Czechoslovak Mathematical Journal

Adolf Karger Affine Darboux motions

Czechoslovak Mathematical Journal, Vol. 35 (1985), No. 3, 355-372

Persistent URL: http://dml.cz/dmlcz/102026

Terms of use:

© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project $\mathit{DML-GZ: The Czech Digital Mathematics Library } \texttt{http://dml.cz}$

AFFINE DARBOUX MOTIONS

Adolf Karger, Praha (Received October 18, 1982)

I. INTRODUCTION

The Euclidean Darboux motion in E_3 has the following properties:

- a) All trajectories are plane curves.
- b) All trajectories are ellipses or straight line segments.
- c) All trajectories are affinely equivalent.
- d) It is cylindrical (it splits into a product of a plane motion with a translation).
- e) It has infinitely many straight trajectories.

It is easy to show that the condition a) implies all the others, but only b) is equivalent to it. Therefore if we want to generalize the concept of Darboux motion to the *n*-dimensional space and to more general groups, it is not apparent which of the conditions a), ..., e) should be preserved, because the condition a) does not imply the others in a more general situation. In the present paper we define the affine Darboux motions as those having the properties a) and c) because in this case we may describe Darboux motions by a rather simple analytic condition. There are examples of affine Darboux motions with no conical section as a trajectory, which are not cylindrical.

There are also affine Darboux motions with only plane trajectories such that the trajectories are not affinely equivalent. Concerning e) we shall show later that affine Darboux motions have as many straight trajectories as possible, but this property is not characteristic. This will be seen from examples given in the second part of the paper.

II. GENERAL PROPERTIES OF AFFINE DARBOUX MOTIONS

Let G be a Lie subgroup of the general affine group GA_n in an n-dimensional affine space, let g(t) be a one-parametric motion from G of the moving affine space \overline{A}_n in the fixed affine space A_n , $t \in I$. Let us fix a base $\overline{R}_0 = \{\overline{A}_0, \overline{f}_1, ..., \overline{f}_n\}$ or $R_0 = \{A_0, f_1, ..., f_n\}$ in \overline{A}_n or A_n , respectively. By a frame in \overline{A}_n or A_n we mean any base of the form $\overline{R} = \overline{R}_0 \cdot g$ or $R = R_0 \cdot g$ in \overline{A}_n or A_n , respectively, for any $g \in G$.

A moving frame of the motion g(t) is any pair of frames (\overline{R}, R) such that $g(t)[\overline{R}(t)] = R(t)$ with the action $g[\overline{R}_0g_0] = R_0gg_0$, where $g, g_0 \in G$. (In what follows, all functions are supposed to be sufficiently differentiable.)

If (\overline{R}, R) is a moving frame of the motion g(t), denote $R' = R\varphi$, $\overline{R}' = \overline{R}\psi$, $\varphi - \psi = \omega$, $\varphi + \psi = \eta$. Then $\varphi, \psi \in G$, where G is the Lie algebra of G. Further denote by Ω_k the operator of the k-th derivative of the trajectory of a point $\overline{X} \in \overline{A}_n$ at $X = g(t) \overline{X}$, so $X^{(k)} = \Omega_k X$. Then (see [3])

(1)
$$\Omega_1 = \omega , \quad \Omega_{k+1} = \varphi \Omega_k - \Omega_k \psi + \Omega_k'.$$

Definition 1. A motion g(t) from G is called a D_r motion (a motion having the Darboux property of degree r) if there exist unique functions $\alpha_1(t), \ldots, \alpha_r(t)$ such that

$$\Omega_{r+1} = \sum \alpha_i \Omega_i.$$

Remark. The number r is the least number with the property (2) because $\Omega_{k+1} = \sum \beta_i \Omega_i$ with k < r contradicts the unicity of α_i .

Remark. The D_r property is a geometrical property of the motion as it does not depend on the choice of the parameter t or of the moving frame. To see this consider a parameter change $t = t(\tau)$ with $dt/d\tau \neq 0$. Let us denote by tilda operators obtained with respect to τ and by a prime the derivative with respect to τ . Then we

get
$$\widetilde{\Omega}_1 = \Omega_1$$
. t' . Further, let $\widetilde{\Omega}_k = \Omega_k(t')^k + \sum_{j=1}^{k-1} \Omega_j \gamma_j$. Then $\widetilde{\Omega}_{k+1} = \Omega_{k+1}(t')^{k+1} + \sum_{j=1}^{k-1} (\Omega_{j+1} t' \gamma_j + \Omega_j \gamma_j') + \Omega_k k(t')^{k-1} t''$. So $\widetilde{\Omega}_{r+1} = \sum_{i=1}^r \alpha_i \Omega_i$ implies $(t')^{r+1} \Omega_{r+1} = \sum_{i=1}^r \beta_i \Omega_i$.

Similarly, if h = h(t) is a change of the moving frame, $(\widetilde{R}, \widetilde{R}) = (\overline{R}h, Rh)$, we get $\widetilde{\varphi} = h^{-1}\varphi h + h^{-1}h'$, $\widetilde{\psi} = h^{-1}\psi h + h^{-1}h'$ and $\widetilde{\Omega}_1 = h^{-1}\Omega_1 h$. Further, let $\widetilde{\Omega}_k = h^{-1}\Omega_k h$. Then $\widetilde{\Omega}_{k+1} = \widetilde{\varphi}\widetilde{\Omega}_k - \widetilde{\Omega}_k \widetilde{\psi} + \widetilde{\Omega}_k' = (h^{-1}\varphi h + h^{-1}h')(h^{-1}\Omega_k h) - (h^{-1}\Omega_k h)(h^{-1}h + h^{-1}h') + (h^{-1})'\Omega_k h + h^{-1}\Omega_k' h + h^{-1}\Omega_k h' = h^{-1}\Omega_{k+1}h$, where we have used $(h^{-1})' = -h^{-1}h'h^{-1}$.

Let us denote by M(G) the associative algebra generated by G in the associative algebra M_{n+1} of matrices of degree n+1.

Theorem 1. Every motion in G is a D_r motion for some r, where $r \leq \dim M(G) \leq n^2 + n$.

Remark. The statement of the theorem is to be understood locally in the following sense: Let g(t) be defined on an open interval I. Then there is a number r and an open interval $J \subset I$ such that the statement holds on J.

Lemma 1. Let $x_1(t), ..., x_m(t), ...$ be vector functions in \mathbb{R}^n defined on an open interval I. Then there exist $m \in \mathbb{N} \cup \{0\}$, $m \leq n$ and an open interval $J \subset I$ such that $x_{m+1} = \sum_{i=1}^m \alpha_i x_i$, where α_i are uniquely defined (differentiable) functions.

Proof. Denote by m the maximal natural number or zero such that all sub-determinants of order m+1 of vectors x_1, \ldots, x_{m+1} equal zero on I and at least one subdeterminant of order m of vectors x_1, \ldots, x_m is different from zero at some $t \in I$. Then $m \le n$. Let us further suppose that the nonzero subdeterminant is the determinant consisting of the first m coordinates, det $|x_i^I(t_0)| \ne 0$, $i, j = 1, \ldots, m$. Then this determinant is different from zero on an open interval $J \subset I$.

