
Czechoslovak Mathematical Journal

Bedřich Pondělíček
Modularity and distributivity of tolerance lattices of commutative inverse
semigroups

Czechoslovak Mathematical Journal, Vol. 35 (1985), No. 1, 146–157

Persistent URL: http://dml.cz/dmlcz/102003

Terms of use:
© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/102003
http://dml.cz


Czechoslovak Mathematical Journal, 35 (110) 1985, Praha 

MODULARITY AND DISTRIBUTIVITY OF TOLERANCE LATTICES 

OF COMMUTATIVE INVERSE SEMIGROUPS 

BED RICH PON DÉLICE к, Praha 
(Received March 2, 1984) 

By a tolerance on an algebra Ä we mean a reflexive and symmetric subalgebra of 
the direct product Ä x Ä. The set Т(Л) of all tolerances on Ä forms a complete 
algebraic lattice with respect to set inclusion (xee [ l ] and [2]). In the present paper 
we give a description of a commutative inverse semigroup S whose lattice T(S) of 
tolerances is modular or distributive. Notice that S is found to be an algebra with 
a multiplication and a unary operation of inverse (see part III of [3]). 

1. MODULARITY AND DISTRIBUTIVITY 

By F we denote the variety of all commutative inverse semigroups of type (., "^). 
Recall that every semigroup S of Fis a semilattice of commutative groups (see [4]). 
For any integer m we denote by x'" the m-power of the element x of S in the maximal 
subgroup Gg of S containing an idempotent e — x^. It is known that for each 
integer m and for all x, y e S we have 

(1) (хуУ = x^y'" . 

The set of all idempotents of S is denoted by E(S) and is partially ordered by: e ^ / 
if ef = e. We write e < f for e ^ f and e Ф f. Denote by e || / the fact that idem­
potents e, / a r e incomparable. The notation S^ stands for S from F if S has an identity, 
otherwise it stands for S with an identity adjoined. 

For any tolerance Г on a semigroup S from F we have 

(2) (aw, hv) = (ci.b) (w, v) e T and 

{a,b)-' = {a-~\b-')ET 

when ver (a, b)e Tand {U,V)E T. This implies that for any integer m and all (a, b)e T 
we have -

(3) (fl, b f - (a'", b ' " )€T . 

We shall use the following notation: (a, b) z = (az, bz) for all a, b, z e S. 
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Let 5 be a semigroup of V and 0 Ф Ä я S x S, We denote by Is{A) (or simply 
1{Л)) the least tolerance on S containing A. 

Lemma 1.1. For x, y e S, x Ф y we have (x, y) e l[A) if and only if x = X1X2 ... 
. . . x„z and y = У1У2 ••• Уп^^ where z eS^ and either (x^, yi) or (j^^, x^) or ( x ^ ^ У Г О 
^^ (>'Г^ ^7^) li^s i^ ^ (̂  = 1, 2, ..., n). 

Proof. Apply (1) and (2). 
As a consequence we have 

Lemma 1.2. Let а,Ъ e S, a Ф b. For x, у e S, x ^ у we have (x, y) el(a, b) if 
and only if there exist z e S^ and an integer m such that either (x, y) = (a, b)"' z 
or (x, y) == (b, aY z. 

By V or л we denote the join or meet in the lattice T(S), respectively. It is easy 
to show that for A, В e T{S) we have A v В = l{A и B) and A A В = A n B. 

It is clear that every commutative group G belongs to V. It is well known (see [5]) 
that the lattice T{G) coincides with the lattice C{G) of all congruences on a com­
mutative group G. Hence, the lattice T(G) is modular. According to Ore's theorem 
(see [6]), the lattice T(G) is distributive if and only if the commutative group G 
is locally cyclic, i.e. every its subgroup generated by a finite set of generators is 
cyclic. 

For any element x of a semigroup 5 G F we denote by {x}- the subgroup of S 
generated by x. By the order of x we shall mean ord x = card ^x)-, whenever <x>̂  
is finite. 

Ore's theorem implies the following 

Lemma 1.3. For any pair of elements a, b of a commutative locally cyclic group 
we have 

ab G « a > n <flb» «&> n {ab}). 

The main results of this paper are the following two theorems: 

Theorem 1.1. Let S be a semigroup from V. Then the lattice T(S) is modular if 
and only if S satisfies the following conditions: 

(Ml) / / e,f are two idempotents of S such that e ]]/ , then at least one of them 
is maximal with respect to the order in E[S) and there exists no idempotent g of S 
such that g | ef, 

(M2) If e,f are two idempotents of S such that e < f, then ze = e for every 
element z of the maximal subgroup Gj of S. 

(M3) / / e , / , g are three idempotents of S such thai e < f and e || g, then the 
maximal subgroup Gg of S contains exactly one element. 

