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1. INTRODUCTION

We consider linear differential systems of the second order
(L.1) (F(x) Y'Y + G(x) Y=0,

where F\x), G(x) are continuous n x n matrices and F(x) is nonsingular. In [3] the
transformation of (1.1) was investigated under the condition that F(x), G(x) are
symmetric, i.e. that (1.1) is self-adjoint. It was shown that the investigated transfor-
mation defines a certain equivalence on the class of all self-adjoint linear differential
systems of the second order and certain special forms of (1.1) were suggested as the
canonical representations of the classes of decomposition defined by this equivalence.
The aim of the present paper is to extend these results to nonself-adjoint systems.

The matrix notation is used. E and O denote the identity matrix and the zero
matrix of any dimension, AT and A* denote the transpose and the conjugate transpose
of the matrix A4, respectively. An n x n matrix A4 is said to be symmetric if AT = 4,
antisymmetric if A" = — A and orthonormal if AT = A~'. C"(I) denotes the class
of m-times differentiable real functions on an interval I, C°(I) means continuity. If
A(x) is an arbitrary matrix of functions, we write A(x)e C™(I) if each entry of A(x)
belongs to C™I).

Throughout the paper the system (1.1) is investigated on an interval I of an arbitrary
kind. An n x n matrix Y(x) is a solution of (1.1) if Y(x)e C'(I), F(x) Y'(x) e C'(I)
and (1.1) is identically satisfied on 1.

2. EQUIVALENT DIFFERENTIAL SYSTEMS

We shall investigate the following transformation of systems (1.1).
Theorem 1. Let H,(x), H,(x) e C'(I) be nonsingular n x n matrices for which

(2.1) H3'(x) F(x) H,(x) — H3(x) F(x) H{(x) = 0.
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Then the transformation Y(x) = H,(x) U(x) gives

(22 H3(x) [(F(x) Y') + G(x) Y] = (Fy(x) U') + Gy(x) U,
where
(2.3) Fi(x) = H1(x) Fix) Hy(x)

G,(x) = Hi(x) [(F(x) Hy(x)) + G(x) H,(x)] .

Proof. H)(FY'Y + H3GY = H)(FH\U + FH,U')Y + H}GH,U =
= (H}FH,U + H}FH,U') — H}(FH\U + FH,U') + H3GH,U =
= HYFH\U + H3(FH,)U + H}FH\U' + (H}FH,U') — HYFH,U —
— HYFH\U' + H3GH,U = (H3FH,U'Y + H3[(FH}) + GH,] U = (F,U’) + G,U.

Remark 1. From Theorem 1 we see that a matrix Y(x) is a solution of (1.1) if and
only if the matrix U(x) = Hy '(x) Y(x) is a solution of (F,(x) U'Y + G(x) U = 0.
It is also seen that if Z(x) = H,(x) V(x) then

Hi(x) [(FT(x) Z') + G'(x) Z] = (Fi(x) V') + Gi(x) V.

Indeed, H'F'H, — H{F'Hy = 0, F{ = H{F'H, and G| = (H]'F') H, +
+ H|G'H, = (H{'F'H,) — H]'F'TH, + H|G'H, = (H|F'H,) — H{'F'H}, +
+ H\GH, = H{(F'H,) + H'F'H, — H{'F'H}, + H|G'H, =
= H{[(FTH,) + G"H,].

Now, let us suppose, for a moment, the system (1.1) to be self-adjoint and let the
transformation described in Theorem 1 transform this system into the system

(Fi(x)U) + G{(x)U =0

which is also self-adjoint. From (2.1) and (2.3) it follows that F| = HYFH, +
+ H,F'H, + H,FH, = 2H}'FH, + HYF'H, = 2HYHY 'HYFH, + HIF'H,,
hence HY = {'F\F;'H} — H}F'F~') and thus
(2.4), H, = } H,F{'F; — F"'F'H,),
where the fact that F(x) and F,(x) are symmetric has been used. Similarly

(2.4), H|, = ¥H,F{'F, — F"'F'H,).