Let us write

$$x_i = \begin{pmatrix} y_i^j \\ z_i^s \end{pmatrix}, \quad i, j = 1, ..., m; \quad s = m + 1, ..., n.$$

To prove our lemma we have to solve the system of linear equations

$$\begin{pmatrix} y_i \\ z_i \end{pmatrix} (\alpha_i) = \begin{pmatrix} y_{m+1} \\ z_{m+1} \end{pmatrix}$$

for the unknown column (α_i) . The Equations $(y_i)(\alpha_i) = y_{m+1}$ have a unique (differentiable) solution (α_i) . Further,

$$0 = \begin{vmatrix} y_1, \dots, y_m, y_{m+1} \\ z_1^k, \dots, y_m^k, z_{m+1}^k \end{vmatrix} = \begin{vmatrix} y_1, \dots, y_m, \sum_{i=1}^{m} \alpha_i y_i \\ z_1^k, \dots, z_m^k, z_{m+1}^k \end{vmatrix} = \begin{vmatrix} y_1, \dots, y_m, 0 \\ z_1^k, \dots, z_m^k, z_{m+1}^k - \sum_{i=1}^{m} \alpha_i z_i^k \end{vmatrix}$$

for every $k, m+1 \le k \le n$ and so $z_{m+1}^k = \sum_{i=1}^m \alpha_i z_i^k$ and $x_{m+1} = \sum \alpha_i x_i$ with α_i unique.

Proof of Theorem 1. We have $\Omega_1 \in M(G)$, because $\Omega_1 = \omega \in G$. Further, if $\Omega_k \in M(G)$, then $\Omega_{k+1} = \varphi \Omega_k - \Omega_k \psi + \Omega_k' \in M(G)$, as $\varphi, \psi \in G$. So we apply Lemma 1. Finally, $M(G) \subset M(GA_n)$ and dim $M(GA_n) = n^2 + n$.

Remark. For some subgroups of GA_n we really get dim $M(G) < n^2 + n$. For instance, if G is the group of Euclidean motions in E_2 , we have dim M(G) = 4 and $n^2 + n = 6$.

The geometric characterization of the D_r property is given in the following

Theorem 2. A motion in G has the D_r property iff there exists a regular curve in A_r such that the trajectory of any point is an affine image of this curve and r is the least number with this property. If a motion has the D_r property, then the trajectory of any point lies in a subspace of A_n of dimension at most r.

Remark. The last statement of Theorem 2 is void for $r \ge n$. The detailed formulation of the statement from Theorem 2 which is equivalent to the D_r property is as follows: There exists a curve V(t) in A_r such that for each point $\overline{X} \in \overline{A}_n$ there exists an affine mapping $f: A_r \to A_n$ such that $f(V(t)) = g(t) \overline{X}$ for all $t \in I$. Here f is not supposed to be regular as the trajectories may lie in subspaces of different dimensions. By a regular curve we mean a curve X(t) such that the r-th osculating space has dimension r at each $t(X', ..., X^{(r)})$ are linearly independent for each t).

Remark. Theorem 2 shows that the D_r property is an affine property of a motion

in G. This means that the D_r property is preserved if the group G is imbedded in GA_n . It follows that if we find all D_r motions in GA_n , we also know all D_r motions for all subgroups of GA_n .

Proof of Theorem 2. We have $X^{(r+1)} - \sum_{i=1}^{r} \alpha_i X^{(i)} = 0$ and so the trajectory of $\overline{X} \in \overline{A}_n$ can be expressed as $X(t) = A_0 + \sum_{i=1}^{r} m_i(t) f_i$, where A_0 is a point and f_i are constant vectors (not necessarily independent) and functions 1, $m_1(t), \ldots, m_r(t)$ form a fundamental system of solutions of the equation $y^{(r+1)} - \sum_{i=1}^{r} \alpha_i y^{(i)} = 0$.

Hence we see that if the motion has the D_r property, all trajectories lie in subspaces of dimension at most r. Each trajectory is an affine image of the curve $V(t) = B_0 + \sum_{i=1}^r m_i(t) e_i$, where $\{B_0, e_1, ..., e_r\}$ is a base in A_r . The curve V(t) is regular in our sense, as the Wronski determinant of functions $m'_1(t), ..., m'_r(t)$ is different from zero, because they come from the fundamental system of solutions of a differential equation.

Conversely, let $V(t) = B_0 + \sum_{i=1}^s m_i(t) e_i$ be a regular curve in A_s such that each trajectory is its affine image. Consider the system of linear equations $m_{(s+1)}^j = \sum_{i=1}^s \alpha_i m_j^{(i)}$, $j=1,\ldots,s$, for unknowns α_i . As det $m_j^{(i)} \neq 0$, this system has a unique solution and so the functions 1, $m_1(t),\ldots,m_s(t)$ form a fundamental system of solutions of $y^{(s+1)} - \sum_{i=1}^s \alpha_i y^{(i)} = 0$ and each trajectory satisfies this equation. Finally, s < r contradicts the unicity of the functions α_i .

Remark. Theorem 2 is a generalization of the known fact that cycloids (as trajectories of a cycloidal motion in plane) are affine images (projections) of a helix. In another words, a cycloidal plane motion is a D_3 motion. It is not the only Euclidean D_3 plane motion; the D_3 plane motions are characterized as motions with one straight trajectory (see [6]).

Theorem 3. A motion $g(t) \in G$ has the D_r property iff g(t) can be expressed as $g(t) = \sum_{i=0}^{r} m_i(t) \dot{M}_i$, where M_i are constant matrices, $m_0 = 1$, $\det \left| m_i^{(j)} \right| \neq 0$ and $g(t) \in G$.

Proof. If g(t) is a motion then $X(t) = g(t) \overline{X}$ is the trajectory of \overline{X} . The operator of the k-th derivative of the trajectory of \overline{X} is therefore expressed by $\Omega_k = g^{(k)}$ in a fixed frame in A_n . So the D_r property also means that g(t) satisfies the differential equation

$$g^{(r+1)} - \sum_{i=1}^{r} \alpha_i g^{(i)} = 0$$

and the statement follows.

Definition 2. A motion $g(t) \subset G$ is called an F_s motion, if the trajectory of any point lies in a subspace of dimension s and s is the least number with this property.

Remark. Each F_s motion is also (locally) a D_r motion for some r, where of course $s \le r$. A natural question to ask at this moment is how large r may be for a given s in a given group G. For instance, we shall show later that for $G = GA_n$, s = 1 the answer is $1 \le r \le n + 1$. If the group G is a proper subgroup of GA_n we may get stronger results. For instance, for Euclidean motions we get for n = 3 and s = 2 that either r = 2 or the motion is a plane motion (and $r \le 4$). The problem of generalization of this particular result to any n is still open (see $\lceil 3 \rceil$).

Definition 3. We say that the motion g(t) in G splits, if there exist nontrivial subgroups G_1 and G_2 of G such that $G_1 \cap G_2 = \{e\}$, $g_1g_2 = g_2g_1$ for all $g_1 \in G_1$, $g_2 \in G_2$ and $g(t) = g_1(t) g_2(t)$ with $g_1(t) \in G_1$, $g_2(t) \in G_2$ for all $t \in I$.

Remark. The basic problem concerning Darboux motions is to describe how D_r motions split into D_r factors and to find all these factors in a given group for small r. (For large r we are near to the general motion and the problems become complicated.)

For instance, it is known that all F_2 similarity motions in E_3 split into the product of a plane motion with a motion in a straight line (see [4]). Only partial results are known about splitting of F_2 or D_2 affine motions (see [5]). All non-splitting Euclidean D_2 motions in E_n are found in [3]. Some examples are also given below in this paper.

We shall now investigate some other geometric properties of Darboux motions.

Definition 4. Let $v_1, ..., v_r$ be vectors in A_n , let $X_1, ..., X_r$ be columns of their coordinates in some base $R_0 = \{A_0, e_i\}$, so $v_i = R_0 X_i$ (the first coordinate of a vector is zero and is omitted). Let $[X_1, ..., X_r]^j$, $j = 1, ..., \binom{n}{p}$ denote all subdeterminants of order r of columns $X_1, ..., X_r$.