Theorem 1.2. Let S be a semigroup from V. Then the lattice Г(5) is distributive 
if and only if S satisfies the following conditions: 

(Ml), (M2), (M3) and 
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(Dl) Every maximal subgroup of S is locally cyclic. 
(D2) Let G^, G J be two maximal subgroups of S such that e \\f, e, f e E{S). If 

x e Gg, y E Gf, X Ф e and y ф f^ then the elements x, у are periodic and ord x, ord у 
are relatively prime. 

Corollary 1.1. For a semilattice S, the following conditions are equivalent: 
(i) T ( S ) is modular; 

(ii) T(S) is distributive; 
(iii) S satisfies the condition (Ml). 
N o t e 1.1. Compare with Theorem 3 of [7]. 
N o t e 1.2. By C(S) we denote the lattice of all congruences on a semilattice S. 

It is known (see [8], [9] and [10]) that the following conditions are equivalent: 
(i) C{S) is modular; 

(ii) C{S) is distributive; 
(iii) S is a tree. 
Recall that a semilattice S is called a tree if no two incomparable elements of S 

have an upper bound. It is easy to show that every semilattice satisfying (Ml) is 
a tree. Hence we have the following 

Corollary 1.2.//t/ze lattice T(S) of a semilattice is modular, then the both lattices 
T(S) and C{S) are distributive. 

2. NECESSARY CONDITIONS 

The following lemmas will be useful in obtaining necessary conditions for a semi­
group S from F to have a modular or distributive lattice T(S). 

Lemma 2.1. Let a semigroup Se V contain three idempotents e,f,g such that 
e < g, f < g and ë j| g. Then the lattice T(S) is not modular. 

Proof. Put A =l{e,g), В = l{f, g) and С =l{{e,g), {ef,g)). It is clear that 
Л g С It follows from Lemma 1.1 that {ef, g) e {A v B) A C. We shall show that 
{ef,g)фA V (B A C). 

Suppose that (ef,g)eA. Then, by Lemma 1.2, for some z e Ŝ  we have either 
(г/, g) = {e, g) z or (e/, g^ = (^, e) z. lî g = ez, then g й e, which is a contradic­
tion. Then we have (ef, g) = (e, g) z. Thus we obtain that e = eg = egz = efg ^ / , 
a contradiction. 

Suppose that (ef,g)eB. Then, by Lemma 1.2, for some z e S^ we have either 
{ef, g) = (/, g) z or {ef, g) = [gj) z. If g = fz, then g й f> ^ contradiction. We 
can suppose that (ef, g) = (/, g) z. Then we have f = fg = fgz = efg ^ e, a con­
tradiction. 

Now, we can assume that (e/, g)E A v {B A C) and (ef, д)ф Au B. According 
to Lemma 1.1, we have (e/, g) = {uv, xy) for some (u, x)e A\B and (v, y) e 
E{B n C)\A. It follows from (l) that g й У^ and so 3; ^ Se. Thus, by Lemma 1.2, 
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we have {v, y) = (ef, g) z for some z e S^. If xeSe, then, by (1), we obtain g ^ 
^ x^ ^ e, which is a contradiction. Hence x ф Se. According to Lemma 1.2, we 
have (u, x) = {e, g) w for some w e 5^ Hence {ef, g) = (u, x) (y, y) = {v, y)we B, 
a contradiction. 

Lemma 2.2. Let a semigroup S EV contain four idempotents e,f, g, h such that 
^ < 9, f < h and e || / . Then the lattice T{S) is not modular. 

Proof. Put A = / ( / , g), В = I{e, h) and С = I{{f, g), (ej)). Evidently A Q С 
Lemma 1.1 impHes {e,f) e(A v B) A С We shall show that either the lattice T[S) 
is not modular or (e,/) ф A v (B A C), which again means that T(S) is not modular. 

Assume that {e,f) e A. lf{e,f) = (/, g) z for some z e S^, then e = eg = fgz = f, 
a contradiction. According to Lemma 1.2, we can suppose that (e,/) = {g,f)z 
for some z e S^. It is clear that ze S. It follows from (l) that e ^ z^ and r ^ z^. 
Hence, by Lemma 2.1, the lattice T{S) is not modular. 

Suppose that (e,/) e B. Evidently f ф Se. It follows from Lemma 1.2 that {e,f) == 
= (e, h) z for some z e S^. We have z e S and so, by (1), we obtain e ^ z^ and 
/ ^ z^. Lemma 2.1 implies that the lattice T(S) is not modular. 

Now, we can suppose that (e,f)eA v {B A C) and (e,f)фAu B. According 
to Lemma 1.1, we have {e,f) = {uv, xy) for some (u, x) e A\B and {v, y) e 
e{B n C)\A, It follows from (1) that e ^ v^ and so vф Sf. Thus, by Lemma 1.2, 
we have (г;, у) = (e,f) z for some z e S4 If z e S', then e ^ v^ :^ z^ and/ ^ j ; ^ ^ ẑ  
and so, by Lemma 2.1, the lattice T(S) is not modular. We can suppose that (v, y) = 
= (^,/). Then {e,f) e B, which is a contradiction. 