Therefore H,(x) and H,(x) satisfy the same differential system. Let M(x), N(x) be
matrix solutions of the differential systems

M' = —3F7'(x) Fi(x)M , |
N' = —}F '(x) F(x)N .

Then H,(x) = N(x) C;M~'(x), Hy(x) = N(x) C;M~(x), where C,, C, are constant
nonsingular n x n matrices. As the matrices F(x) and F,(x) are symmetric, the first
relation of (2.3) implies that the matrices CIN'(x) F(x) N(x) C,; and
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C37 ' MT(x) F\(x) M{(x) C;' are also symmetric. Thus, if we denote F,(x) =
= N"(x) F(x) N(x) and F5(x) = M"(x) F,(x) M(x), we have

Cl7'CT Fy(x) — Fy(x) C,C7' =0
CICy ™" Fy(x) — F5(x) C3'C; =0

for x € I. From the second relation of (2.3) we obtain conditions of the similar kind
involving matrices G{x) and G(x). Note that only in a very special cases these con-
ditions are fulfilled by a pair of nonsingular matrices C,, C, for which C,C;" + KkE,
i.e. C, = kC,, where k is a real constant. Thus we see that if we consider only
self-adjoint systems (1.1), then the transformation from Theorem 1 is essentially the
same as the transformation investigated in [3].

Definition. Two differential systems
(23, (F) VY + G(x) Y=0, i=12

are said to be equivalent if there exist nonsingular matrices H,(x), H,(x) e C'(I)
satisfying

(2.6) HY'(x) Fy(x) Hy(x) — H3(x) Fy(x) Hy(x) = 0
and
(2.7) Fy(x) = H3(x) Fy(x) Hy(x)

Go(x) = Hi(x) [(Fi(x) Hi(x)) + Gu(x) Hy(x)] .

If H,(x), Hy(x) satisfy (2.6) and (2.7), we shall say that the transformation
{H,(x), Hy(x)} transforms (2.5); into (2.5),.

It is to prove that the relation ““(Fy(x) Y')' 4+ G,(x) Y = 0 can be transformed into
(F2(x) Y') + G,(x) Y = 0” is really an equivalence. It is obvious that the transfor-
mation {E, E} transforms every system into itself. Let {H,(x), H,(x)} transform
(2.5), into (2.5),, then {H;'(x), Hy '(x)} transforms (2.5), into (2.5);. In fact,
F, = Hy 'F,H{', (Hy ') F,H{' — Hy 'F)(H{'Y = —H; 'HyH, 'F,H;' +
+ HY 'F,H{'H\H{' = HY 'H}F, — F{H\H;' = H} '(HYFH, —

— HyF\H,)H;' =0and G, = Hy 'G,H[' — (F,H}) H{' = H} 'G,H{"' —
— (HY'F,H7'H,Y Hy ' = HY"'G,H ' — (HY™'F,H; '"H{H[") +

+ Hy 'F,H{'H\(H{')Y = Hy 'G,H{"' + (Hy 'F,(H{ ")) —

— HY 'F,H'H\H{'H\H{ ' = H} 'G,H{" + Hy '(F(H{')) +

+ HY 'HYH!'F,H;'H\H;' — HY 'F,H;'H\H; '"H\H]' =

= H) '[(Fo(H{')Y + G,H{'] + Hy '(HYF,H, — HYF H\)H; 'H{H{"' =
= H; '[(Fo(HT')) + G,HT'].