Lemma 2. Let A be a matrix of order n. Then there exist numbers α_{jk} such that

$$|X_1, ..., AX_i, ..., X_r|^j = \sum_{k=1}^{\binom{n}{r}} \alpha_{jk} |X_1, ..., X_r|^k$$

for all columns X_i.

Proof. $\sum_{i=1}^{r} |X_1, ..., AX_i, ..., X_r|^j$ is a skew-symmetric r-linear function of X_i . Let f be any skew-symmetric r-linear function of vectors, let $e_1, ..., e_n$ be a base. Then $X_i = a_i^z e_z$, $\alpha = 1, ..., n$; i = 1, ..., r with the summation omitted. Further,

$$f(X_{1},...,X_{r}) = f(a_{1}^{\alpha_{1}}e_{\alpha_{1}},...,a_{r}^{\alpha_{r}}e_{\alpha_{r}}) = a_{1}^{\alpha_{1}}...a_{r}^{\alpha_{r}}f(e_{\alpha_{1}},...,e_{\alpha_{r}}) =$$

$$= \sum_{\alpha_{1}<...<\alpha_{r}}f(e_{\alpha_{1}},...,e_{\alpha_{r}}) \sum_{\Pi}\operatorname{sgn} \Pi a_{1}^{\alpha_{1}}...a_{r}^{\alpha_{r}} =$$

$$= \sum_{\alpha_{1}<...<\alpha_{r}}^{n}f(e_{\alpha_{1}},...,e_{\alpha_{r}}) |X_{1},...,X_{r}|^{\alpha_{1}<...<\alpha_{r}}.$$

Let g(t) be a motion in G, let $\overline{X} \in \overline{A}$ be a fixed point. For the coordinates X of \overline{X} in the frame \overline{R} we have

$$(3) X' = -\psi X.$$

(We have $\overline{X} = \overline{R}\overline{X}$ and so $\overline{X}' = 0 = \overline{R}'X + \overline{R}X' = \overline{R}(\psi X + X')$.)

If $F(x_i, t)$, i = 1, ..., n is a function of n + 1 variables, denote

$$\frac{\mathrm{d}F}{\mathrm{d}\psi} = \frac{\partial F}{\partial t} - \frac{\partial F}{\partial x}\psi X, \quad \text{where} \quad \frac{\partial F}{\partial x} = \left(\frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_n}\right).$$

Lemma 3.

$$\frac{\mathrm{d}}{\mathrm{d} t t} \left[X', \ldots, X^{(r)} \right]^j = \sum_{i=1}^{\binom{n}{r}} \alpha_{ij}(t) \left[X', \ldots, X^{(r)} \right]^i + \left[X', \ldots, X^{(r-1)}, X^{(r+1)} \right]^j,$$

where $X^{(k)}$ denotes the k-th derivative of the trajectory of \overline{X} at X.

Proof.

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\psi} \left[X', ..., X^{(r)} \right]^j &= \frac{\mathrm{d}}{\mathrm{d}\psi} \left[\Omega_1 X, ..., \Omega_r X \right]^j = \\ &= \sum_{i=1}^r \left[\Omega_1 X, ..., \Omega_i' X - \Omega_i \psi X, ..., \Omega_r X \right]^j = \\ &= \sum_{i=1}^r \left[\Omega_1 X, ..., \Omega_{i+1} X - \varphi \Omega_i X, ..., \Omega_r X \right]^j = \\ &= \left[\Omega_1 X, ..., \Omega_{r-1} X, \Omega_{r+1} X \right]^j - \sum_{i=1}^r \left[\Omega_1 X, ..., \varphi \Omega_i X, ..., \Omega_r X \right]^j, \end{split}$$

because $\Omega_i' - \Omega_i \psi = \Omega_{i+1} - \varphi \Omega_i$. The statement follows now from Lemma 2.

Lemma 4. Let a system of linear differential equations (3) be given. Let $F_i(X, t)$ be functions of n + 1 variables and let $\gamma_{ij}(t)$ i, j = 1, ..., k be functions such that

(4)
$$\frac{\mathrm{d}}{\mathrm{d}y_i} F_i = \sum_{i,j=1}^k \gamma_{ij} F_j$$

for all X. Then, if a solution of (3) satisfies $F_i(X(t_0), t_0) = 0$ at some t_0 , the identity $F_i(X(t), t) = 0$ holds for all t.

Proof. Throughout the proof we shall use the matrix notation, so $(d/d\psi) F = \gamma F$. Consider the system of ordinary differential equations $Y' = \gamma Y$. Denote by f the matrix whose columns form a fundamental system of solutions of this equations. Then f is a regular matrix and

$$\frac{d}{d\psi}(f^{-1}F) = \frac{d}{dt}(f^{-1})F + f^{-1}\frac{d}{d\psi}F = \frac{d}{dt}f^{-1}.F + f^{-1}\gamma F = 0$$

because $(d/d\psi) F = \gamma F$ and $f' = \gamma f$ implies $(f^{-1})' = -f^{-1}\gamma$.

This shows that the functions $f^{-1}F$ are the first integrals of (3). So if X(t) is a solution of (3), we have $f^{-1}(t) F(X(t), t) = C$, where C are constants. If now $F(X(t_0), t_0) = 0$, we have C = 0 and F(X(t), t) = 0 for all t.

Theorem 4. Let g(t) be a motion in G with the property that $|X',...,X^{(r-1)},X^{(r+1)}|$ is a consequence of $|X',...,X^{(r)}|$ ($|X',...,X^{(r-1)},X^{(r+1)}|^i=\sum \beta_{ij}(t)|X',...,X^{(r)}|^j$). Let the trajectory of any point \overline{X} at some t_0 satisfy $|X',...,X^{(r)}|^i=0$ for all t_0 and $|X',...,X^{(r-1)}|^j=0$ for some t_0 . Then the trajectory of t_0 lies in a subspace of t_0 of dimension t_0 .

Proof. According to Lemma 4 we have $|X', ..., X^{(r)}|^i = 0$ for the whole trajectory of X. From the assumptions we get $X^{(r)} = \sum_{i=1}^{r-1} \alpha_i X^{(i)}$ in an interval around t_0 and the trajectory is an r-1 dimensional curve.

Corollary. Let g(t) be a D_r motion. Then the trajectory of any point satisfying $|X',...,X^{(r)}|^i=0$ for all i at some t_0 and $|X',...,X^{(r-1)}|^j\neq 0$ for some j and all $t\in I$, lies in a subspace of dimension r-1 and in no subspace of smaller dimension on I.

Proof. We have
$$X^{(r)} = \sum_{i=1}^{r-1} \alpha_i X^i$$
 on I with $X', ..., X^{(r-1)}$ linearly independent.

A similar corollary of Theorem 4 may be expressed as follows: If g(t) is a D_r motion and the r-th osculating space of the trajectory of a point \overline{X} has dimension less then r at t_0 and the (r-1)-st osculating space at t_0 has dimension r-1, then at least a piece of the trajectory of \overline{X} around t_0 is an r-1 dimensional curve.

Remark. From Corollary of Theorem 4 we get for instance that if a D_1 motion has an instantaneous pole, then this pole remains fixed during the motion. Similarly, D_2 motions have the property that any point of the set of inflextion points, which is not a pole, has a straight trajectory.