Lemma 2.3. Let a semigroup Se V contain three idempotents e,f,g such that 
e II / and ef || g. Then the lattice T[S) is not modular. 

Proof. Put A = /(e, g), В = l{f,g) and С - l{{e, g), {ef, g)). Clearly Л g C. 
It follows from Lemma 1.1 that {ef, g)e{A v B) A C. 

Suppose that {ef, g) e A. If efe Sg,thQn ef ^ g, ^ contradiction. We have efф Sg. 
According to Lemma 1.2, we can assume that {ef,g) = {e, g) z for some zeS^. 
Evidently z e S and so, by (1), we have g g z°. If-̂ ^ = z^, then it follows from (l) 
that ef g g, which is a contradiction. Thus we have g < z^ and, by Lemma 2.2, 
the lattice T{S) is not modular. 

Analogously we can prove that {ef, g)E В implies that the lattice T{S) is not 
modular. 

Now, suppose that {ef, g) e A v {B v C) and {ef, g) ф A и B. According to 
Lemma 1.1, we have {ef,g) ~ {uv,xy) for some {u, x) e A'\ В and {v,y)e{BnC)\ A. 
It follows from (1) that ef ^ v^ and so иф8д. Hence, by Lemma 1.1, we have 
{v, y) = {ef, g) z = (/, g) w for some z,w e S^. It is clear that w E S, otherwise 
/ = efz ^ e, a contradiction. According to (1), we obtain g ^ y^ ^ w^.lf g = w°, 
then ef ^ v^ ^ w^ = g, which is a contradiction. lience we have g < w^ and, by 
Lemma 2.2, the lattice T{S) is not modular. 
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Lemma 2,4. Let a semigroup Se V contain an idempotent e and an element a 
such that e < a^ Ф a and ae Ф e. Then the lattice T{S) is not modular. 

Proof. Put Л =l{ej), В =l{aj) and С = l{{ej), {aej)), where / = a^ 
Clearly Л g С It follows from Lemma LI that ( а е , / ) е ( Л v JB) л С. 

Suppose that {ae,f)EA. Evidently f$Se. It follows from Lemma L2 that 
{ae,f) = {e,f) z for some z e S^. Then we have e = ef ~ efz = fae = ae, which is 
a contradiction. 

Suppose that (^ae,f)eB. According to Lemma L2, we have either {ae,f) = 
= {a,fY z or {ae,f) = (/, a)'" z for some z e S^ and some integer m. Hence we 
obtain either ae = aef = af^zf =-. a^ - a"^ or a'^^^e = a^z = f. By (l) this 
yields in both cases fe = / , which is a contradiction. 

Now, assume that (ae,f)EA v (B A C) and (ае,/)ф Au B. According to 
Lemma L l , we have {ae,f) = (uv, xy) for some (u, x)e A\B and (v, y)e(B n C)\ 
\A. It follows from (1) that / ^ y^ and so y ф Se. Thus, by Lemma L2, we have 

{v,y) = {aejyz for some z e S^ and some integer m. It follows from (l) that 
e = {aef ^ D^ ̂  e and so e = v^. According to Lemma 1.2, we have either 
i^i y) = i^^/y w or (v, y) = (/, ay w for some w e S^ and some integer k. In both 
cases we obtain w e S,f й У^ S ^^ and so fw^ = f. Thus, by (l) we get e = v^ = 
= fw^ = / , a contradiction. 

Lemma 2.5. Let a semigroup S e V contain two idempotents e, f and an element a 
such that e < f and e \\ a^ Ф a. Then the lattice T(S) is not modular. 

Proof. Put A = I{e, g), В = l{aj) and С = /(e, a), where g = a^. It follows 
from (3) that (e, g)e С and so A g С. By Lemma L l we have (g, a) e (Л v Б) л С. 

Suppose that (e, a) e A. It is clear that e ф Sg. According to Lemma 1.2, we have 
(e, a) = (e, g) z for some ze S^. Evidently z e S. Using (l) we get e ^ z^ and g ^ z^. 
Lemma 2.2 implies that the lattice T{S) is not modular. 

Assume that {e, a)e B.If ее Sa, then by (l) we have e ^ g, which is a contradic­
tion. Applying Lemma 1.2 we have (e, a) = (/, a)''' z for some z e S^ and some 
integer m. It is clear that z e S. According to (l), we have e ^ z^ and g = a^ ^ z^. 
Lemma 2.2 shows that the lattice T(S) is not modular. 