Now, let {H,(x), Hy(x)} transform (2.5), into (2.5), and let {H,(x), H3(x)} trans-
form (2.5), into

(2.5), (Fy(x) Y) + Gy(x) Y=0.
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Then Fy = HyF,Hy =(H,H,)"F H,H,, (H,H,)"” F\H H; — (H,H,)" F\(H,H;) =
= HyH3F,H H, + H;H]'F H Hy — HIHIF,H\H; — HIHYF H,H, =

= H}'F,H, + H}(H}F H, — HYF \H\)H; — HiF3Hy = 0 and G, =

= H(F,H}) + HiG,Hy = Hy(H}F H H,) + H;H}(FH\) H; +

+ H}H}G,HH; = H{H}(F,\H,H},Y + HIHYF H,H}y + HiHY(F,H,) H; +

+ (H,H,)" G H Hy = (HH,)" (F\(H,H,)) — H;H;(F H{H;) +

+ HiH}'F H,Hj + H;H}(F,\H}) Hy + (H,H,)" G,HH; =

= (H,H,)" (F\(H,H,)) — HyH(F,H) Hy — HyH}F H\H’, + HIHYF H H}, +
+ H{H3(F,H) Hs + (HH,)" G,H H; = (H,H,)" [(F\(H H5)') + GH Hs].
Thus {H,(x) Ha(x), Hy(x) H(x)} transforms (2.5), into (2.5)s.

Theorem 2. System (1.1) can always be transformed into the system
(2.8) Y +Px)Y=0,

i.e. there exist nonsingular n x n matrices Hy(x), Hy(x) e C(I) satisfying (2.1)
for which Hj(x) F(x) Hy(x) = E. The matrix P(x) is determined by the relation

(2.9) P(x) = H3(x) [(F(x) Hi(x))" + G(x) Hy(x)] .
Proof. Let H(x) and H,(x) be solutions of differential systems

—1F7Y(x)F'(x)H,,

—1F""Y(x) F"(x) H,

such that for some real a, H}(a) F(a) Hy(a) = E. Then (H3FH,) = H} FH, +
+ HYF'H, + H}FH; = —1HIF'F"'FH, + H3F'H, — JHYFF 'F'H, = 0 and
from the initial condition at x = a we have Hj(x) F(x) Hy(x) = E. Further,
HYFH, — HYFH|, = —1HIF'F~'FH, + 1HIFF'F'H, = 0. This completes the
proof since (2.9) follows from (2.3).

Remark 2. If {H,(x), H,(x)} transforms (1.1) into (2.8) then { H,(x) C, Hy(x) C,},
where C;, C, are constant n x n matrices for which C}C; = E, transforms (1.1)
into Y 4+ C} P(x) C;Y = 0. Conversely, if {H,(x), H,(x)} and {H,(x), Hy(x)}
transform (1.1) into Y” + P(x) Y = O and Y” + Py(x) Y = 0, respectively, then there
exists a constant n x n matrix C, such that Hy(x) = H,(x) C] ™', H3(x) = Hy(x) C;
and P,(x) = C{' P(x) Cy. Therefore, we see that the transformation of (1.1) into
(2.8) is unique up to a right and a left multiple of P(x) by a constant nonsingular
matrix. For this reason we suggest system ( 2.8) to be the canonical representation of
the class of all equivalent differential systems of the second order.

A natural question which arises when investigating transformations of nonself-
adjoint systems is whether or not a nonself-adjoint system can be transformed into
a self-adjoint one. According to Theorem 2 we can suppose that the nonself-adjoint
system is in the form (2.8). Let the transformation {H,(x), Hy(x)} transform this
system into system (1.1), where F(x) and G(x) are symmetric. Without loss of general-
ity we can suppose, in addition, that in (1.1) F(x) = F, where F is a constant matrix,

Il

H;

H,
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see [3, Theorem 2]. Then (2.4) implies H)(x) = 0, Hj(x) = 0, hence H(x) = H,,
i = 1,2,are constant matrices. From (2.3) we have HJH, = F and G(x) = HJH| +
+ Hj P(x) H; = H] P(x) H,. Since the matrix G(x) is symmetric, we proved the
following statement.

Theorem 3. The nonself-adjoint system (2.8) can be transformed into a self-
adjoint system if and only if P(x) = Hj Po(x) Hy, where Py(x) is a symmetric
matrix and H,, H, are constant n x n matrices such that the matrix H H} is
symmetric.

