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This paper deals with homogeneous Markov chains with finite number of states.
Let P = (p;;) be the matrix of transition probabilities of a Markov chain and let p(0)
denote its probability distribution (row) vector at the initial instant ¢ = 0. Conditions
on the matrix P guaranteeing the existence of a limit (say z) of the sequence {p(#)}:>,,
where p(t) = p(0) P for t = 0, 1, 2, ..., are well known. If P fulfils these conditions
then the probability distribution $(¢) at time ¢ for large ¢ is frequently replaced by the
limit = for the simplicity of calculations. It would be desirable to have an upper
estimate of the differences of $(f) and = common for all ¢ large enough, say ¢ = t,.
Perron’s formula provides only a local result for individual s and the asymptotical
rate of convergence of p(i) to =.

We shall follow the idea used in the theory of non-homogeneous Markov chains.
In that case the central role is played by ergodicity coefficients which have been
studied by many authors. The most famous of them are the Birkhoff’s contraction
coefficient 74(P) — [2], and the ergodicity coefficient 7,(P) = 3 max Y |Pin — Pjn|

i,j m

first introduced by Dobrushin [4] for Markov chains with countable state spaces
and exploited by Hajnal [5] and Sarymsakov [13], cf. Seneta [14] and [15]. The
value of 7,(P) was also evaluated by Paz [11]. Relations between 74(P), 7,(P) and
the eigenvalues of P were investigated by Bauer, Deutsch and Stoer [1].

The ergodicity coefficients express various effects of one-step transition matrices.
We shall deal with the contractive effect of the matrix P on the L;-norm of the dif-
ferences p(t + 1) — p(1), t = 0, 1, 2, ..., i.e. with the relation between the L;-norms
of the vectors p(t + 1) — p(t) = p({) (P — 1) and p(r + 2) — p(t + 1) = p(7).
.(P=1P.

Let k denote the number of rows (and of columns as well) of the matrix P, and
let R* be the set of all row vectors with k components. We put

k
P ={p; peR, p,20,for i=1,...k Y p =1},
i=1

Po=1{p; P2, p(P — 1) + 0},
and

(1) «P) = sup [{J”%E%’%—’—z)’l’l—" ; pe 90} v {0}] .
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In Section 4 we shall present an algorithm for determining the value of «(P), for an
arbitrary stochastic matrix P, based on Theorem 2. The procedure is illustrated by
a numerical example given in Section 5. It is easy to show that
(2) 0oP)=1
and that the relations
[p(t +2) — p(t + 1)| < oP) [p(t + 1) — p(1)|, for 1=0,1,2,...,
Ip(1) = #(O)] =2

hold for every initial distribution vector p(0). Further, in the case of «(P) < 1, the
limit = of the sequence {p(#)};2, does exist for every p(0), and the inequality
2[«P)]"

Ip(1) — =] = 1= u(P)

is true for all natural ¢. Thus, the number

2[(P)]"

1 — oP)
is a common upper estimate of ||p(r) — = for all ¢ = 5, and of p,t) — =, as well.

Finally, in Theorem 3 we shall present a characterization of matrices P such that the

inequality
(3) Ip(i +2) = #(t + D] < [[p(e + 1) = p()]
holds for all probability distribution vectors p(t), t = 0, 1,2, ..., possessing the
property p(7) + p(t + 1). In other words, we shall find a necessary and sufficient
condition for the validity of the relation oc(P) < 1. This result is a generalization of
that given in the paper [10] where only irreducible aperiodic matrices P are consid-

ered. Theorem 4 introduces, moreover, an upper bound, the evaluation of which
is quite simple. The value of this upper bound is less than the unity whenever o«(P) is.