Remark. The necessary condition from Theorem 4 is not sufficient to characterize the D_r motions in general, because there exist motions with the property that all points of $|X', ..., X^{(r)}| = 0$ have trajectories in subspaces of dimension less than r, which are not D_r motions. An example will be given later.

Similarly, the condition that $|X',...,X^{(r)}|=0$ implies $|X',...,X^{(r-1)},X^{(r+1)}|=0$ does not yield that $(\mathrm{d}/\mathrm{d}\psi)|X',...,X^{(r)}|$ is a consequence of $|X',...,X^{(r)}|$ as the set $|X',...,X^{(r)}|=0$ may be empty.

The condition that $|X', ..., X^{(r)}| = 0$ implies $|X', ..., X^{(r-1)}, X^{(r+1)}| = 0$ is a necessary condition for all points of this set to have its trajectory in a subspace of dimension less then r. In many cases this condition is also sufficient. Let for instance $|X', ..., X^{(r)}|^i = 0$ be given by a single equation and let the solution set have sufficiently many points to determine its equation (it is an algebraic equation). This

means that if F(X) = 0 for all points of $|X', ..., X^{(r)}| = 0$ with F(X) algebraic, then $F(X) = |X', ..., X^{(r)}|$. G(X, t), where G(X, t) is a polynomial in x_i 's with its coefficients being functions of t. If this is the case and $|X', ..., X^{(r)}| = 0$ implies $|X', ..., X^{(r-1)}, X^{(r+1)}| = 0$, we get $d|d\psi|X', ..., X^{(r)}| = \alpha(t)|X', ..., X^{(r)}|$, as $(d/d\psi)|X', ..., X^{(r)}|$ is a polynomial of degree not higher than the degree of $|X', ..., X^{(r)}|$ and the necessary condition becomes also sufficient.

Such situation occurs for instance for r = n, n odd and $|X', ..., X^{(r)}| = 0$ irreducible.

Similarly, let M be a set given as a solution of some algebraic equations $G_i(X, t) = 0$ such that all points of M satisfy $|X', ..., X^{(r)}| = 0$. Then the necessary condition for all points of M to have trajectories in subspaces of dimension less than r is $(d/d\psi) G_i(X) = 0$ on M. This condition is also sufficient, if it implies $(d/d\psi) G_i = \sum \alpha_{ij} G_j$ for all X. Such situation occurs in the case of $|X', ..., X^{(r)}| = 0$ reducible.

Theorem 5. Let g(t) be a D_r motion in G. Further, let X(t) be an isolated solution of $|X', X^{(k)}| = 0$, k = 2, ..., r for each t, with $X' \neq 0$. Then if X is not a singular point of all conditions $|X', X^{(k)}|^j = 0$, it has a straight trajectory.

Proof. Let us denote by $F_i(X) = 0$, i = 1, ..., s all the equations $|X', X^{(k)}| = 0$. Then we have for the rank

$$r\left(\frac{\partial F}{\partial x_i}(X)\right) = n,$$

because if

$$0 < r\left(\frac{\partial F_i}{\partial x_j}(X)\right) < n,$$

it is possible to express some of the variables as functions of the others and X is not an isolated solution. If

$$r\left(\frac{\partial F_i}{\partial x_j}(X)\right) = 0,$$

X is a singular point for all equations $F_i(X) = 0$. Further, we have $F_i(X(t), t) = 0$ and so

$$\sum_{j=1}^{n} \frac{\partial F_i}{\partial x_i} x_j' + \frac{\partial F_i}{\partial t} = 0.$$

Now

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\psi} \left| X', X^{(k)} \right| &= \frac{\mathrm{d}}{\mathrm{d}\psi} \left| \Omega_1 X, \Omega_k X \right| = \left| \Omega_1' X - \Omega_1 \psi X, \Omega_k X \right| + \left| \Omega_1 X, \Omega_k' X - \Omega_k \psi X \right| = \\ &= \left| \Omega_2 X - \varphi \Omega_1 X, \Omega_k X \right| + \left| \Omega_1 X, \Omega_{k+1} X - \varphi \Omega_k X \right| = \\ &= \left| \Omega_2 X, \Omega_k X \right| + \left| \Omega_1 X, \Omega_{k+1} X \right| - \left| \varphi \Omega_1 X, \Omega_k X \right| - \left| \Omega_1 X, \varphi \Omega_k X \right|. \end{split}$$

As $X'' = \alpha X'$ at X, we have

$$\frac{\mathrm{d}}{\mathrm{d}\psi}\left|X',X^{(k)}\right|=0$$

at X which means

$$\frac{\partial F_i}{\partial t} - \frac{\partial F_i}{\partial x} \psi X = 0.$$

Both the conditions together give

$$\frac{\partial F_i}{\partial x} (X' - \psi X) = 0$$

and so $X' = -\psi X$.

Lemma 5. Let g(t) be a D_r motion in G. Then $\Omega_m = \sum_{i=1}^r \alpha_{mi} \Omega_i$ for all m > r.

Proof. The lemma is easily proved by induction.

Theorem 6. Let g(t) be a real analytic D_r motion in G. Let for a point $\overline{X} \in \overline{A}_n$ and $1 \le k \le r$

$$|X',...,X^{(k)}| = |X',...,X^{(k-1)},X^{(k+1)}| ... = |X',...,X^{(k-1)},X^{(r)}| = 0$$

at $t = t_0$ with $X^{(i)} = (g(t)\overline{X})^i$. Then the trajectory of X lies in a subspace of dimension less then k.

Proof. According to Lemma 5 we have $X^{(m)} = \sum_{i=1}^{r} a_i^m X^{(i)}$ for m > r. Let $s \ge 0$ be the maximal number such that $|X', ..., X^{(s)}| \neq 0$ at t_0 . Then s < k. The trajectory of the point X in the base $\{X, X', ..., X^{(s)}, Y_{s+1}, ..., Y_n\}$ $\{Y_k \text{ arbitrary}\}$ will have the following Taylor expansion (put $t_0 = 0$):

$$X(t) = X(0) + \sum_{m=1}^{\infty} \frac{1}{m!} X^{(m)}(0) t^m = \sum_{m=1}^{\infty} \frac{t^m}{m!} \left(\sum_{i=1}^r a_i^m X^{(i)} \right) = \sum_{i=1}^r \left(\sum_{m=1}^{\infty} a_i^m \frac{t^m}{m!} \right) X^{(i)},$$

where $a_i^m = \delta_i^m$ for $1 \le m \le r$ and $X^{(i)}$ may be expressed by $X', ..., X^{(s)}$. This proves the statement.

Remark. In some groups all D_r motions are real analytic for some r. This is always the case when there are no arbitrary functions in the expression of a general D_r motion. Such motions are solutions of an autonomous system of differential equations with algebraic (and therefore analytic) right hand sides and hence they are given by analytic functions. For instance, all D_2 motions in E_n are analytic. In the general case, if the above mentioned arbitrary functions are analytic, the D_r motion is analytic as well. A D_r motion is analytic also in the case when the functions α_i in Ω_{r+1}

= $\sum \alpha_i \Omega_i$ are analytic (see Theorem 3).

The author does not know whether Theorem 6 remains valid with the analyticity

condition removed. In the differentiable case we are able to prove only a wekaer theorem, which is presented below.

Lemma 6.

$$\frac{\mathrm{d}}{\mathrm{d} \psi} |X^{(i_1)}, ..., X^{(i_s)}|^i = \sum_{\alpha=1}^s |X^{(i_1)}, ..., X^{(i_{\alpha}+1)}, ..., X^{(i_s)}|^i + \sum_{i=1}^{\binom{n}{s}} \alpha_{ij} |X^{(i_1)}, ..., X^{(i_s)}|^j.$$

Proof.

