ^ + 

+ ^iiCi2|||^iliL> Г ' ^ e > - d c 7 . 
Jo V^ 

We can denote by G(| |I7(T) — F(T)| | , t — т, |||^|||<т,о) the right-hand side of the last 
inequality. The number î ^ > 0, appearing in (ii), may be chosen arbitrarily. The func
tion G has the properties (ii)^, (ii)2 and (1])з and therefore, the condition (ii) is 
satisfied. 

Thus, due to Theorem 2.1, Theorem 3.1.1 remains vahd also if we consider the norm 
I • 11;̂  to be equal to | • 1̂"̂ °̂̂^ and if the function JJ and the domain Q have the proper
ties assumed in this section. 

Remark 5.1. The space С^^^'^^^^'-^'^'^Щ^), С'^^'^Щ and the norms \'\ll''^^''^'^^'''^\ 
I • 1̂ ^̂ ""̂  [n being a natural number and a G (0, 1)) are defined for example in [13]. 
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