1. NOTATION

We shall consider the following characteristics of a homogeneous Markov chain
(all vectors are supposed to be row vectors):

k — the number of its states;
S = {1;2;...; k} — its state-space;
P = (Pij)i,.jgg — a matrix of its transition probabilities,

k
Zpijz 1;
j=1

r,, ieS — i-th row of the matrix P, r, = (py, ..., p);
n — the number of its recurrent classes;
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N ={1;2;..5n};

C,, a € A — its a-th recurrent class, C, = S;

T — the set of its transient states, T < S;

P(I), t =0,1,2,... — the vector of its probability distribution at time f.

Further, if x = (x;);.s is a vector then we put
CJ(x)={i; ieC, x; >0} for ae A
C,(x)={i; ieC, x; <0} for ae N
TH(x) ={i; ieT, x; > 0};

T (x)=1{i;ieT, x; <0};
fi(x) = Y x foraed;

ieCqt*(x)
fa(x) = Y x;foraen;
ieCq ™ (x)

= (x;)iec, for ae N,

XD = (x) g
k
Y |xi|, i.e. the L;-norm of the vector x;

Ixl =X

[x] =Y |xi| for ae s

ieCq

Ix 0] = .

Finally, we denote by I the unit matrices (without indicating their types) and by
e = (e;);cs the vector such that e; = 1, for each i e S.

x(@

2. SOME REMARKS ON THE IRREDUCIBLE CASE

In this section, we shall assume that P is a matrix of transition probabilities of
a homogeneous irreducible Markov chain. We shall first show that the assumption
of the aperiodicity is not substantial in Theorem presented in the paper [10]. Indeed,
if the chain is periodic (say with a period d = 2) then it is well-known that there is
a re-ordering of the state space producing the block form of the matrix P

(4) 0 P,O ...0
00 P,...0

P=|: i
000 ...P,_,

P,0 0 0

It is easily seen that (4) implies that the product PP’ must contain a zero element.
Further, the vector p(0) € £ such that p,(0) = 1 and p{0) = 0 for each ie S — {1}
possesses the properties

p(0) * p(1),



and
1p(2) = #(1)] = [[p(1) - p(O)] = 2.

Thus, we have just verified

Lemma 1. Let P be an irreducible periodic matrix. Then

(a) the product PP’ contains a zero element;

(b) there exists a vector p(0) € P, such that the strong inequality (3) is not valid
for t = 0.

On the basis of Lemma 1, we obtain the generalization mentioned above of
Theorem from the paper [10].

Theorem 1. Let P be an irreducible matrix. Then the strict inequality (3) holds
for every non-stationary vector p(t) € P, if and only if the product PP’ is a positive
matrix.

3. SEVERAL AUXILIARY ASSERTIONS

Let us consider a general homogeneous Markov chain with the finite state-space S
and with n = 1 recurrent classes of states Cy, ..., C, and with a set T of transient
states. This includes also the irreducible case when n = 1 and T = (. We suppose that
the states are labeled in such a way that the corresponding matrix of transition pro-
babilities P has the block form

(5) PO O ...0 0
' 0 P?» ...0 0
A

0 0 P®™ 0
QW QW .. QM QU+

We shall often need to split vectors from R* into blocs (or, conversely, to define
a vector from R¥ blockwise) corresponding to the division of the state space S.
If x € R* then we write

x = (x®, ., x™, xt+D)

where the vectors x® e R®*"% for ge A& and x"*V ¢ R®4T contain the com-
ponents x; of the vector x such that i € C, and i € T, respectively.

Let us first deal with the case that at least one of the matrices P, a € 4" (say P(«))
is periodic. The matrix P is evidently stochastic and irreducible. As such it may be
regarded as a matrix of transition probabilities of a Markov chain. Lemma 1(b)
implies the existence of a vector # = ('Ii)iec,,,, such thaty; 2 OforieC,, Y n, =1

and i€Cao
(6) [n[P]> — qP“| = 1P — 4] , ‘
(7) 7P £ .
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We put
P =y,
PO =0 for ae[N U{n+1}] - {a,).
It is easily seen that
Ip(P = 1) P = [q[PC]> — ype],
[p(P =Dl = nP —n],

so that by virtue of (6) and (7) we obtain that p € 2, and
[p(P =D P = [p(P - 1)] .
With respect to (2), we have thus proved

Lemma 2. If at least one matrix P, where a e A", in (5) is periodic then o(P) = 1.