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\psi} \left| X^{(i_1)}, \dots, X^{(i_s)} \right|^i &= \sum_{\alpha=1}^s \left| X^{(i_1)}, \dots, \left(\Omega_{i_\alpha+1} - \varphi \Omega_{i_\alpha} \right) X, \dots, X^{(i_s)} \right|^i = \\ &= \sum_{\alpha=1}^s \left| X^{(i_1)}, \dots, X^{(i_\alpha+1)}, \dots, X^{(i_s)} \right|^i - \sum_{\alpha=1}^s \left| X^{(i_1)}, \dots, \varphi X^{(i_\alpha)}, \dots, X^{(i_s)} \right|^i = \\ &= \sum_{\alpha=1}^s \left| X^{(i_1)}, \dots, X^{(i_\alpha+1)}, \dots, X^{(i_s)} \right|^i - \sum_{j=1}^s \alpha_{ij} \left| X^{(i_1)}, \dots, X^{(i_s)} \right|^j \end{split}$$

according to Lemma 1.

Theorem 7. Let g(t) be a D_3 motion in G. Then the points satisfying |X', X''| = 0, |X', X'''| = 0, $|X' \neq 0$ have straight trajectories.

Proof. Denote
$$|X', X''|^j = F_j$$
, $|X', X'''|^j = G_j$, $|X'', X'''|^j = H_j$. Then
$$\frac{\partial}{\partial \psi} F_j = G_j + \sum \alpha_{jk} F_k ,$$

$$\frac{\partial}{\partial \psi} G_j = (1 + \alpha_3) H_j + \alpha_2 F_j + \sum \beta_{jk} G_k ,$$

$$\frac{\partial}{\partial \psi} H_j = -\alpha_1 F_j + \alpha_3 H_j + \sum \gamma_{jk} H_k ,$$

where $\Omega_4 = \sum_{i=1}^3 \alpha_i \Omega_i$ and α_{jk} , β_{jk} , γ_{jk} are functions. If now $F_j = 0$ and $G_j = 0$ at some X and $X' \neq 0$, then X'' and X''' are linearly dependent and so $H_j = 0$. From Lemma 4 we get that |X', X''| = 0 around t_0 and the trajectory is on a straight line.

III. EXAMPLES

Example 1. Let us consider an affine motion g(t) in the affine plane, which is not centroaffine. Let us suppose that the condition $|X', X''| = F_2(X)$ for g(t) is nontrivial and that all points satisfying $F_2(X) = 0$ have straight trajectories. We shall investigate conditions under which g(t) is a D_2 motion.

A necessary condition for all points of $F_2(X) = 0$ to have straight trajectories is that $F_2(X) = 0$ implies $F_3(X) = |X', X'''| = 0$.

If $F_2(X) = 0$ has infinitely many points and is not a twice counted straight line, this condition implies that $F_3(X) = \alpha(t) F_2(X)$ and this latter condition is also sufficient. The remaining cases where $F_2(X) = 0$ is empty, a one point set or a twice counted straight line, must be treated separately.

Let us also remark that $F_2(X) = 0$ contains all instantaneous poles of g(t). So if $F_2(X) = 0$ has only one point and the motion has a pole, the motion is a centroaffine motion.

Case I).

$$\omega = \begin{pmatrix} 0, & 0 \\ 0, & \omega_1 \end{pmatrix},$$

where ω_1 is a regular 2×2 matrix and $F_2(X) = 0$ has at least two points and is not a straight line. $(F_2(X) = 0$ is nonempty as the motion has a pole.) Denote

$$\Omega_2 = \begin{pmatrix} 0, & 0 \\ \vartheta_2, & \Theta_2 \end{pmatrix}, \quad \Omega_3 = \begin{pmatrix} 0, & 0 \\ \vartheta_3, & \Theta_3 \end{pmatrix}.$$

Then $F_2(X) = |\omega_1 x, \vartheta_2 + \Theta_2 x|, F_3(X) = |\omega_1 x, \vartheta_3 + \Theta_3 x|,$ where $x = (x_1, x_2)^T$. Let $\omega_1 x = y, \quad y = (y_1, y_2)^T$. Then $F_2(X) = |y, \vartheta_2 + \Theta_2 \omega_1^{-1} y|$ and $F_2(X) = 0$ is $(\vartheta_2)_1 y_1 - (\vartheta_2)_1 y_2 + c_{21} y_1^2 + (c_{22} - c_{11}) y_1 y_2 - c_{12} y_2^2 = 0$ where $\Theta_2 \omega_1^{-1} = (c_{ij}); i, j = 1, 2$, and similarly for $F_3(X)$. This gives $\vartheta_3 = \alpha \vartheta_2, \Theta_3 \omega_1^{-1} = \alpha \Theta_2 \omega_1^{-1} + \beta E$ for some functions $\alpha(t), \beta(t)$ and the motion is a D_2 motion.

If $F_2(X) = 0$ is a twice counted straight line, then this line passes through the origin and so $\theta_2 = 0$. From (1) we get $\theta_2 = \omega_1 \psi_0$ for

$$\psi = \begin{pmatrix} 0, & 0 \\ \psi_0, & \psi_1 \end{pmatrix}$$

and so $\psi_0=0$. $\varphi-\psi=\omega$ gives $\varphi_0=0$ and the motion is a centroaffine motion. If $F_2(X)=0$ is only a straight line (quadratic terms vanish), we have $\Theta_2\omega_1^{-1}=\mu E$ and so $\Theta_2=\mu\omega_1$. Then $\Theta_3=(\mu^2+\mu')\,\omega_1$ and so $F_3(X)=0$ is also only a straight line (quadratic terms vanish as well). Then we get $\vartheta_3=\alpha\vartheta_2$, as $\vartheta_2\neq0$ and they must be linearly dependent. So we may write $\Omega_3=\alpha\Omega_2+(\mu^2+\mu'-\alpha\mu)\,\Omega_1$ and the motion is a D_2 motion, as F_2 is nontrivial (Ω_2 and Ω_1 are linearly independent, as $\vartheta_2\neq0$ and $\omega_0=0$).

Case II). ω_1 is singular. Here we have two different possibilities for the Jordan normal form of ω_1 :

$$\mathbf{a}) \quad \omega_1 = \begin{pmatrix} 1, \ 0 \\ 0, \ 0 \end{pmatrix}, \qquad \mathbf{b}) \quad \omega_1 = \begin{pmatrix} 0, \ \lambda \\ 0, \ 0 \end{pmatrix}, \quad \lambda \, \neq \, 0 \, .$$

In these two cases we have to carry out all necessary computations. The details are left out as uninteresting. As the result we get that if $F_2(X) = 0$ is not empty, the motion has the D_2 property. So we have

Theorem 8. Let g(t) be an affine plane motion which is not centroaffine and

such that $F_2(X)$ is not trivial and $F_2(X) = 0$ is not empty. Then if each point of $F_2(X)$ has a straight trajectory, g(t) has the D_2 property. (If ω_1 is regular, then $F_2(X) = 0$ is nonempty.)

Remark. If the assumptions of Theorem 8 are satisfied, then each point of $F_2(X)$ has a straight trajectory iff $F_2(X) = 0$ implies $F_3(X) = 0$. We may also say that if an affine but not centroaffine motion has infinitely many inflexion points of order two at each instant, it has infinitely many straight trajectories.

Example 2. We shall describe all affine motions in A_n which have only straight trajectories $(F_1 \text{ motions})$.

