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UNIVERSAL CYCLICALLY ORDERED SETS 

YiTEZSLAV NOVAK and MIROSLAV NOVOTNY, Brno (Received March 2, 1984) 
Let ^ be a class of structures and m a cardinal. A structure g e ^ is an m-universal 

element in the class ^ iff for any structure Ge^ with card G ^ m there exists a sub­
structure G' e Ô isomorphic with G. So, for instance, the ordinal power '^'l, i.e. 
the set of all sequences of O's and I's with length cô , ordered by the principle of the 
first difference, is an co^universal linearly ordered set ([8], Théorème I). The cardinal 
power of type 2"', i.e. the set of all mappings of a set M of cardinality m into (0, 1} 
ordered by f ^ g of{x) S 9{x) for all xeM is an m-universal ordered set ([7], 
Theorem 1). A set of type F(co;, K^), i.e. a set of all sequences of type со, composed 
from elements of a set of cardinality K̂  with the relation (a,.; к < ш )̂ ^ (Ь^; к < ш,) 
iff (а^; к < со,) is а subsequence of (Ь^; к < со̂ ) is an K^universal quasi-ordered set 
([4], Theorem 2 and [3]). The aim of this paper is a construction of an m-universal 
cyclically ordered set. The universality is here meant in a weaker sense: to any 
cycHcally ordered set G = (G, С) with card G = m there exists a subset G' of the 
constructed m-universal cyclically ordered set such that G is a strongly homomorphic 
image of G\ 

1. Basic notions. A cyclic order on a set G is a ternary relation С on G which is 

(i) asymmetric, i.e. (x, y, z)e С ^ (z, y, x) G С, 
(ii) cyclic, i.e. [x, y, z)e С =^ (y, z, x) e C, 

(iii) transitive, i.e. (x, y, z) e C, (x, z,u)e С => {x, y, u) e C. 
If G is a set and С a cycHc order on G, then the pair G = (G, С) is called a cyclically 
ordered set. If, moreover, card G ^ 3 and С is 

(iv) linear, i.e. x, y,zeG, хФуф2фх=> either (x y, z) 6 С or (z, j ^ x) e C, 
then G = (G, с ) is called a linearly cyclically ordered set or a cyc/e. If С = 0, 
then G = (G, 0) is called a discrete cyolically ordered set. Sometimes, for a cyclically 
ordered set G = (G, С) we denote by 9i(G) the relation of G, i.e. 9i(G) = C. An 
element x e G, where G = (G, С) is a cychcally ordered set, is called isolated, iff 
there exist no y, z e G with (x, y, z) e С 

2. Homomorphism. Let G = (G, С), H = (Я, D) by cyclically ordered sets. A map-
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ping/ : G -> Я is called a homomorphism of G into Ж iff it has property 

X, y,zeG, (x, y, z)eC=> ( / (x ) , / ( y ) , / ( z ) ) e D . 

We denote by Horn (G, H) the set of all homomorphisms of G into H. A homo­
morphism/ of G = (G, С) into H = (H, D) is called strong iff it is surjective and has 
the property u,v,we Я, (i/, t;, w) e D => there exist xe /~^(w) , yG/~^(i;), Z G / " ^ ( W ) 
with (x, y, z) e C. 

3. Power of cyclically ordered sets. Let G = (G, С), H = (Я, D) be cyclically 
ordered sets. A power G'^ is a cyclically ordered set К = (К, E) where К = 
= Н о т (Я, (У) and for f,g,heK we have (/, g',/t) e £ <^ (/(x), öf(x),/?(x)) e С 
for all X G Я. 

It is easy to see that the relation £ just defined is asymmetric, cyclic and transitive 
so that G" is in fact a cyclically ordered set. 

Let 3 be a 3-element cycle, i.e. 3 = ({0, 1, 2}, {(0, 1, 2), (1, 2, 0), (2, 0, 1)}). One 
can expect — as an analogue to the class of ordered sets — that a power with base 3 
can serve as a universal cyclically ordered set. But the following example shows 
that this is not the case. 

4. Example. Let H — (Я, D) be any cyclically ordered set. Then the power Ъ" 
contains no 4-element cycle. 

Proof. Assume / , ^ , / î , / c e Н о т (Я,3) and (/, ^,/7) G 91(3^), (/,/1,/с) G 9^(3''). 
Let x G Я be any element. I f / ( x ) = 0, then (/, ,g,/i) G 9î(3^) implies ^(x) = 1, 
/z(x) = 2 and then (/(x), /i(x), /c(x)) G 9^(3) never holds. Analogously we obtain 
a contradiction if /(x) = 1 and if /(x) = 2. 

Denote by 2 3 the type of a cyclically ordered set which is a direct sum of two 
3-element cycles, i.e. 2 3 = ({0, 1, 2, 0', Г, 2 ' ] , {(0, 1, 2), (1, 2, 0), (2, 0, 1), (0', Г,2'), 
(L, 2', 0 ), (2', 0', r ) j ), and for any cardinal m let m be the type of a discrete cyclically 
ordered set with cardinality m. 

5. Main theorem. Let m be any cardinal. Then for any cyclically ordered set 
G = (G, С) with card G = m ?/zere ^х/5^5 //Î a cyclically ordered set of type (2 3)"" 
a subset G' such that G is a strong homomorphic image of G'. 