Now suppose that (e, a)e A v (B A C) and (e, а)ф A и B. Lemma 1.1 implies 
that (e, a) = (uv, xy) for some (u, x)e A\B and (v, y)e(B n C)\A. If у e Se, 
then by (1) we have g = a^ ^ y^ ^ e,a, contradiction. We have y ф Se and according 
to Lemma 1.2, we can assume that (v, y) = (e, af z for some z e S^ and some 
integer m. If zeS, then it follows from (1) that e -^ v^ -^ z^, g =^ a^ 'й У^ 'è z^ 
and Lemma 2.2 implies that the lattice T{S) is not modular. Therefore we can 
suppose that {v, y) = (e, a)"". Jf y e Sf, then using (1) we get g = a^ ^ y^ uf 
and Lemma 2.2 implies that the lattice T(S) is not modular. Let y ф Sf. Since (i;, y) e 
e B, we have by Lemma 1.2 (e, a)'" = (v^ y) = (/, ay w for some w e S^ and some 
integer fe. Evidently w e S. Using (1) we conclude e ^ w^ and g = a^ ^ y^ S ^^• 
According to Lemma 2.2, the lattice T ( S ) is not modular. 
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Lemma 2.6. Let G be a maximal subgroup of a semigroup S from V. Then the 
lattice T[G) is distributive, whenever the lattice T(S) is distributive. 

Proof. Suppose that the lattice T(S) is distributive. By e we denote the idem-
potent of a maximal subgroup G of S. For any X e T(G) we put (p{X) = /^(X). 
We shall prove that (p is an isomorphism of T(G) into T(S). 

First, we shall show that the mapping cp is isotone and injective. Let X, Ye T{G). 
If Z g y, then clearly (p{X) = Is{X) g /^(У) = (^(У). Suppose that (p{X) g с/?(У). 
Let (x, У)ЕХ\¥. Then we have (x, v) e X g (p{X) g (p{Y) = /^(У) and x Ф y. 
According to Lemma LI , we obtain (x, y) = (u, v) z for some (u, t>) e У and z e S^ 
Evidently z e S. Using (l) we get e = x^ S z^.lf e = z^, then z e G and so (x, y) G У, 
a contradiction. Thus we have e < z^. If z = z°, then ^z = e. If z Ф z^, then it 
follows from Lemma 2.4 that ez = e. In both cases we obtain (x, y) = (w, y) z = 
= (u, y) e y, which is a contradiction. Consequently, we have X g У 

Now, we shall show that ф is a lattice-isomorphism. Let Z , У Е T ( G ) . Assum that 
{x,y)e (p{X) A (p[Y) and x Ф y. Then according to Lemma LI , we have (x, y) = 
= (w, i;) z = (a, b) с for some (w, г̂ ) e X, (a, b)e Y and z, с e S^ If (u, v) z фХ, 
then z e S' and it follows from (l) that ^ = x^ < z°. In this case, by Lemma 2,4, 
we have ez = e and so (w, v) z = (u, v)eX, which is a contradiction. Analogously 
we can obtain a contradiction if (a, b) с ^ У Therefore we have (x, y) e X n У д 
g Is{X nY) = (p{X A y). This implies (p{X) л (p{Y) g ^(X л У). Since (p is 
isotone, we have (p(X л У) = </>(X) л (p{Y). 

It is clear that X g ф(Х) and У g ^(У) for X, Уе T ( G ) . Then we have X u У g 
g cp{X) V (p{Y). It follows from Lemma 1.1 that X v У = / G ( X U У) g ф(Х) v 
V (p{Y). Hence we get (p(X v Y) = /^(X v У) g (p{X) v (p{Y). Since ф is isotone, 
we have (p(X v У) = ф(Х) v (p{Y). 

Consequently, the lattice T(G) is isomorphic to a sublattice of the distributive 
lattice T(S) and so it is distributive. 

Lemma 2.7. Let a semigroup S e V contain two elements a, b such that a Ф 
Ф a^ II b^ Ф b. If the lattice T(S) is distributive, then the elements a, b are periodic 
and ord a, ord b are relatively prime. 

Proof. Suppose that the lattice T{S) is distributive. Put Ä = l{a^, b), В = l{a, b^) 
and С = l(a, b). By Lemma 1.1 we have (a, b) e(Ä v B) A С = (A A C) v 
V {B A C). 

Assume that (a, b) G A. If b e Sa^, then b^ ^ a^, which is a contradiction. We 
have b ф Sa^ and so according to Lemma 1.2, we obtain (a, b) = (a^, bY ^ for 
some z e S^ and some integer m. It is clear that z e S and so, by (l), we have a^ ^ z^, 
b^ ^ z^. It follows from Lemma 2.1 that the lattice T{S) is not modular, a contradic­
tion. In an analogous manner it can be proved that (a, b)e В implies non-modularity 
of T{S). Therefore we have (a, Ь)фАиВ. 