Let g(t) be a motion in A_n . Let us denote

$$\omega = \begin{pmatrix} 0, & 0 \\ \omega_0, & \omega_1 \end{pmatrix}, \quad \Omega_2 = \begin{pmatrix} 0, & 0 \\ \vartheta, & \Omega \end{pmatrix}.$$

Then g(t) has only straight trajectories if the equation $|\omega X, \Omega_2 X| = 0$ is satisfied for all $X \in \overline{A}_n$. If we write $X = (1, x)^T$, we get $|\omega_0 + \omega_1 x, \vartheta + \Theta x| = 0$ and therefore $|\omega_1 x, \Theta x| = 0$ must be satisfied for all x.

a) Classification of vector parts

We shall find ω_1 , Θ for all F_1 motions with $\omega_1 \neq 0$. Let us write

$$\omega_1 = \begin{pmatrix} \omega_2, \ 0 \\ 0, \ J \end{pmatrix},$$

where ω_1 is in the normal (real) Jordan form, ω_2 is regular and J corresponds to the eigenvalue 0. (ω_1 can be given the normal Jordan form in a suitable moving frame.)

Let us denote

$$x = \begin{pmatrix} \omega_2^{-1}, & 0 \\ 0, & E \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix}, \quad \Theta \begin{pmatrix} \omega_2^{-1}, & 0 \\ 0, & E \end{pmatrix} = \begin{pmatrix} A, & B \\ C, & D \end{pmatrix}.$$

We have to solve the equations

$$\begin{vmatrix} y, Ay + Bz \\ Jz, Cy + Dz \end{vmatrix} = 0 \text{ for all } y, z.$$

Let us use the indices i, j for y and α, β for z.

First, let rank $r(\omega_1) > 1$ (this condition implies that if deg $\omega_2 = 0$, then deg J > 2 and if deg $\omega_2 = 1$, deg J > 1). The case $r(\omega_1) = 1$ will be discussed separately.

i) Deg $\omega_2 = 1$. Consider the subdeterminant

$$\begin{vmatrix} y_1, & A_{11}y_1 + B_{1\beta}z_{\beta} \\ \varepsilon_{\alpha}z_{\alpha+1}, & C_{\alpha 1}y_1 + D_{\alpha\beta}z_{\beta} \end{vmatrix} = 0 \quad \text{with} \quad \varepsilon_{\alpha} = 0 \quad \text{or} \quad 1.$$

$$C_{\alpha 1} y_1^2 - \varepsilon_{\alpha} B_{1\beta} z_{\alpha + 1} z_{\beta} + D_{\alpha \beta} y_1 z_{\beta} - A_{11} y_1 \varepsilon_{\alpha + 1} = 0.$$

We may suppose $\varepsilon_1=1$, because $r(J)\geq 1$ and so $C_{\alpha 1}=B_{1\alpha}=0$.

ii) Deg $\omega_2 \ge 2$. From

$$\begin{vmatrix} y_1, & A_{1i}y_i + B_{1\beta}z_{\beta} \\ y_k, & A_{kj}y_j + B_{k\gamma}z_{\gamma} \end{vmatrix} = 0 \quad \text{we get} \quad y_1z_{\gamma}B_{k\gamma} - B_{1\beta}z_{\beta}y_k = 0$$

and so $B_{i\alpha} = 0$.

From

$$\begin{vmatrix} y_1, & A_{1i}y_i \\ \varepsilon_{\alpha}z_{\alpha+1}, & C_{\alpha j}y_j + D_{\alpha\beta}z_{\beta} \end{vmatrix} = 0 \quad \text{we get} \quad C_{\alpha i}y_1y_i = 0 \quad \text{and} \quad C_{\alpha i} = 0.$$

So we always have B = 0, C = 0.

Lemma 7. Let A be regular, |y, Ay| = 0 for all y. Then $A = \lambda E$.

Proof. Consider

$$\begin{vmatrix} y_i, & A_{ik}y_k \\ y_i, & A_{il}y_l \end{vmatrix} = 0$$

for $i \neq i$.

It remains to prove that $D = \lambda J$. We have to consider separate cases similarly as above.

i) deg $\omega_2 = 0$. Then deg J > 2, $r(J) \ge 2$ and hence J has at least two nonzero elements; so, let $J_{12} = 1$ and $J_{\alpha,\alpha+1} = 1$ for some $\alpha > 1$. Then

$$\begin{vmatrix} z_2, & D_{1\beta}z_{\beta} \\ z_{\alpha+1}, & D_{\alpha\gamma}z_{\gamma} \end{vmatrix} = 0,$$

which is $D_{\alpha\gamma}z_2z_{\gamma}-D_{1\beta}z_{\alpha+1}z_{\beta}=0$. Because $z_2z_{\gamma}=z_{\alpha+1}z_{\beta}$ only if $\beta=2$ and $\gamma=\alpha+1$, we get

 $D_{\alpha\gamma}=0$ for $\gamma\neq\alpha+1$, $D_{1\beta}=0$ for $\beta\neq2$ and $D_{\alpha,\alpha+1}=D_{12}$. If J has only zero's in the α -th row, we get

$$\left| \begin{array}{l} z_2, \ D_{12}z_2 \\ 0, \ D_{\alpha\beta}z_\beta \end{array} \right| = D_{\alpha\beta}z_2z_\beta = 0 \quad \text{and} \quad D_{\alpha\beta} = 0 \quad \text{for all β} \; .$$

ii) deg $\omega_2 \ge 1$. Then

$$\begin{vmatrix} y_1, & \lambda y_1 \\ \varepsilon_{\alpha} z_{\alpha+1}, & D_{\alpha \varrho} z_{\varrho} \end{vmatrix} = y_1 (D_{\alpha \beta} z_{\beta} - \lambda \varepsilon_{\alpha} z_{\alpha+1}) = 0$$

and so $D_{\alpha\varrho} = \lambda \varepsilon_{\alpha} \delta^{\beta}_{\alpha+1}$ and $D = \lambda J$.

This shows that the vector part of Ω_2 satisfies the D_1 condition.

b) Solution for the translation part

Let us write $\omega_0 = (a, b)^T$ similarly as in a). We may suppose that a = 0 in a suitable moving frame. So we have to discuss two cases:

- i) $\omega_0 \neq 0$. Then $\vartheta = \mu \omega_0$ for some μ , as $|\omega_0, \vartheta| = 0$.
- 1) deg $\omega_2 \ge 1$. Then

$$\begin{vmatrix} y_1, & \lambda y_1 \\ \varepsilon_{\alpha} z_{\alpha+1} b_{\alpha}, & \varepsilon_{\alpha} \lambda z_{\alpha+1} + \mu b_{\alpha} \end{vmatrix} = b_{\alpha} y_1 (\lambda - \mu) = 0$$

and $b_{\alpha} \neq 0$ for some α .

2) deg $\omega_2 = 0$. Then

$$\begin{vmatrix} z_2 + b_1, & \lambda z_2 + \mu b_1 \\ \varepsilon_{\alpha} z_{\alpha+1} + b_{\alpha}, & \varepsilon_{\alpha} \lambda z_{\alpha+1} + \mu b_{\alpha} \end{vmatrix} = 0, \quad \alpha > 1,$$

gives $b_{\alpha}(\lambda - \mu) = 0$ and $b_{1}\varepsilon_{\alpha}(\lambda - \mu) = 0$

As deg J>2, $r(J)\geq 2$, we have either $b_{\alpha}\neq 0$ for some $\alpha>1$ or $b_1\neq 0$ and $\varepsilon_{\alpha} = 1$ for suitable α . So $\lambda = \mu$.

ii) $\omega_0 = 0$. In a similar way as in i) we get $\theta = 0$.

