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CHARACTERIZATIONS OF CONFORM ALLY FLAT HYPERSURFACES 

J. DEPREZ*), P . YERHEYEN and L. VERSTRAELEN, Leuvea 

(Received February 6, 1984) 

1. INTRODUCTION 

^ÎÙ ttiis paper we study hypersurfaces of Euclidean space satisfying one of the con
ditions С . С = 0, С . i^ = 0 or Ö . С = 0, where R denotes the Riemann-Christoffel 
ewvature tensor, Q the Ricci tensor and С the Weyl conformai curvature tensor 
^№#fiypersurface and where the first tensor acts on the second as a derivation. 

Semi-symmetric spaces, i.e. Riemannian manifolds for which R . R = Q, have 
been studied by various authors. For references one can consult the recent work 
of Z. I. Szabo on this subject [12]. 

In [8] K. Nomizu studied semi-symmetric hypersurfaces of EucHdean space 
and P. J. Ryan investigated semi-symmetric hypersurfaces of space-forms [9]. 
Y. Matsuyama [6], I. Mogi and H. Nakagawa [7], P. J. Ryan [10], S. Tanno [13], 
S. Tanno and T. Takahashi [14] studied hypersurfaces of space forms satisfying one 
of the conditions JR . ß = 0 or Vß = 0. In [16] two of the authors characterized 
hypercylinders in Euclidean spaces by the condition Q . R = 0. For hypersurfaces 
in Euclidean space with R . C = O o r C . R = 0, see [1]. Complex hypersurfaces 
in complex space forms satisfying similar conditions have been investigated by P. J. 
Ryan [11], T. Takahashi [15] and the authors [4]. 

We prove the following theorem. 

Theorem. Let M" be a hy persurf ace in an (n + lydimenslonal Euclidean space 
(n > 3) and denote by R the Riemann-Christoffel curvature tensor, by Q the 
Ricci tensor and by С the Weyl 'conformai curvature tensor ofM", Then the following 
assertions are equivalent: 

(i) С . С = 0, 
(ii) C R = 0, 

(iii) ß . C = 0 , 
(iv) M"is conformallyflat. 

*) aspirant N.F.W.O. (Belgie). 
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2. BASIC FORMULAS 

Let M be a hypersurface of an (n + l)-dimensional Euclidean space E"'^^. Let £, 
be a local normal section on M. In the following X, Y, Z denote vector fields which are 
tangent to M. Then the formulas of Gauss and Weingarten are given by 

V^Y=W^Y+h{X,Y)^ 
and 

^xi= -AX, 

where V is the Euclidean connection on £" + ^ and V is the Levi Civita connection 
on M. The second fundamental tensor A is related to the second fundamental 
form h by h{X, Y) = g{AX, 7), where g is the Riemannian metric on M. Let X л У 
denote the endomorphism Z i-^ g{Z, Y)X - g{Z, X) Y. Then the curvature tensor R 
of M is given by the equation of Gauss: 

R{X, Y) = AX A AY, 

Since A is symmetric there exists an orthonormal frame ву, 62, >.., e^ consisting of 
eigenvectors, i.e. such that 
(2.1) Ае1 = Х^е^, 

(i e {1, 2 , . . . , n], where Я ,̂ Я2,.. . , Я„ are the principal curvatures of M). 
The hypersurface M is said to be quasiumbilical when M has a principal curvature 

with multiplicity ^ n — 1. Let С denote the Weyl conformai curvature tensor of M. 
FOI П ^ 4 M is conformally flat iff" С vanishes identically. If n ̂ 4 , E. Cartan proved that 
a hypersurface M of £"^^ is conformally flat if and only if it is quasiumbilical [2]. 
We recall that every surface is conformally flat and that for every 3-dimensional 
Riemannian manifold the Weyl conformai curvature tensor С vanishes identically. 
If n = 3 there exist nonquasiumbilical hypersurfaces M of ^""^^ which are con
formally flat [5]. By Theorem 1 in [3] M is conformally flat if and only if (Я — Xj). 
. (Я^ — Я̂ ) = 0 for all mutually distinct i,j, k, / in {1, 2 , . . . , n}. 

By (2.1) the equation of Gauss implies that 

R{ei, ej) = c.jCi A ej , 
where 

and consequently 

where 

n 

C.J — ЯДу , 

C{ei,ej) = a^jCi л ej , 

- 2 t^i t^j [n - l ) (n - 2) t,s 
t<s 

(see also [3], ij G { 1 , . . . , n} and i Ф j). 
Further, 
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where 
I2i = Ài{tr A — Ài). 

By С . С = О we mean that C{X, У) . С = 0 for all vector fields X and У tangent to M, 
where C{X, Y) acts as a derivation on the algebra of tensor fields on M, i.e. 

(C(X, Y).C){Z,W)V = 

- [C{X, y), C{Z, Wj] V - C(C{X, y) Z,W)V- C{Z, C{X, y) W) V 

for X, y, Z, F, Ж tangent to M. 
Because this derivation commutes with contractions the imphcation (ii) => (i) 

holds good. Furthermore (iv) trivially implies (i), (ii) and (iii). 

3. PROOF OF (i)=>(iv) 

First we state that assertion (i) imphes the following: (*) for all mutually distinct 
i,j, k: aij(ai,, — ajj^) = 0. In fact, for i,j, к mutually distinct indices, we have 

{C{ei, ej) . C) {e^, e„) e,, = aij{ajk - fl,-/,) ej . 