Throughout the rest of this section, we shall suppose that all the matrices P,
a e A, in (5) are aperiodic. The following lemma yields a simple upper bound of the
value of ofP).

Lemma 3. The value of o(P) fulfils the inequality

(8) oP) < ymax {[r, — r;||; i,jeS}.
Proof. Let p € Z, and let us put
x=pP—1).
Then
k
Y x;=0
i=1
so that
LK
©) Lxi=Yx =11 %0,
i=1 i=1 2
where
x; = max {x; 0} for ieS,
x; = max {—x; 0} for ieS.
We have

[P = 0P| = | 357~ 3 xr)] =
= G IE Sxtxn- % St s
; Z x; x; . max {|r; — r;|

= [|pP = 1)|| . $ max {||r; — ril; i,jeS}.
This completes the proof.

5 laJES} =
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Let the matrix W = (w;); ;or be defined by

(10) WY [,

where [Q"*" V]" is the v-th power of Q"*" for v natural, and [Q™*"]° = I. The
matrix Q¥ corresponds to state transitions within the set T of transient states.
Thus, according to Theorem 3.2.1 of [7], the matrix W is well-defined and

(11) w—l =] — Q<"+”.

We shall now characterize the set of vectors from R* which can be expressed as
p(P — 1), where p € 2.

Lemma 4. We put

(12a) Z={x; xeR x %0, x =0 for ae ¥}
if T=0, and l
(12b) Z={x; xeR, x+0, x""PW <0,

x e = — x"TDWQ@We®" for ae A7)

provided T &= (. The following assertions are valid:
(a) 1f pe P, then p(P — 1) e Z.
(b) If x € Z then there exist a positive number ¢ and a vector p € P such that
x = cp(P —I).
(c) The equality
(13) a(P)zsup{Hﬂ)i““; xez}
x
is true.
Proof.(a) — Let p e 2, and let x = p(P — I).
By the definitions we have
xeR", x+0.
Further, it is easily seen that
[P —1]e =0 foreach ae
so that if T = 0 then
x@e@’ = p@[p@ _ e® =0 for aed .
Finally, if T + 0 we obtain that
(14) x"TOW = pOr QU _ ITW = —pttD < 0
and
x@e@" = P(u)[P(a) _ ,] e@ 4 P(n+ I)Q(a)e(a)' —

— 1) .
= —x""DWQWe @ for ge N .
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(b) We shall consider the case of T # @ since if T = § then it is necessary only to
omit all the terms containing the (n + 1)-st blocks of vectors. Let x € Z be given,
and let us solve the matrix equation

(15) qP —1)=x.
It is easily seen that (15) is equivalent to the system of matrix equations
(16) qO[P@ — 1] + q"*VQ@ = x for ae L,

q(n+1)[Q(n+l) _ ,] — x(n+ 1) .
The relation (11) implies
(17) q(n+1) — —X("+1)W,
so that (16) may be rewritten as follows:
(18) qOP@ — 1] = x9 + x""VWQ®@ for ae L.

The matrix P corresponds to the recurrent class C,. The well-known fact, quoted
e.g. in [6], that the number 1 is a simple characteristic root of P implies that the
rank of the matrix of the system (18) of linear equations, i.e. of P — [ is equal
to card C, — 1. Further, we have

[P —1]e® =0 for aeL,

and
[x@ + x"+*DYWQ@] e® =0 for aeL,

because of the assumption that x € Z. Thus, we see that the vector e® js orthogonal
to all the rows of the extended matrix of the system (18) which has the form

p@ _ |
(x(a) + x(n+1)wq(,,)> for ae .