3. MAIN THEOREM

Let us suppose that the system
(3.1) Y + P(x) Y=0
is self-adjoint (i.e. P*(x) = P(x)). In [2] it was shown that there exists a nonsingular
n x n matrix R(x) e C'(I) satisfying
R™(x) R(x) — R"(x) R'(x) = 0
which transforms system (3.1) into the system
(32) (@ (9 Y + 0(x)s =0,
where Q(x) = (R"(x) R(x))™', i.e. if Y(x) = R(x) S(x) then
RY(x)[Y" + P(x) Y] =(Q ' (x)S") + Q(x) S.

This transformation enables us to investigate systems (3.1) through systems (3.2)
since the solutions of (3.2) have many nice properties, see [4] and [5].

In this section we shall show that a similar transformation is possible also in the
case when (3.1) is nonself-adjoint. First we recall several results concerning self-
adjoint systems which we shall use in the sequel.

Let Y,(x), Y5(x) be solutions of the self-adjoint system (1.1). Then
Y{(x) F(x) Ya(x) — Y{(x) F(x) Y5 (x) = K,

where K is a constant n x n matrix. If ¥;(x) = Y,(x) and K = 0 then this solution
is said to be isotropic. Y;(x), Y,(x) are said to be independent if every solution Z(x)
of (1.1) can be expressed in the form Z(x) = Y;(x) C; + Y,(x) C,, where C, C, are
constant n x n matrices.

Theorem 4. Let P(x) e C°(I) be an arbitrary matrix. There exists a transforma-
tion {R,(x), Ry(x)} which transforms the system

(3.3) Y + P(x)Y=0
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into the system

(3.4) (Q7'(x)S) + Q"(x)S =0,

where Q(x) = (R3(x) Ry(x)) ™", i.e. there exist nonsingular n x n matrices R(x)eC'(I),

i = 1,2, for which

(3.5)

such that the transformation Y(x) = Ry(x) S(x) gives

Ryx)[Y" + P(x) Y] =(Q 7 '(x)S") + Q"(x) S.

RY(x) Ry(x) — RY(x) Ri(x) = 0.

Proof. Let U (x), ¥;(x) be solutions of (3.3), let U,(x), V5(x) be solutions of its

adjoint

(3.6)

Y + PT(x) Y=0

for which Ufa) =0, Uj(a) = E, V{{a) = E, V{(a) =0, i =1,2, ael. Let us set

() w=[o U] =Tree ]
o] S PR

Then U(x), V(x) are isotropic solutions of the 2n-dimensional elf-adjoint system
(3.8) (€YY + 2(x) Y =0

for which U(a) = 0, § U'(a) = E, V(a) = E, & V'(a) = 0. Thus we have

(3.9) U™(x) & V(x) — UT(x) & V/(x) = E.

This, together with the fact that U(x), V(x) are isotropic, implies

PR ] Rt b

hence
I | T )
e oo

0
uvr —vuT =0 yvuv —uvt = ¢

which by virtue of (3.7) yields

ut'v, - UV, =E
Ul'u, —UU, =0
ViV, —Vivy =0
uyv, — UM, =E

LUl — U,V = E
v, Ut —U,Vf =0
v, UT — ULV =0

vt —u vy =E.
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Let H(x) = U(x) UT(x) + V(x) V(x). The matrix H(x) is nonsingular on I. In fact, -
H(x) = (U(x) + iV(x) (UT(x) — iV(x)) = (U(x) + iV(x)) (U(x) + i¥(x))*. There-
fore H(x) is nonsingular if and only if the complex matrix U(x) + i¥(x) is nonsingu-
lar. Let ¢ = ¢; + ic, be a constant complex 2n-dimensional vector for which
(U + iV) (¢, + ic;) = 0. Then Ue, — Ve, = 0 and Uc, + Vey = 0. As U(x), V(x)
are independent solutions of (3.8), the last equality yields ¢; = 0 = c,, hence
U(x) + iV(x) is nonsingular. Since the matrix H(x) is of the form