Proof. Let M be any set with card M = m and let M = (M, 0) be a discrete 
cychcally ordered set. Note that Н о т (M, 2 3) contains all mappings f: M-^ 
-^ (0, 1, 2, 0', Г, 2 '] . Let /: G -> M be a bijection. Let us assign to any element 
X G G a subset U(x) g Н о т (M, 2 3) by the following rule: 

(1) If X is not isolated, then U(x) is the set of a l l / G Н о т (M, 2 3) with the following 
properties: 

(i) There exist y, z e G — {x] such that (z, y, x)e С and f{i{x)) = 0, /(/(y)) = 
= l , / ( / (z) ) = 2; 
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(ii) / is a constant mapping on M — {/(x), l(y), /(z)} with the value in the set 
{o',r,r}. 

(2) If X is isolated, then U{x) = {/} where /(/(x)) = 0 and f{t) = 0' for any 
teM - {/(x)]. 

We show first that x, y e G, x ф y implies U(x) n U(y) = 0. Indeed, suppose the 
existence of an / G L/(x) n U{y). By definition we have / e L/(x) =>/(t(x)) = 0 and 
f{t) Ф 0 for any teM — {i{x)}, so that /(x) is the only element of the set M for 
which / takes the value 0. The same holds for the set U{y) and thus we have i(x) = 
= i{y). As Ï is a bijection, we have x = y. Hence x Ф y implies U{x) n U(y) = 0. 
Now, put G' = и ^{^y As G' g Н о т (M, 2 3), the structure G = {G\ Ш{{2 3)^) n 

xeG 

n G'^) is a cyclically ordered set which is a substructure of (2 3)^. According to the 
preceding note {L/(x); x e G} is a decomposition of the set G' so that there exists an 
equivalence 0 on G' such that G ' /e = {U{x); xe G}. For any С/̂ , I/2' ^ з ^ ^ 7 ^ 
put ( l / i , U2,1^3) 6 S iff there exist / e U^, geU2, h e [/3 with (/, g,h)e Щ2 3)^). 
Then S is a ternary relation on G'JQ and we show that U is an isomorphism of G 
onto {G'\0, S). Trivially, [/ is a bijection of G onto Gj©: Let x, y, z e G, (x, y, z) e C. 
Let us define mappings / , f̂, /Ï: M -> {0, 1, 2, О', Г, 2'} as follows: 
/(/(x)) = О, /(f(y)) = 2, /(i(z)) = 1, Д О = О' for any 
tsM - {/(x), i(y),/(z)}; 
9{i{y)) = 0, ^(/.(z)) = 2, ^(/(x)) = 1, g{t) = V for any 
teM - {i{xli{y)j{z)}; 
h{i{z)) = 0, /î(f(x)) = 2, /z(t(y)) - 1, h{t) = T for any 
teM - {/(x), ^(y),/(z)}. 

We see that {f{t), g{t), h{t)) e Щ2 3) for any t e M, i.e. (/, g, h) e Щ{2 3)^) and 
fe l/(x), g e L/(y), /г e U{z). Thus, (I7(x), t/(y), U{z)) e S. Conversely, let x, y, z e G 
and (U(x), ^(y), (7(z)) e S. Then there ex is t /e U{x), g e U{y), h e U(z) with (/, g, h) e 
e Ш{{2 З П . Then f{i{x)) = 0, g{i{y)) = 0, h{i{z)) = 0 and (/(r), ^(f), /z(0) e ^{2 3) 
for any r e M. Therefore necessarily g{i{x)) = 1, /t(/(x)) = 2,/(г(у)) = 2, /г(/(у)) = 1, 
f{i{z)) = 1, ^(/-(z)) = 2. As ( / ( i (x)) , / ( / (y)) , /«z))} == {0, 1, 2} and / e и(х), by 
condition (i) in the definition of set C/(x), we have (y, z, x)e С and also (x, y, z) e C. 
Thus, и is an isomorphism of G onto (G'jO, S); this yields simultaneously that 
(G'l©, S) is a cyclically ordered set. Now, we show that the natural projection nat 0 
is a strong homomorphism of a cychcally ordered set G' onto a cyclically ordered 
set (G ' /e , S). Let / , f̂, /г e G\ (/, g, h) e Щ2 3)^). By definition of the set G' there 
exist elements x, y, z e G w i t h / e l/(x), ^ e U(y), h e U(z) so that ((7(x), l/(y), ^^(z)) e 
G S. But nat 6>(/) = U{x), nat 6)(öf) = C/(y), nat 0(/ï) = L/(z), thus (nat 6>(/), 
nat e(ér), nate( /z))GS and na,t 0: G' -^ G'j© is a homomorphism of G' into 
G'/ß^, 'S). We immediately see that this homomorphism is surjective. Let U\, U2, U^ e 
eG'l© and {U i,lJ 2,V^)e S, By definition of the relation 5, there exist feUi,^ 
of G 1/2, heU^ such that (f, g, h) e Ш{{2 3)^) and, trivially, / G (nat 0 ) " ^ (l/ i) , 
g e{mit 0)~^ (U2), /i G (nat в )~^ ((7з). Hence nat 6) is a strong homomorphism 
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of G' onto {G'j0, S) and hence the composition U ^ о nat 0 is a strong homo-
morphism of a cyclically ordered set G' g (2 3)^ onto a cyclically ordered set G. 

6. Remark. A cyclically ordered set of type (2 3)"" has cardinality 6*" and is "m-
universai" in the following weaker sense: To obtain all cyclically ordered sets of 
cardinality m up to isomorphisms, it suffices to take all subsets of a cyclically ordered 
set of type (2 З)'" and all their strong homomorphic images. 
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