So, we find for each a € A that

PO — |

card C, — 1 = (P —I) £ "(xm + xtHHwQW

) ScardC, — 1

(r(.) denotes the rank of a matrix),i.e., Frobenius’ condition is fulfilled. Let us fix
a solution q@ of (18) for each a € A". The vector q = (¢, ..., ", ¢""* 1), where
the first n blocks have been just determined, and the (n + 1)-st block is given by
(17), is a solution to the matrix equation (15), and moreover,

(19) =0

because of the assumption that x € Z.

All the recurrent classes C,, a € A", are assumed to be aperiodic. Thus, there is
a single vector (@ of stationary distribution of probability corresponding to a homo-
geneous Markov chain with the state-space C, and with the matrix of transition
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probabilities P for each a € #". We put ni+1) — 9 The vector

T = (n(”, ey 7!:("’, gt 1))
possesses the properties
n; >0 forall jes — T,

;=0 forall jerT,

k
Z Ty =n.
i=1
By virtue of the inequality (19), there is a positive number F such that
(20) n+F.q>0
and such that there is a recurrent state io € § — T fulfilling
(21) nio + Fqio >0 .
Finally, we put
1
22 = F.q),
(22) P= @ +F.9
where

(23) G = igqu i
The inequalities (20) and (21) imply
n+ FG =iZk:1(7'r,- + Fq;) > 0.
The vector p defined by (22) evidently fulfils
p;=0 foreach ieS,

k
Z]pi = 1 >
and

) —

P—-1)=
P( ) n + FG n+ FG

X,

so that p meets all the requirements of the assertion (b) of this lemma (with ¢ =

= (n + FG)|F).

The assertion (c) is a straightforward consequence of the statements (a) and (b).
The set Z contains infinitely many elements. For this reason, it is impossible to
determine the value of ofP) directly by evaluating |[xP|/|x| for all xe Z. The
following lemmas state, however, that it is sufficient to take into consideration only

vectors belonging to a finite set U n V.

Lemma 5. Let
(24) B = max max {|r; = r;|; i.jeC}

aeN"
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and let i, and i, be two different states belonging to the same recurrent class (say
C,,) which fulfil

(25) ”rix - riz” =p

Then the vector b with components

(26) b, = 1,

(27) biz = -1,

(28) b; =0 foreach ieS — {ij;i,},

is an element of the set Z. Further, if x € Z is such that x"* = 0 (in the case
T = 0 let x be an arbitrary element of Z) then

(29) M < M .
Ixl ] 2
Proof. The fact that the vector b determined above belongs to the set Z is quite
evident. Further, let x € Z and let x®"*1 = 0 T = 0.
We put
No={a; ae N, x¥ % 0}.

According to Lemmas 3 and 4(c) we obtain that
| x(@p( )”

shewal 3 BE el

IxP] _ -

[l Z I 2 X

aeNo aeN g

L rmax{lr -l iy c [x]

=

< = £
> <] :
On the other hand, we have
lep| _ B
= bn iy bi2 ﬁiz ==
6] | i 2

Lemma 6. Let T + 0 and let y € Z be such that y"*V + 0. For each a € A" we put

(30) 2(y) =  ynrIQ®,
(31) fly) = —y"tIWQ@e®’
(32) i(a, y) = min {i; i € C,y [[£uy) ' + 29(y)| =

= “fa()’) r@ + 2(y)| for each jeC,} .
If x € Z is such that x"+1 4 9 pen

(33) ”xP” < su p{”yp_”, YEUU{b}},

x| Iyl
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where

(34) U={y;yeZ y" ¢ g, yiay =/Sd¥)
yi=0 for ieC, — {i(a, y) for each ae A},

and the vector b is determined by (24) throy gy (23)~

Proof. Let xeZ — U be such that xtn+1) £ 0. We shall introduce a vector

x € R* fulfilling
i(n-*-l) — x(n+l)

Xitany =fdX) for a€N,
X;,=0 for ieC, — {,'(a,x)}, aeN .
It is easily seen that x € U and that x"*DQu+1 = x"*DQU* 1 Fyrther, we have