Using (l) we get (a, b) = (uv, xy) for some [u, x)e(A n C)\B and {v,y)e 
e{B nC)\A. If ue Sb^ or v e Sb^, then a^ ^ b^, which is a contradiction. Thus 
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we have и ф Sb^ and v ф Sb^. It follows from Lemma 1.2 that (u, x) = {a^, by z 
and (D, Ĵ ) = (a, b^)" w for some z, w e S^ and some integers m,n. If zw e 5, then 
a^ = u%^ ^ (zwf and b^ = x^j;^ ̂  (zw)^ (see (l)). Lemma 2.1 implies that the 
lattice T(S) is not modular, a contradiction. We have zw ф S and this implies a = a" 
and b = fo"". Further we have (a^, b) = (u, x)e С and (a, b^) = (Ü, J;) e C. Using 
the same method of proof as above, we obtain that (a^, b) = (a, b)' and (a, b^) = 
= (a, Ьу for some integers i,j. It is clear that i Ф 0 ф j and so the elements a, b 
are periodic. Let fc be a positive integer such that k divides ord a and ord b. Then к 
divides / and i — 1 and so к divides 1. Hence ord a and ord b are relatively prime. 

3. SUFFICIENT CONDITIONS 

In this section we shall present certain results concerning the properties of semi­
groups fulfilling the conditions (M) and (D) of Theorems 1.1 and 1.2. 

By M we denote the class of all semigroups of V satisfying the conditions (Ml), 
(M2) and (M3) of Theorem 1.1. Let.D denote the subclass of M of all semigroups 
having the properties (Dl) and (D2) of Theorem 1.2. 

Lemma 3.1. Let S be a semigroup of M and let x, y,w,ze S. 
(i) / / x° < y^, then xy = x. 

(ii) / / x^ II j ; ^ then xy = xV"-
(iii) / / x° II y^ and w° || z^, then xy = wz. 
Proof, (i) According to (M2), we have xy = xx^y = xx^ = x. 
(ii) It follows from (i) and (1) that xy = ху{хуУ = x(xyf = {xyf = x^y^. 
(iii) Suppose that xy Ф wz. By (ii) we have xy = x^j;^ e E[S) and wz = w^z^ e 

6 E{S). It follows from (Ml) that xy < wz or wz < xy. Without loss of generality 
we can assume that xy < wz. It follows from (Ml) that x^ < wz or wz ^ x^ and 
analogously we have y^ < wz or wz S У^- If x^ < wz and y^ < wz, then this con­
tradicts (Ml). If x^ < wz ^ y^, then x° < v ,̂ which is a contradiction. Similarly, 
y^ < wz g x^ is not possible. If wz S x^ and wz g y^, then wz ^ x^y^ = xy, 
a contradiction. Hence we have xy = wz. 

In Lemmas 3.2 — 3.9 we shall suppose that S is a semigroup of M, P(a, u, b, v) — 
= l(a, u) V (I(b, v) A l({a, u), (x, y))) and Q{a, u, b, v) = {l{a, u) л /(x, y)) v 
V {lip, v) A /(x, y)), where a, u, b,ve S and x = ab, y = uv. It is easy to show 
that Q[a, u, b, v) g P(a, u, b, v). 

Lemma 3.2. / / b^ ^ a^ and v^ ^ u^, then (x, y) e P{a, u, b, v). 
Proof. Suppose that b° ^ a^ and v^ ^ u^. According to Lemma 3.1, we have 

b = xa~^ and v = yu~^. It follows from Lemma 1.1 that (b, v)El{{a, u), (x, y)) and 
so we have (x, y) = (a, u) (b, v) e P(a, u, b, v). 

Lemma 3.3. If S e D, a^ =^ b^ and ii^ = v^, then (x, y) e Q{a, u, b, v), 
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Proof. Suppose that Se D, a^ = b^ and u^ = v^. We have the following pos-
sibihties: 

Case 1. a^ = u^. Then there exists a maximal subgroup G of S such that a, ii, b,ve 
e G. It follows from (Dl) that G is locally cyclic and so by Ores's theorem, the lattice 
T{G) is distributive. Put U = 1с{а, u), V = 1^{Ь, v) and Y = IG{X, y). It follows 
from Lemma 1.2 that U ^1^{а,и), V^Is{b,v) and У д / ^ ( x , y). Using (2) and 
Lemma 1.1 we have (x, y)e{U v V) A Y = {U A Y) v {V A Y) ^ Q{a, щ b, v). 

Case 2. a^ < u^. It is clear that there is a maximal subgroup G of S such that 
a,be G. According to (Dl), G is locally cyclic and so, by Lemma 1.3, there exist 
integers / , j , m, n such that ab == a'^b'^, a^ = (ab)' and b" = (аЬу. It follows from 
Lemma 1.2 and Lemma 3.1 that (a"Vw) = (ß, w)"" u^~'"e/(a , u) and (a"\u) = 
= (ab,uvy u^^'v''el(x, y). Analogously we can show that (^b",v)el(b,v) A 
Al(x,y) and so, by Lemma 1.1, we have (x, y) = (a'",u)(b'\v)e Q(a,u, b,v). 