H(x) = [Ul(x) UT(x) + Vi(x) V(x) 0 ]
0 Us(x) Us(x) + Va(x) V5(x)

the matrices H(x) = U(x) U{(x) + Vi(x) V(x), i = 1, 2, are also nonsingular. Let
us denote X = U U + V|V, Y=UUT + V,VE, W=U,U} + WWV), Z =
= U,U]" + V,V{". Then H,X — WH, = (U,U} + V,V3)(UUT + V| V) —
— (U,UY + v,V ) (U UT + ViV = U,UTULUT + U,ULV VT + VUL UT +
+ LVIVIVT — U,Uy U UT — UUYV,VE — VU U T — Vv =
= U,(UTV] = UYW) VI + V,(VU, = VI'U) UT = —U, VT + V,UT = 0. Similarly
H,Y — ZH, = 0. Therefore {X, Y, W, Z} is a solution of the matrix system
H,X — WH, =0, X+Z=H,
H,Y —ZH, =0, Y+ W=H,.
The elimination of Y and Z gives
(3.11) H,H,X — XH,H, = H,H,H, — H,H,H, ,
H,H,Y — YH,H, = H,H,H, — HyH,H, .

By multiplying the second equation of (3.11) from the left by H, and from the right
by H; !, we obtain
(3.12) H,H,(H,YH;"') — (H,YH;')H,H, = H H,H, — H H,H, .
By subtracting this equation from the first equation of (3.11) we see that the matrix
G(x) = ¥(X(x) — Hy(x) Y(x) H; '(x)) is the solution of
(3.13) HH,G — GH,H, = HH,H, — }(H{H,H, + H H,H}).
Further, we have G = (X — H,YH; ") = {X — ZH,H; ") = U UT + V{V] —
— U,UY" — V1 V"), hence the matrix G(x) is antisymmetric.

Now, let T(x) be the solution of the matrix differential system

(3.14) T' = }(Di(x) D7 '(x) — DT'(x) Dy(x)) T, T(a) =E,

where D,(x) is the symmetric positive definite matrix for which Di(x) = H,(x).

We set
By(x) = Dy(x) T(x).

450



Since the matrix D{D{' — Dy 'Dj{ is antisymmetric, the matrix T(x) is orthonormal
and by a direct calculation we can verify that

(3.15) By(x) Bi(x) = H,(x),

B,(x) BY'(x) — Bj(x) Bi(x) = 0.
Using (3.15) we can rewrite the right hand side of (3.13) in this way: H,H,H, —
— ¥H{H,H, + H H,H|) = HH,H, — %(BlB;r' + B'IBT) H,H, —
— $HHy(B\B]' + BB]) = HH,H, — B,B'H,H, — H H,B'B}. Thus (3.13) is
of the form

(3.16)  H,H,G — GH,H, = H,H,H, — B,B'H,H, — H,H,B|B" .

Let G, = By 'GB] '. Then G, is obviously antisymmetric (since G is antisymmetric)
and it is the solution of
B'H,B,G, — G,B"H,B, = B'TH,B, — BI'H,B, — B'H,B, .

Further, let B,(x) be an arbitrary matrix for which B,(x) B}(x) = H,(x). We set
G, = (B}B, — BYB,) (BTBl)‘l + BIB Gi(BTB,)‘ . Then G2 + GY =

= (B}B, — BY'B,)(B}B,)" ' + BiB,G,(B}B,)""' + (B{B,) ' (B'B, — BIB)) —

— (BIB,) * G,BiB, = (B{B,)! [BT AB3B, — BYB 1) + BIB BZBIG1 +

+ (BY'B, — B{B})(B}B,) — G BTBZBTBI] (B3By)"' = (BB,) ! [BIH,B| —

— BI(B,B} + B3B}) B, + BI'H,B, + BIH,B,G, — G BTHZ J(B3B) '=0

since the term in the square brackets is (3.16).