Let Aj, ..., Àp be the (mutually) distinct eigenvalues of A with multiplicities s^, ..., Sp 
respectively. Denote by V^ the space of eigenvectors with eigenvalue À^. If e^, ej, e V^ 
and ej, ei e Vß for i Ф j and к Ф I, then â y = â t/. We define numbers b^ß = aij, 
where i Ф j \ eiE V^ and ej e Vß (a, ß e{l,..., p]). To prove (iv) it is sufficient to 
show that b^ß = 0 for all a, ß such that b^ß is defined. In the following we will prove 
that the assumption b^ß Ф 0 for some a and j8 in { 1 , . . . , p} always leads to a contra
diction. 

First we consider the case p ^ 4. If there are distinct indices a and ß such that 
b^ß Ф 0, (*) impHes that there exist indices у and Ь such that a, ß^ у, ô are mutually 
distinct and 

(2.2) " b^y = bßy 

and 

(2.3) Ks = bßs. 

This gives 

and 

(Я, - Я,) (i;- - - 1 ^ (tr A - l , - 1,)\ 

( 4 - Я,) и - ^ (tr A - Я, - Я )̂") : 

Substraction yields 
(Я, - Я )̂ (Я, - Я,) = О , 

which is a contradiction. 
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If b^ß = о for all distinct indices a and ß in {1, ..., p ] , we obtain (2.2) and (2.3) 
in a trivial way. As before, this leads to a contradiction. 

Next, we treat the case p = 3. Suppose first that there are distinct indices a, ß 
in {1, 2, 3], such that b^ß Ф 0, say b^2 Ф Ö- If -̂ i = 2 then (*) implies 

and 

As i\\ the first paragraph this yields 

( A i - ^ ) ( l i - Я з ) = 0 , 

which gives a contradiction. The case 2̂ ^ 2 can be handled analogously. If 5̂  = 1 
and 52 = 1, (*) gives 

(bi2 " ^13)623 = 0 , 
from which we find that 
(2.4) _ ^23 = 0 

or 

(2.5) b ,3 = ^12 • 

(2.4) yields 

b = r ( « - 3 ) ( Я з - А . ) ( Я з - Я , ) ^ Q 
( n - l ) ( n - 2 ) ' . 

which gives a contradiction. 
From (2.5) we obtain 

(Я2 - Яз) ("я, ^ (tr A- X2- ^S) = 0 ' 

and thus 
(« - 3) (Я1 - Я3) = 0 , 

which again contradicts Xi 7̂  Я3. 
If bi2 = ^23 = bi3 = 0, we obtain from b^2 — ̂ 13 = 0 and ^23 -• Ь^з = 0 that 

{n - 2) A, - tr Л + Я2 + Я3 = 0 
and 

(n - 2) Я3 - tr Л + Я1 + Я2 = 0 . 

Substraction yields {n — 3) (Я^ — Яз) = О, which gives a contradiction. 
Suppose j7 = 2. If 5| = 1 or 52 = 1, [3] gives that all b^ß = 0, which contradicts 

the initial assumption. Thus we may suppose 5̂  ^ 2 and 52 ^ 2. If ^12 7̂  0> (*) gives 

Ь Ц = bi2 
and 

^22 = ^12 • 
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This leads to a contradiction 6^2 = 0 gives 

( « - l ) ( « - 2 ) 

which is in contradiction with Я̂  т̂  Л2. 
If p = 1, then all b^^ = 0, which gives again a contradiction. 

4. PROOF OF (iii)=^(iv) 

The condition Q . С = 0 implies that: (**) for all distinct /,7 G (1 , ..., n}: 
Aj(tr A — Я,) a.-j = 0. Indeed we have 

where /, ; e { 1 , . . . , n} and i =7̂  j . 
We use the same conventions concerning the eigenvalues of Л as in Sec. 3 and we 

define numbers b^p in the same way.. 
First we consider the case that X^ Ф Ù and Я̂  Ф tr A for all a in {1, ..., p]. 

(**) implies that all b^^ = 0. 
Suppose that there are distinct a and ß in {1, .... p} such that Я« = 0 and Xß = 

= tr A, say Я1 = 0 and Я2 = tr A. If j> ^ 3, then (**) yields а^з = ^23 = 0. From 
rij3 — «23 = 0, we obtain 

(Я2 - Я1) {{n - 2) Я3 - tr Л + Я2 + Я1) = 0 , 
which gives 

( / 1 - 2 ) Я з = 0 . 

This is in contradiction with X^ Ф Я3. If p = 2, we have Я2 = tr Л = 52Я2. Since 
Я2 Ф 0, this yields 2̂ = 1. This implies that all b^ß = 0. 

If there is an об in {1, ...,]?} such that Я̂  = 0 and Xß Ф \x A for all jS =7̂  a in 
{1, ..., p} or if there is an a in { 1 , . . . , p} such that X^ = tr A and Xß Ф ^ for all 
P Ф a in { 1 , . . . , p], then b^ß = 0 for all a in ( 1 , . . . , i?) and all ß in {2 , . . . , p} for which 
b^ß exists. If /} ^ 3, then we obtain from ^^2 — Ь-̂ з = 0 and 6^2 — ̂ 23 = 0 that 

(n - 2) Я1 - tr Л + Я2 + Я3 = 0 
and 

(n - 2) Я2 " tr Л + Я̂  4- Я3 = 0 . 
Substraction yields 

(« - 3) (Я1 - Я,) = 0 , 
which gives a contradiction. 

We consider the case p = 2. If Sj = 1 [З] implies that all b^ß = 0. If $2 ^ 2, 
then (**) yields bj2 = ^22- This gives 

(Я2 - Я1) (Я2(п - 2) - tr Л + Ях + Я2) = О, 
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and thus 
(5, - 1 ) ( A , - 1 0 = 0. 

This gives a contradiction. 
The case p = 1 is trivial. This completes the proof of the theorem. 
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