Theorem 9. Let g(t) be an affine motion with only straight trajectories, such that the rank $r(\omega_1) > 1$. Then it is a D_1 motion.

- c) Cases when g(t) is not a D_1 motion
- i) deg $\omega_2 = 1$. Then

$$\omega = \begin{pmatrix} 0, & 0, & 0 \\ 0, & 1, & 0 \\ \omega_{\alpha}, & 0, & 0 \end{pmatrix}, \quad \Omega_{2} = \begin{pmatrix} 0, & 0, & 0 \\ a, & A, & B_{\alpha} \\ b_{\alpha}, & C_{\alpha}, & D_{\alpha\beta} \end{pmatrix},$$

$$\begin{vmatrix} y, & Ay + B_{\alpha}z_{\alpha} + a \\ \omega_{\alpha}, & C_{\alpha}y + D_{\alpha\varrho}z_{\beta} + b_{\alpha} \end{vmatrix} = C_{\alpha}y^{2} + D_{\alpha\beta}yz_{\beta} + y(b_{\alpha} - A\omega_{\alpha}) - B_{\alpha}\omega_{\alpha}z_{\alpha} - a\omega_{\alpha} = 0$$

and so C=0, D=0. If $\omega_{\alpha} \neq 0$ for some α , we get B=0, a=0, $b=A\omega_{\alpha}$ and the motion has the D_1 property. So $\omega_{\alpha} = 0$ and $b_{\alpha} = 0$.

In a suitable moving frame we have

$$\eta = \begin{pmatrix} 0, & 0, & 0 \\ b_1, & 0, & b_{12} \\ 0, & b_{21}, & 0 \end{pmatrix} \quad \text{and} \quad \Omega_2 = 1/2 \begin{pmatrix} 0, & 0, & 0 \\ -b_1, & 2, & -b_{12} \\ 0, & b_{21}, & 0 \end{pmatrix},$$

and therefore $b_{21} = 0$. The matrix of the motion can be written in the form

(5)
$$g(t) = \begin{pmatrix} 1, & 0, & 0, & 0 \\ f_1, & t, & f_i, & 0 \\ 0, & 0, & E, & 0 \\ 0, & 0, & 0, & E \end{pmatrix}$$
, $i = 2, ..., k$, where f_j , $j = 1, ..., k$ are

arbitrary functions. If $W(1, t, f_i) \neq 0$, g(t) has the property D_{k+1} , where $k \leq n$.

ii) deg $\omega_2 = 0$. Then deg $J \ge 2$. Computations similar as in i) show that the only possibility is

$$\omega = \begin{pmatrix} 0, 0, 0, 0 \\ 0, 0, 1, 0 \\ 0, 0, 0, 0 \\ 0, 0, 0, 0 \end{pmatrix}, \qquad \eta = \begin{pmatrix} 0, 0, 0, 0 \\ 0, 0, 0, 0 \\ b_2, 0, 0, b_{23} \\ 0, 0, 0, 0 \end{pmatrix},$$

where b_{23} is a row of n-2 elements;

(6)
$$g(t) = \begin{pmatrix} 1, & 0, & 0, & 0 \\ f_1, & 1, & t, & f_i \\ 0, & 0, & 1, & 0 \\ 0, & 0, & 0, & E \end{pmatrix}, i = 2, ..., k - 1 \text{ and } f_j, j = 1, ..., k - 1$$

are arbitrary functions. If $W(1, t, f_j) \neq 0$, g(t) has the property D_{k+1} , where $k \leq n-1$.

Theorem 10. Let g(t) be an affine motion with only straight trajectories and rank $r(\omega_1) = 1$. Then g(t) is a D_k motion with $k \le n + 1$. All such motions for k > 1 are given by (5) and (6).

d) Classification of D_1 motions

Now we shall describe all affine D_1 motions. They are motions for which $\Omega_2 = \alpha \Omega_1$ for some function $\alpha(t)$. This means that for each trajectory we have $X'' = \alpha(t) X'$. If we change the parameter t, t = t(s), we get

$$\frac{\mathrm{d}X}{\mathrm{d}s} = X' \frac{\mathrm{d}t}{\mathrm{d}s}, \quad \frac{\mathrm{d}^2X}{\mathrm{d}s^2} = X'' \left(\frac{\mathrm{d}t}{\mathrm{d}s}\right)^2 + X' \frac{\mathrm{d}^2t}{\mathrm{d}s^2} = \left(\alpha \left(\frac{\mathrm{d}t}{\mathrm{d}s}\right)^2 + \frac{\mathrm{d}^2t}{\mathrm{d}s^2}\right) X'.$$

So we may always choose the parameter in such a way that $\Omega_2 = 0$. Such a parameter is determined up to a linear transformation, t = as + b.

Further, let g(t) be a D_1 affine motion, $g(t)(\overline{R}_0) = R_0 g(t) = R(t)$. If we take a special moving frame $(\overline{R}_0, R(t))$ of g(t), we get $\Omega_1 = g^{-1}g'$, $\Omega_2 = g^{-1}g''$ and the equation $\Omega_2 = 0$ means that the D_1 motions satisfy the equation g'' = 0. So each D_1 affine motion g(t) can be expressed as follows:

$$g(t) = \begin{pmatrix} 1, & 0 \\ A_0 t + B_0, & At + B \end{pmatrix}$$

where A, B are constant $n \times n$ matrices, A_0 , B_0 are constant columns. We may further suppose that g(0) = e and so $B_0 = 0$ and B = E. Motions equivalent to g(t) are now $g(t) = \gamma^{-1} g(t) \gamma$, $\gamma \in GA_n$. Let

$$g(t) = \begin{pmatrix} 1, & 0 \\ \widetilde{A}_0 t, & \widetilde{A}t + E \end{pmatrix}, \qquad \gamma = \begin{pmatrix} 1, & 0 \\ \gamma_1, & \gamma_2 \end{pmatrix}.$$

Then

(7)
$$\tilde{A}_0 = \gamma_2^{-1} (A_0 + A \gamma_1), \quad \tilde{A} = \gamma_2^{-1} A \gamma_2.$$

This shows that we can take A in the real Jordan form and $A_0 = 0$ for A regular. This proves the following theorem:

Theorem 11. Each affine D_1 motion can be written as a product g(t) =

= $g_1(a_1t + b_1) \dots g_s(a_st + b_s)$, where $a_i \neq 0$ and $g_i(\tau)$ is one of the following:

a)
$$g_i(\tau) = \begin{pmatrix} 1, & 0 \\ 0, & (\tau + 1)E + \tau J \end{pmatrix}$$
,
b) $g_i(\tau) = \begin{pmatrix} 1, & 0 \\ 0, & (\alpha \tau + 1)E + \tau F + \tau G \end{pmatrix}$,
c) $g_i(\tau) = \begin{pmatrix} 1, & 0 \\ \alpha \tau T, & E + \tau J \end{pmatrix}$,

where F and G are of even degree, $\alpha \in R$ and $J = (\delta_{\alpha+1,\beta})$,

$$F = \operatorname{Diag}\begin{pmatrix} 0, & -1 \\ 1, & 0 \end{pmatrix}, \quad G = \left(\delta_{\alpha+2,\beta}\right), \quad T = \left(\delta_{i}, 1\right)$$

and we have to use a suitable embedding of GA_m into GA_n :

$$\begin{pmatrix} 1, & 0 \\ t, & g \end{pmatrix} \rightarrow \begin{pmatrix} 1, & 0, & 0, & 0 \\ 0, & E, & 0, & 0 \\ t, & 0, & g, & 0 \\ 0, & 0, & 0, & E \end{pmatrix}.$$

Proof. Theorem 11 follows from (7) and the real Jordan forms of $n \times n$ matrices.