69 [xP] = £ [P & 2] + [x* Qe

Following the arguments used in the proof of Lemma 3, we obtain for each a € A

JECg(x)f ( )

- X (a) " x ;
et <tecaz*tx>f " (x )r +/ecuztx)fa (x) 7 g )>
< £ riie + 2900 + 110 ()] g,
so that according to (29)

(36) - no
[P _ [xPll + B X /e () . {”xP” |bP|

B : = sup JIYP. Uy
I o = o {2y )

[x@P@ 4 z@(x)| =

(1) e 4 29(x)) +

=

Lemma 7. Let T = 0 and let %, ¥" < T be such that % £ 7T
denote the dimension of the vector space of solutions gin+1y _
of homogeneous linear equations

V' + T Let y(, )
= (g Dier to the system

(37) g; =0 for ieu,
(38) [g"* VW], =0 for jer
where

[g("+1)w]j = Z ghwhj for ] N T
heT N
Let us put . )

(39) S (@SR UET S START S g
) = 1)
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and
(40) V={y;yeZ, yutv 40, y" "V is a solution to the system (37)

and (38) generated by a couple (%, V") e ®} .

If x € Z is such that x"+1) & 0 then

(41) |xP| §SUP{ﬂ)i”; er}.
x| ly|
Proof. Let x e Z — y be such that
(42) x££ 0.
Let us put

w(x) ={i;ieT, x; =0},
v(x)={j;jeT, [x""DW], =0} .

It is easy to see that %(x), ¥ (x) = T. Further, we obtain by virtue of {(42) and of
the regularity of the matrix W that %(x) + T and ¥(x) + T. Finally, the vector
x*1 js evidently a solution to the system (37) and (38) generated by the couple of
sets %(x) and ¥7(x). The assumption x ¢ V thus implies that

w(x), 7(x)) > 1,

so that we find every system involving the equations (37) for i € %(x), the equation
(38) for j e ¥(x), and an arbitrary single homogeneous linear equation, possesses
a non-trivial solution. Let us denote by y*"*¥ = (y,),.; + 0 the vector fulfilling
(37) with % = %(x), (38) with ¥* = ¥7(x), and, moreover,
(43) 2, ¥i=0.

ieT ™ (x)

Let the vector ¢ € R* have the components

& =Y, for jeT,

6 = — i
A
=0 for iec, — C:(x.)

'I/("+ I)WQ(“)e(")' for ie C:(x) , 4ade N s

, aeN.
Let us put

Ay = sup {Z; 4 > 0, sing (x; + Ae;) = sign x;
for each ie T, (xtn+1) 2 D) w < 0}

A2 = sup {4; 2 > 0, sign (x; — Ag;) = sign x;

for each ie T, (xtn+1) _ Iy W < 0},
and

¥ —
X=X+ Ag, bX=x—,128.
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The reader can verify that
O<li<ow, 0<l, <o,
ix;, = 'x; =0 for ieu(x),

[Ex"+OW], = X"+ DW], = 0 for je (%),

(44) gx(n+1)w§ 0, bx(n+1)wé 0,
(45) X = 4 ix + A ’x .
A+ Ay Ay + Ay

Further, we have

(46) ””"” = i Z (x,. — A4 X l/,(IH-I)WQ(II)Q(a)'> +

a=1 ieCa*(x) f:(x)

Y (it AU) =Y Y x— X (st )=

ieT *(x) a=1 ieCq~(x) ieT ~(x)
= x| -2% ¥ vi+
ieT ~(x)

n

+ ll[l/,(n+1)w(, _ Q(n+1)) e@’ _ z '/l(:x+1)WQ(a)e(a)'] — ”X”

a=1
in view of the fact that " * ! is a solution to the system (37), (38) and (43). A similar
reasoning produces the equality

(47) x| = =] -
In this case we must, however, take into account the following relations:

X; — Ay6; = x; foreach ieC,— C;(x), aeN

and
Xi ,
xi = Ayt = I [£0) + 2T IWQUWE] =
fa (x)
X; ,
— i (__x(n-i—l) + /128(”+”) wQ(a)e(a) -
fd (%)

- _ +xi bx D WQ@e@’ > 0

Ja' (%)

for each i e C;(x), a € . We used the assumption x € Z, the relation (44) and the
evident fact that Qe > 0 for each a € 4.
The relations (45), (46) and (47) imply the inequality

(48) [xP| _ max {[*xP]; ["xP[} _ . {Ufﬂ . Jif’,{{’ﬂ}_

x|~ Il =] x|
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Let us suppose that

xP|  |'xP|
() I
I — x|

(If the reverse inequality to (49) is true then substitute below x for #x, and 1,
for 2,.) Let us put

U(x,*x) = {i;ieT— Ux), X, =0},
V(x,#x) = {j; je T — ¥(x), [*x"*VW]; < 0} .
From the definition of 1; we find that
(50) U(x,*x) U V(x,*x) £ 0.

The vector *x* 1 is obviously a solution to the system (37) with % = %(*x) > %(x)
and (38) with ¥~ = ¥7(*x) o ¥7(x). This system arises from that generated by the
couple of sets %(x) and 7(x) by adding the equations g; = 0 for i € %(x, #x), and
[g"*PW]; = 0 for j € ¥7(x, #x). In virtue of (50), the vector x®*1) js not a solution
to this system so that

H(*x), 7' (*x)) < u(#(x), ¥ (x)) -
If p(@(#x), ¥ (*x)) = 1 then obviously #x e ¥, and (48) and (49) imply that #x fulfils
Il _ [Pl
Ix| — Iex]

On the other hand, if u(%(*x), #(*x)) > 1 then a finite number (not exceeding
card T — 2) of applications of the process described above yields a vector ye V

such that
IxPl _ [Pl
x|~ vl

This completes the proof.

4. MAIN RESULTS

We are now able to express the value of «(P) for any quadratic stochastic matrix P
as the maximum of a finite set. We shall give a method how to calculate oP) from
the elements p;;, i, j € S, of the matrix P. The process will be illustrated by a numerical
example in the next section.

Theorem 2. If T = ) then

(51)

K
~~
v,
S~
I
N ™
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and if T+ 0 then
(52) o(P) = max [{’2’} OlyPls yeun v, vl = 1}],

where B, U, and V are defined by (24), (34) and (40), respectively.

Proof. LetT # Qandlety € U n V. The components of the vector y corresponding
to the recurrent states are uniquely determined, according to Lemma 6, by y®+1)
because f,(y), z“(y) and i(a, y) obviously depend only on the (n + 1)-st block
y®* D of the vector y for each a € /. Further, we know from Lemma 7 that y®+1
must be a solution to the system (37) and (38) generated by a couple(%, ") ¢ @,
where the set @ is defined by (39). We conclude that the number of elements of the set

(53) yiyeUnv. |y| =1
is less than or equal to the number of the couples (%, ¥") possessing the properties
(54) U<T, v<T, A4+T, vV +T,

which is equal to
(2cardT — 1)2 .

Thus, the set (53) is finite and the maximum on the right-hand side of (52) exists
for every stochastic matrix P provided T + 0.

The rest of the proof is divided into two parts:

1) If there is a € /" such that the matrix P® is periodic then P> may be modified
to the form (4) so that § = 2. If T & 0 then obviously |yP| < 1 holds for each
y € U n Vsuch that |ly| = 1. Lemma 2 implies the validity of the relations (51)
and (52).

2) Let the matrices P® be aperiodic for all a € A". Then (51) and (52) are direct
consequences of Lemmas 4(c), 5, 6 and 7.

Corollary. If P is an irreducible stochastic matrix then

o(P) =  max {||r; — r}|

; i, jesS}.