Now, let T(x), T,(x) be the solutions of

T{ = Gx)T,, Tya)=E,
—Gy(x)T,, Ty(a)=E.

It

T;

As the matrices G,(x), G,(x) are antisymmetric, the matrices Tj(x), Ty(x) are ortho-
normal and the matrices

Ry(x) = By(x) Tl(x)

Ry(x) = By(x) Ty(x)

fulfil RY'R, — R3R; = (T)'B} + TyBY) B, T, — TyBYB\T, + B,T)) =
= T,'B}B,T, + T;BYB,T, — T;BIB|T, — TyBiB,T| = T;(G,B}B, +
+ BYB, — B}B; — B}B,G,) T, = TT[(BTB' BY'B,)(B}B,) ' BIB; +

+ B}B,G,(B}B,)"' BIB, + B}'B, — B}B; — B}B,G,] T1 = T;(B}B; — BY'B, +
+BB Gl+BT'B1 ~ BB, — BIB,G) T, = 0.

Let Q(x) = (R3(x) Ry(x))™*. To complete the proof, according to Theorem 1,
it suffices to verify that R}(x) Rj(x) + R3(x) P(x) Ry(x) = Q'(x). Denote

(3.17) R(x) = [{;M §2<x)]’ 0(x) = [Z " éz(x)].
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According to (3.5) and (3.17), Qu(x) = (R'(x)& R(x))”' and R™(x) & R(x) —
— R"(x) & R'(x) = 0. By multiplying the last equality from the left by R(x) and from
the right by R™(x) we obtain RR™&RRT — RRT6R'RT = 0. Further, using (3.9) and
(3.10), we obtain RRT&(U'UT + V'VT) = (UUT + VIT) (U'UT + V'VT) =

= UUTEU'UT + UUT6V'VT + VWTeU'UT + VVTeV'VT = UUTSUUT +

+ U(—E + UT’é’V) VT 4 V(E + VT'é"U) Ut + mvmewv™ =

= (UU™ + W) &(UUT + VVT) = (UUY + VV") ERRT. Let us denote X, =
= 6R'R", Y, = RRV&, X, = 6(U'UT + V'VT), Y, = (UU™ + V¥™) &. Then

RR™X, — Y,RR" = 0,
X, + Y, =(RRYY, i=12,

hence
(3.18) RR™X; + X,RR" = (RRT)' RRT,

RR"Y, + Y,RRT = RRY(RR"), i=1,2.
Since the matrix RRT is positive definite, it is known that the both matrix equations
(3.18) have unique solutions, hence X, = X,, ¥, = Y,, i.e. RRT = U'UT + V'VT
and RR™ = UU"™ + VV™. Further, using (3.10) we obtain R*(6R') + RT#R =
= R™'(RRTER"RT + RRTZRRT) RT-! = R™'[RRT&(R'RTY — RRTER'R™ +
+ RR™ZRRT] RT"! = R™'[RRT6U'UT + V'VT) — RRTER'R™ +
+ RR™ZRRT| RT"! = R™![RRTEU"UT + V'VT) + (UUT + VW) §(U'UT +
+ V'V™) — RRT6R'R™ + RR™?RRT] R™"! = R™![—RRT662 UUT + VV™) +
+ UUTU'UY + vVTeU'UY 4+ UUTEV' VY + VVTeV'VTY — RRTERRY +
+ RRTZRRT] R""! = R™'[—=RRTZRR" + UU"6UU™ + V(E + VV6U) U™ +
+ U(=E + UY6V) V™ + vVTeVV" — RRV6RRY + RRTZRRT|R™ ! =
= R™[(UU™ + VW) &UU™ + VV") + VU™ — UV™ — RRV6RRV]R™' =
= R"I(RRT'O@RRT’ + & — RRT’rf’RRT) RT™! = (RTm@R)*1 = Q,. Thus RT6R" =
+ RT?R = Q, which in virtue of (3.17) gives

RT O 0 EJ[R{O0 |+[RTO 0 P"][R,0 ]=
0 RY||EO]||[O R} 0 RY||{PO []|O R,

=[0 RIR;1+1T0 RTP'R, 1 =[0 07,
RIR] 0 RIPR, 0 0T o

hence RIR; + RIPR, = QT, which was to prove.