Example 3. In this example we would like to show how the first part of the paper may be used in a more specific situation. We shall discuss the problem of straight trajectories in similarity plane kinematics in the light of theorems of Section 1.

Let us use the complex coordinate z = x + iy in E_2 . The similarity group G is then given by matrices

$$g = \begin{pmatrix} 1, & 0 \\ z_1, & z_2 \end{pmatrix},$$

where $z_1, z_2 \in C$, $z_2 \neq 0$.

The matrix ω can be given the form

$$\omega = \begin{pmatrix} 0, 0 \\ 0, \alpha \end{pmatrix},$$

where we suppose $\alpha \neq 0$. Then α represents a regular matrix and from Example 2 we know that there is only one F_1 motion (which is D_1 at the same time). It preserves a point and may be expressed by the matrix

$$g(t) = \begin{pmatrix} 1, & 0 \\ 0, & 1 + \lambda t \end{pmatrix}$$

with $\lambda \in C$, $\lambda \neq 0$.

All the other motions with a fixed point are D_2 motions (they depend on two functions only) and they have no straight trajectory. So we may further suppose, that the motion has no fixed point. Let us call such motion simply a proper similarity motion. Then we have the following situation:

- a) There are not proper F_1 or D_1 similarity motions.
- b) A proper similarity motion is a D_2 motion iff it has infinitely many straight trajectories. (It is known that if a similarity motion has two straight trajectories, it has infinitely many.) So if a similarity motion has two straight trajectories, then all trajectories are affinely equivalent.
 - c) A proper similarity motion is a D_3 motion iff it has one straight trajectory.

To prove this statements, we have to introduce some more facts from plane similarity kinematics.

We may choose the parameter t and the moving frame in such a way that

$$\omega = \begin{pmatrix} 1, \ 0 \\ 0, \ \mathrm{e}^{\mathrm{i}\beta} \end{pmatrix}, \quad \varphi = \begin{pmatrix} 0, \ 0 \\ 1, \ \varkappa \end{pmatrix}, \quad \psi = \begin{pmatrix} 0, \ 0 \\ 1, \ \tilde{\varkappa} \end{pmatrix},$$

where $\varkappa - \tilde{\varkappa} = e^{i\beta}$, and $\beta, \varkappa = \varkappa_1 + i\varkappa_2$ are invariants of the motion. Using (1) we compute

$$\begin{split} &\Omega_1 = \omega \,, \quad \Omega_2 = \begin{pmatrix} 0, & 0 \\ -\mathrm{e}^{\mathrm{i}\beta}, & \mathrm{e}^{2\mathrm{i}\beta} + \mathrm{i}\beta'\mathrm{e}^{\mathrm{i}\beta} \end{pmatrix}, \\ &\Omega_3 = \begin{pmatrix} 0, & 0 \\ -(\varkappa + 2\mathrm{i}\beta')\,\mathrm{e}^{\mathrm{i}\beta} - \mathrm{e}^{2\mathrm{i}\beta}, & \mathrm{e}^{3\mathrm{i}} + 3\mathrm{i}\beta'\mathrm{e}^{2\mathrm{i}\beta} + \mathrm{i}\beta'' - (\beta')^2\,\mathrm{e}^{\mathrm{i}\beta} \end{pmatrix}. \end{split}$$

From the formula $F_2 = |X', X''| = \operatorname{Im}(\overline{X}' \cdot X'')$ and similarly for F_3 we get

$$F_2 = (\beta' + \sin \beta)(x^2 + y^2) + y$$
,

$$F_3 = (\sin 2\beta + 3\beta' \cos \beta + \beta'')(x^2 + y^2) - x(\varkappa_2 + \sin \beta + 2\beta') + y(\cos \beta + \varkappa_1).$$

Using now the results from Example 1, we see that if $F_2 = 0$ implies $F_3 = 0$, then the motion is a D_2 motion, as F_2 is always nontrivial. As the instantaneous pole cannot have straight trajectory, the existence of two points with straight trajectories implies that $F_2 = 0$ and $F_3 = 0$ coincide.

Let now $F_2 = 0$ and $F_3 = 0$ be different. Then they have two common points. (We may suppose that $\varkappa_2 + \sin \beta + 2\beta' \neq 0$, because $\varkappa_2 + \sin \beta + 2\beta' = 0$ for D_3 motions leads to a D_2 motion.) The common point different from the origin can have a straight trajectory only if $F_2(X) = 0$ and $F_3(X) = 0$ implies $F_4(X) = |X', X^{(4)}| = 0$. As all the three of them pass through the origin, we get $F_4 = \alpha_3 F_3 + \alpha_2 F_2$ for some functions $\alpha_2(t)$ and $\alpha_3(t)$. We shall show that this implies $O_1 = \sum_{i=1}^{3} \alpha_i O_i$. To show it we shall use real coordinates κ_1 and κ_2 in the plane and write

 $\Omega_4 = \sum_{i=1}^n \alpha_i \Omega_i$. To show it, we shall use real coordinates x and y in the plane and write

$$X' = \begin{pmatrix} 0, \ 0 \\ 0, \ \omega_1 \end{pmatrix} \begin{pmatrix} 1 \\ X \end{pmatrix}, \quad \Omega_i = \begin{pmatrix} 0, \ 0 \\ \vartheta_i, \ \Theta_i \end{pmatrix}, \quad i = 2, 3, 4.$$

If $Y = \omega_1 X$, $Y = (x, y)^T$, we get

$$F_i = |Y, \vartheta_i + \Theta_i \omega_1^{-1}| Y = (x^2 + y^2) d_i + x b_i - a y_i$$

with

$$\Theta_i \omega_1^{-1} = \begin{pmatrix} c_i, & -d_i \\ d_i, & c_i \end{pmatrix}, \quad \vartheta_i = \begin{pmatrix} a_i \\ b_i \end{pmatrix} \text{ for } i = 2, 3, 4.$$

So $F_4=\alpha_3F_3+\alpha_2F_2$ implies $\Theta_4\omega_1^{-1}\approx\alpha_3\Theta_3\omega_1^{-1}+\alpha_2\Theta_2\omega_1^{-1}+\alpha_1E$ for some function $\alpha_1(t)$ and $\vartheta_4=\alpha_3\vartheta_3+\alpha_2\vartheta_2$. This gives $\Theta_4=\sum\limits_{i=1}^3\alpha_i\Theta_i$ and therefore $\Omega_4=\sum\limits_{i=1}^3\alpha_i\Omega_i$. We complete the proof by applying Theorem 7.

References

- [1] Blaschke W.: Zur Kinematik. Abh. math. Sem. Univ. Hamburg, 22 (1958), 171-175.
- [2] Tölke J.: Eine Bemerkung zu den Projektivbewegungen mit nur ebenen Bahnkurven. Arch. der Math., 33 (1979), 279—282.
- [3] Karger A.: Darboux motions in E_n . Czech. Math. Journ., 29 (104) (1979), 303–317.
- [4] Karger A.: Similarity motions in E_3 with plane trajectories. Apl. mat., 26 (1981), 194–201.
- [5] Karger A.: Equiaffine Darboux motions with double roots. Czech. Math. Journ, 31 (106) (1981), 103—113.
- [6] Karger A.: Euclidean space motions with affinely equivalent trajectories. Apl. mat., 28 (1983), 32-43.

Author's address: 186 00 Praha 8, Sokolovská 83, Czechoslovakia (Matematicko-fyzikální fakulta UK).