Let us briefly describe the process of determining the value of «(P) based on
Theorem 2 in the case T # (. We introduce the systems (37) and (38) of homogeneous
linear equations generated by couples (%, ¥") fulfilling ( 54). Further, we find all the
couples (%, ¥) such that (%, ") = 1. For each couple (%, ¥") with this property
we proceed as follows:

We solve the corresponding system (37) and (38). The solutions have the form
7. MY, where 7 is a free real parameter and &+ 1) = (6 ier is a fixed vector. There
are two possibilities: }
1) If EMtDW <0 or E"*DW 2 0, then we pyt y®* P = &*D and y**tb =

= —E"*D, respectively. Further, we evaluate z(®(y), fu(y) and i(a, y) by (30),
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(31) and (32). Finally, we put
Viay =fdy) for aed,

n

yi=0 for ieU[C, - {i(ay)}]
1

and calculate the value of
o bl
Iyl
2) If there exist jy, j, € T such that [£"*DW]; > 0 and [¢"*PW];, < 0 then no
vector y € V has the property that its (n + 1)-st block y"*" is a solution to the
system (37) and (38) generated by the couple (%, 7) just considered. We do not
pay any more attention to it.

The application of the process just described produces a set of numbers (55). The
value of «P) is equal to the maximum of these numbers and of the number 1f,
where B is defined by (24).

We shall now turn to the problem of a characterization of stochastic (reducible)
matrices such that the strong inequality (3) holds for every vector p(t) € 2.

Theorem 3. Let
k

(56) Qij = PimPjm forall ijeSsS.
1

Then the strong inequality (3) holds for every vector p(t)e Py, t =0,1,2,...,
if and only if the following conditions are fulfilled:

Condition &: For each ae€ A" and for each i, je C,, 0;; > 0.

Condition #: For each i € T there exists a € A" such that g;; > 0 is true for each
jeC,.

Proof. We first prove the necessity of the conditions &/ and #. It is seen that the
relations ¢;; = 0 and ||r; — r;|| = 2 are equivalent. Thus, if the matrix P does not
fulfil the condition &/ then § = 2 and the vector b defined in Lemma 5 has the pro-
perties b € Z and

(57) |6P] = 18] -

On the other hand, if the matrix P does not fulfil the condition % (then T+ 0, of
course) then we denote by u and v, such states that u € T, v, € C, for a € A, and

(58) Quo, = 0 foreach ae .
A vector y with components

ya=—1, y;=0 for ieT— {u},
and
Vo, = _y(n+1)WQ(a)e(“)' for ae N .

Vi = 0 for ie'o [Ca - {va}] >
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is evidently an element of Z and

(59) Vs, 20 foreach ae .

We put
M, = {m;meS, p,, =0}.

The relations (58) and (59) imply

(60) || yPn - i [3iBun + 3 o] =

_ lyla Prum Z Iy..l Pum = |y -

mEMua 1
In both the situations considered above, we have obtained a vector x e Z (x =b
and x =y, respectively) fulfilling |xP| = |x|. The fact stated by Lemma 4(b) that
there is p(0) € 2, such that p(1) — p(0) is equal (up to a positive constant) to the
vector x completes the proof of necessity of the conditions &/ and 4.

Their sufficiency is, due to Lemma 4, a consequence of the following theorem
presenting an upper estimate of the value of o(P) This estimate is equal to 1 if and
only if o{P) = 1. The simplicity of its evaluation makes it possible to avoid the
rather complicated and time-consuming calculations described above in case that it
is not necessary to know the exact value of ofP).

Theorem 4. Let
(61) a; =min[{a;ae N, ¢;; >0 forall jeC,} u{n}] for ieT,
(62) a;=a for ieC,, aeAN,
(63) H = min [{1} U { Z Pim; i€T}],

meCy,
and
o, = min {g;; i,j€C,} for aeN,

w; = min{¢;;; jeC,} for ieT,

(64) L =min[{c,;aeN}u{w;ieT}].