Case 3. u^ < a^. Using the same method as in Case 2, we obtain (x, y) e 
e Q(a, u, b, v). 

Case 4. a^ || u^. 

Subcase 4a. First, we suppose that и = u^ == v. This implies у = u^. According 
to Lemma 1.3 and (Dl), we have ab = a'^b'', a'" = [ab)' and b" = [аЬу for some 
integers i,j,m,n. It follows from Lemma 1.2 that (a"", w) = (a, w)'"e/(a, u) and 
(a'^^u) = (ab,uy EI[X, y). Analogously it can be proved that (b", и) e / (b , i;) л 
л /(x, y) and so, by Lemma 1.1, we have (x, y) = (a'", u) (b", v) e Q{a, u, b, v). 

Subcase 4b. By an analogous argument we can show that a = a^ = b implies 
(x, y) e Q(a, u, b, v). 

Subcase 4c. Let Gi(G2) be a maximal subgroup of S containing a (u, respectively). 
Suppose that G^ and G2 are not trivial. It follows from (D2) that G^ and G2 are 
periodic. According to (D2), there exist integers 5, t such that s ord a + t ord и = 1 
and so Lemma 1.2 implies (a, u^) = (a, u)^' ' '^"e/(a, u). Then we have /(a, u^) g 
g l{a, и). Analogously we obtain / (b , v^) g l(b, v) and /(x, y^) g /(x, y). This 
implies that g(a, u^, b, v^) g g(a, u, b, v). Using the same method of proof as in 
Subcase 4a, we get (x, y^) e ß(a, w ,̂ b, v^) nad so (x, y^) e Q(a, w, b, v). In an ana­
logous manner it can be proved that (x^, y) e Q{a, u, b, v). Consequently, by (2) 
we have (x, y) = (x, y^) (x^, y) e Q(a, u, b, v). 

Lemma 3.4. / / a^ = b^ and ы^ < v^, then (x, y) e P(a, u, b, v). Moreover, if 
S e D, then (x, y) e Q[a, w, b, v). 

Proof. Suppose that a^ = b^ and u^ < v^. By Lemma 3.1 we have y = uv = u. 
Case 1. a^ ^ u°. It follows from Lemma 3.1 and Lemma 1.2 that (b, u^) = 

= (b, v) u^ el{b, v). Then we have l{b, u^) g l{b, v) and so P(a, u, b, u^) g 
g P{a, и, b, v). It follows from Lemma 3.2 that (x, y) e P{a, u, b, u^) and so (x, y) e 
e P(a, u, b, v). If S e D, then Lemma 3.3 implies (x, y) e g(a, u, b, u^) g ß(a, и, b, v). 
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Case 2. u^ < a^. According to Lemma 3.1 and Lemma L2, we have {x, y) = 
= (a, u) bel(a, u). Hence (x, y) e Q{a, u, b, v) g P(a, u, b, v). 

Case 3. a^ \\ u^. By (M3) we have a = a^ < b. It follows from Lemma 3.1 that 
(^, y) = {a, u). Thus we have (x, y) e Q(a, u, b, v) g P(a, u, b, v). 

Lemma 3.5. / / a^ = b^ and u^ \\ v^, then (x, y) G P{a, u, b, v). Moreover, if S e D, 
then (x, y) e Q(a, u, b, v). 

Proof. Suppose that a^ = b^ and u^ || v^. By Lemma 3.1 we have y = uv ^ 
= u^t}^ = j;0. It follows from (M3) that a^ ^ y or y < a^. 

Case 1. a^ ^ y. It follows from Lemma 3.1 and Lemma 1.2 that (b, y) = 
= ( a " \ u~^) (x, у )е / ( ( а , w), (x, y))and(b, y) = (6, t;)y G/(b, Î;). Hence, by Lemma 
1.1, we have (x, y) = (a, u) (b, y) G P{a, u, b, v). 

Assume that 5 e D. By (Dl) and Lemma 1.3 there exist integers /, j , m, n such that 
ab = a'"/?", a*" = (ab)' and b" = (аЬу. Lemma 1.2 and Lemma 3.1 imply that 
(a*", y) = (a, w)"" у e / (a , w) and {a"\ y) = (x, y)' e / (x , y). Analogously we can 
show that (b", y) € / (b , i;) л /(x, y). By virtue of Lemma 1.1 this implies (x, y) = 
= ( « ^ y ) ( Ь ^ y ) e ß ( a , u , Ь , 4 

Case 2. у < a^. 
Subcase 2a. a^ < u^. Then, by Lemma 3.1 and Lemma 1.2, we have (x, y) = 