Remark 3. We also proved that the transformation {R,(x), Ry(x)} transforms
(3.6) into the system

(3.19) (Q"Hx) S’y + Q(x)S =0.
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4. APPLICATIONS

In this section we shall study relations between the conjugate points relative to
(3.3) and the conjugate points relative to its adjoint system (3.6). Recall that a point
x, > xy (x; < x;) is called the right (left) conjugate point of x, relative to (3.3)
if there exists a solution Y(x) of (3.3) for which Y(x;) = 0, Y'(x;) = Eand Y(x,) ¢ =
= 0 for some n-dimensional constant vector ¢ % 0. Further, we say that x, is
a conjugate point of multiplicity k, 1 < k < n, if there exist k linearly independent
vectors ¢y, ..., ¢ for which Y(x,) ¢; = 0, i=1,...,k

The following theorem extends the result of Ahmed and Lazer [1].

Theorem 5. Let acl and let a <ry Sry < ...,a<F =ZFHh=..,(a>1 =
2L, 2...,a>1 21, 2...) be the sequences of its right (left) conjugate points
relative to (3.3) and (3.6) respectively, every point repeated the number of times
equal to its multiplicity. Then 7; = r; (I; = ).

Proof. We shall need the following auxiliary statement. Its proof can be found
e.g. in [6].

Lemma 1. Let Sy(x), Cy(x) and S,(x), C,(x) be solutions of (3.4) and (3.19),
respectively, for which Sy(a) =0, 07 '(a) ;(a) E, S,(a) =0, Q" Y(a) Sy(d) =
= E, Cy(a) = ~Ya) Ci(a) = 0, Cy(a) = E, Q7" '(a) Cy(a) = 0. Then the fol-
lowing identities hold

(4.1) SIS, + Clc, =E, S,ST+C,CT=E,
STS, + C3C, = E, S,ST+C,CY =E.

Now, let U (x), V(x) and U,(x), ¥,(x) be solutions of (3.3) and (3.6), respectively,
for which U,(a) = 0, Uj{a) = E, V{a) = E, V{(a) = 0, i = 1, 2. Then by Theorem 4
and Remark 3 there exist nonsingular matrices R,(x), R,(x) such that

(42 S =RI'WUL), O =R V), i=12

are solutions of (3.4) and (3.19) for which Si(a) = 0, Cj(a) = 0, C{(a) = E, i = 1, 2,
and Q7 '(a) Si(a) = E, Q" '(a) Sy(a) = E. Let x, be a k-multiple (left or right)
conjugate point of a relative to (3.3). Then by (4.2) there exist k linearly independent
unit vectors c,, ..., ¢, such that S,(xo)¢; =0, i =1,..., k. According to (4.1),
¢/ C3(xo) Cy(xo) ¢; = 1, and it follows that d]C,(x,) C3(xo)d; = 1 for some in-
dependent unit vectors dy, ..., d,. Hence d}S,(x,) S3(xo)d; =0, and it follows
that S3(xo)d; = 0, i = 1,..., k, and thus S,(x,) e; = 0-for some independent unit
vectors ey, ..., &. Therefore xq is a k-multiple conjugate point of a relative to (3.6).
In the same way we prove the converse, i.e. that every k-multiple conjugate point
of a relative to (3.6) is also a k-multiple conjugate point of a relative to (3.3). The
proof is complete.

Remark 4 Let a<r Sr=...,a<FSFHh <., (a>zhLz..,



a>Il z1,=...,) be the sequences of right (left) conjugate points of a relative to
(1.1) and (F'(x) Y') + G"(x) Y = 0, respectively, every point repeated the number
of times equal to its multiplicity. Then, according to the preceding theorem, Theorem
2 and Remark 1, r; = 7, (I; = I,).
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