Then the inequality

(65) oP) <1 - HL

k?
is true. In particular, if the matrix P fulfils the conditions o/ and % then
(66) «P)<1.
Proof. Let x € Z. We know from (9) that there is a state i € S such that N

67 xX; S - M

(67) - 2k
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We shall prove the existence of a state j € C,.(x) such that

[l A

68 X; .
(68) 2k?

J

v

There are two possibilities:
1) If i is a current state then the relation (67), the assumption x € Z and the evident
fact that H < 1 imply
Ll

(69) Yo ox, = xe @ — x> —x; 2
rneCal,*“(x) 2k

2) Let ie . We know from Lemma 4(b) that there exist a vector p € 2, and
a positive number ¢ such that x = ¢p(P — I). We put *p = pP. Then

b .
cpp=c¢'pi — X; Z —X;,

i

and

(70) Y xp 2 cp"tVQUWe ) = cp, Y piy = [k H.

meCal, *(x) meCai 2k

The inequalities (69) and (70) imply the existence of a state j € C,(x) fulfilling (68)
because the set C,(x) cannot contain more than k elements. Further, it is easily seen
that

(71) IV*5]=V+5~—2min{y;5}

is true for every couple of non-negative numbers y, 6. Thus, we obtain

P =Y Y1 Y %ttt Y 5 + 3| xb| =

a=1meCqa heCo*(x)uT *(x) heCq = (x)uT ~(x) meT heT
é ”X" -2 Z min {xjpjm; —xipim} }/_
msCai
x| H H HL
< Ied = PR 3 = o1 (1= o) = 1 (15

This implies the validity of the inequality (65) due to Lemma 4.
Finally, if the matrix P fulfils the conditions &/ and # then obviously

Y Pm=Zw; >0 for ieT,

meCa;

(provided T # 9, of course), and
g,>0 for aeAN,

so that

(72) H>0
and

(73) L>0.

The relation (66) is a consequence of (65), (72), and (73).
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5. AN ILLUSTRATIVE EXAMPLE

Let k = 4 and let

00
00
03
00

O N B Bl
O B AW

It is easily seen that n = 1, C; = {1;2}, T = {3;4}, and

13
w_<0 1)'

We shall follow the instructions given in Section 4. Table 1 has 9 rows corresponding
to the nine couples (%, ") fulfilling (55). Each of these rows presents the form of
the system (37) and (38), the value of u(#%, 7°), and a particular solution @ to the
system (37) and (38) if u(#%, ¥") = 1. It is easy to verify that &®W = 0 holds in all
the rows in question so that y® = ¢®. Further, the vector z((y), the numbers
f1(y) and i(1, y), and the resultant vector y*) are given. We find that it suffices to
calculate the value of ||yP|/|y|| for the following three vectors y:

(O’ 1’ Oa _1)7
(1, 0, =1, 0),
(1,0, =2, 1).
Table 1
he system a solution ’ T
U v (37). (38) W, V) y(l):: 5(2) | z(l)(y) £y i1, y) y(l)
' to (37),(38) | ]
. i |
=0 !
3 3} | 93 1 0, —1 | (0, —1 1| 2 |1
(I )0 t } ©, 1
| \
=0 |
3 4 g3 0 _ _ _ o
{ S { } %93 + g, = 0 | E ' ’
351 0 [g3=0 1 ©,—D | ©-=h i 1 20N
RO B 0 S A R
g3 = i %
4 | {4 | Ya= 0 — I - - | =
SR 395+ 9.0 ; |
@ 0 |g=0 1 (-1, (=40 1 1,0
0 | {3} |g3=0 1 0, —1) 1 ©,—1 | 1 2 1)
0 | {4} | dos+ga=0 1 =2, | (=LD | 1| 1,0
1 |
o - ? R B } i B
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These values are equal to . # and , respectively. Finally, 4§ = . Thus, we obtain
that
b=3.

Let us remark that H = } and L= { so that the upper estimate (68) of the value

P\ — .3.7.
(X\P) = max {% s

> 4>

|
N
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