= (b, г;) auel{b, v) and so (x, y) e g(a, u, b, Ü) g Р(а, w, b, v). 
Subcase 2b. u^ S a^- If a^ й v^, then u^ g i;°, which is a contradiction. If 

v^ < a^, then we obtain a contradiction by (Ml). This implies that a° || v^. Ac­
cording to (Ml), we have ŵ  ^ a^t;^ or a^"" < мЛ If u^ ^ fl^i;^ then w.̂  й ^^ 
a contradiction. Therefore we have a^v^ < uP and so a^v^ ^ ŵ i>̂  = у -^ a v , 
Then, by Lemma 3.1, we obtain у = a^y^ = av. This implies (x, y) = (b, г;) « e 
e / (b , I?). Hence we have (x, y) G ß(a, u, Ь, î ) g P(a, u, &, i?). 

Subcase 2c. a^ || w .̂ It follows from (Ml) that z;̂  ^ a^u° or a^u^ < v^. If 
i;̂  ^ a^u°, then v^ ^ u^, a contradiction. We can suppose that a^u^ < v^ and so 
a%^ й u^"" = y. Since w î;° < a^ we have u%^ й a%^. According to (Ml) 
and Lemma 3.1, we obtain у = a^u^ = bu. This and Lemma 1.2 imply (x, У) = 
= (a, u) bel(a, u). Therefore (x, y) e Q{a, u, b, v) g P(a, u, b, v). 

Lemma 3.6. / / a^ < b^ and u^ < v^, then (x, y) G ß(a, и, b, v) g P(a, w, &. ^)-

Proof. If a° < fo^ and u^ < v^, then it follows from Lemma 3.1 that (x, У) = 
= {a, и) G ß(ö, M, b, v) g P(a, w, b, i;). 

Lemma 3.7. / / a° < fo^ and t;̂  < u°, f/î̂ n (x, y) G P(a, u, b, i?). Moreover, if 

S e D, then (x, y) G ß(a, u, b, v). 

Proof. Suppose that a^ < b^ and У^ < u^. It follows from (Ml) that a^ < ^^ 
or i;̂  g a^ 
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Case 1. a^ < v^. According to Lemma 3.1, we have (x, y) = (a, v) == (a, u) v e 
e / (a , u). This implies that (x, y) e Q(a, u, b, v) я P{a, u, b, v). 

Case 2. v^ < a^. It follows from Lemma 3.1 that (x, y) = (a, v) = (/>, v) a el(b, v) 
and so (x, y) e Q[a, u, b, v) g P(a, u, b, v). 

Case 3. a^ = v^. By Lemma 3.1 and Lemma 1.2 we have (a^, г;) = (b, v) a^ e 
el{b, v) and using Lemma 1.1 we get (a^, v) = (f l~\ u~^) (a, v) e/((a, u), (a, v)). 
Furthermore, we have (a, a^) — (a, u) a^ El{a, u). This implies that (x, y) — (a, v) = 
= [a^, v) (a, a^) e P(a, u, b, v). 

Now, we shall suppose that S e D. According to (Dl) and Lemma 1.3, there exist 
integers i,j, m, n such that av~^ = a'^v'~'\ a""' = {av~^y and v"" = (av~^y. By 
Lemma 3.1 and Lemma 1.2 we have (a"", a^) = (a, u)"' a^ el{a, u) and (a'", a^) = 
— [a, v)' v~' el{a, v). In an analogous manner it can be shown that {v~'\ a^) = 
= {b\ b)~" a^ = (a, г>у v~^ el{b, v) л l{a, v). Hence we have (x, y) = {a, v) = 
= (a'", a^) {v-\ a^) v E Q{a, u, b, v). 

Lemma 3.8. / / a^ < b^ and u^ || v^, then (x, j^) e Q[a, u, b, v) e Р(а, u, b, v). 

Proof. Suppose that a^ < b^ and u^ || v^. According to Lemma 3.1, we have 
у = UV = u^v^ = y^. It follows from (Ml) that a^ ^ у or у < a^. 

Case 1. a^ ^ y. Hence a^ < v^. By Lemma 3.1 and Lemma 1.2 we have (x, y) = 
= {a, uv) = [a, u)ve l[a, u) and so (x, y) e Q(a, w, b, v). 

Case 2. у < a^. 
Subcase 2a. a° < u^. It follows from Lemma 3.1 and Lemma 1.2 that (x, y) = 

= {a, uv) = (b, v) auel{b, v) and so (x, y) e Q(a, u, b, v). 
Subcase 2b. u^ ^ a^. Using the same method of proof as in Lemma 3.5 (subcase 

2b), we obtain (x, y) el{b, v) and so (x, y) e g(a, w, b, v). 
Subcase 2c. a^ || u^. By a simple adaptation of the proof of Lemma 3.5 (subcase 

2c) we obtain j ; = a^u^ = a^u. This implies that (x, y) = (a, y) = (a, u) a^ e l{a, u). 
Thus we have (x, y) e Q(a, u, b, v). 

Lemma 3.9. / / b^ < a^ and u^ || v^, then (x, y) e P{a, u, b, v). 

Proof. Suppose that b^ < a^ and u^ || v^. According to Lemma 3.1, we have 
ab - Ь. 

Case 1. Ь^ < u^. It follows from Lemma 3.1 that bu = b and so (x, y) = (b, v) и E 
E /(6, v). This implies (x, y) e P(a, u, b, v). 

Case 2. u^ g b^. Then we have u^ < a^. According to (Ml), we have a^ ^ v^ or 
a^ II v^. If a^ S v^, th^n u^ < v^, which is a contradiction. We can suppose that a^ \\ v^, 
и follows from (Ml) that ŵ  ^ a^i;^ or â t>̂  < u°. If u^ S a^?^^ then u^ S v\ 
a contradiction. Hence we have a^v^ < u^. This implies that a^v^ ^ u^v^ ^ a^v^ 
and so, by Lemma 3.1, we obtain av = a^v^ = u^v^ = uv. Therefore (x, y) = 
= (b, v) a 6 l[b, v) and so (x, y) e P(a, u, b,^)-
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Case 3. b^ || u^. According to Lemma 3.1, we have v^ ^ b^u^ or b^n^ < v^. 
If v^ S b^u^, then v^ ^ u°, a contradiction. We can suppose that b^u^ < v^. In 
an analogous manner it can be proved that u^v^ < b^. Thus we have u^v^ g b^u^ ^ 
^ W-̂ Î;̂  and so, by Lemma 3.1, we obtain uv = u^v^ = b^u^ = bii. Consequently, 
(x, y) = (a, u) Ь e /(a, u) and so (x, y) G P(a, u, b, i;). 

4. PROOFS OF THEOREMS 

In this section we complete the proofs of Theorem LI and Theorem L2. 

P r o o f of T h e o r e m 1.1. Let S be a semigroup of F. If the lattice T(S) is modular, 
then it follows from Lemmas 2.2, 2.3, 2.4 and 2.5 that S e M. 

Suppose that S e M. To prove that the lattice T(S) is modular it suffices to show 
that (A V B) A С Ш A V (B A C) for all A,B,Ce T{S) with A ^ C. Let(x, y) e 
e(A V B) A С If (x, y)eA or (x, y) e B, then we have (x, y)e A v {B A C ) . 
We can assume that neither (x, y) e A nor (x, y) e B. Then, by Lemma 1.1, we have 
(x, y) = (xiX2, yiyz)^ where (x^, Vj) e A\B and (x2, y^) e Б \ Л. Using the notation 
of Section 3 and (2) we obtain Р{уи x^, ^2, X2) = P{xi, y^, X2, У2) Ы Ä v (B A C). 

Ifx? = X2, then it follows from Lemmas 3.2, 3.4 and 3.5 that (x, j;) 6 Л v (J8 л C). 
If Xi < X2, then according to Lemmas 3.4, 3.6, 3.7 and 3.8, we have (x, y) e A v 
V (B A C). If X2 < Xi, then Lemmas 3.2, 3.7 and 3.9 imply that (x, У)Е A v 
V [B A C). Finally, if x^ || X2, then it follows from Lemmas 3.5, 3.8, 3.9 and 3.1 
that (x, У)ЕА V {B A C). Therefore {A v B) A С = A v {B A C ) . Hence the 
lattice T(S) is modular. 

P r o o f of T h e o r e m 1.2. Let 5 be a semigroup of V. If the lattice T{S) is dis­
tributive, then it follows from Theorem 1.1 and Lemmas 2.6 and 2.7 that S e D. 

Suppose that S e D. Let A,B,CE T{S). We shall show that (Л v Б) л С g 
g [A A с) y {в A C). Let (x, y) e (A v B) A C. We can suppose that neither 
(x, У)Е A nor (x, y) E B. Then we have (x, y) = {x^X2, У1У2)? where (x^, yiJE A\B 
and (x2, y2) E B\A. Thus we get ß(xi , y^, X2, У2) = 0(Уь ^u У2^ ^i) = 
= ô(^2. Уг^ ^u Ух) = и{У2> ^2 ' Уи ^i) Ш (А А С) V {В А С) (see Section 3). 

If x? = X2, then Lemmas 3.3, 3.4 and 3.5 imply that (x, У)Е{А A C) v (B A C ) . 
If Xi < X2 or X2 < X?, then it follows from Lemmas 3.4, 3.6, 3.7 and 3.8 that (x, y) e 
E(A A C) V (B A C). Finally, if x? || x?, then according to Lemmas 3.5, 3.8 and 3.1 
we obtain (x, y) e (A A C) v {B A C ) . Hence {A v B) A С = (A A C) v (B л С). 
Consequently, the lattice T(S) is distributive. 
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