Czechoslovak Mathematical Journal

Valter Šeda

Nonoscillatory solutions of differential equations with deviating argument

Czechoslovak Mathematical Journal, Vol. 36 (1986), No. 1, 93-107
Persistent URL: http://dml.cz/dmlcz/102070

Terms of use:

© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

NONOSCILLATORY SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENT

Valter Šeda, Bratislava

(Received Oztober 25, 1984)

In the paper a result of J. Ohriska in [3] concerning oscillation of the second order linear differential equation with delay is extended to an n-th order differential equation with deviating argument. The main tool in establishing the results are Kiguradze lemmas.

We consider the differential equation

$$
\begin{equation*}
L_{n} y(t)+f(t, y[g(t)])=0 \tag{1}
\end{equation*}
$$

where $n>1$,

$$
L_{n} y(t)=p_{n}(t)\left[p_{n-1}(t)\left(\ldots\left[p_{1}(t)\left(p_{0}(t) y(t)\right)^{\prime}\right]^{\prime} \ldots\right)^{\prime}\right]^{\prime},
$$

$p_{i}, i=0,1, \ldots, n$ are positive and continuous functions on $\left\langle t_{0}, \infty\right), f$ is real valued and continuous on $D=\left\langle t_{0}, \infty\right) \times R, g:\left\langle t_{0}, \infty\right) \rightarrow\left\langle t_{0}, \infty\right)$ is continuous and $t_{0} \in R$.

The expressions

$$
\begin{equation*}
L_{0} y(t)=p_{0}(t) y(t), \quad L_{i} y(t)=p_{i}(t)\left[L_{i-1} y(t)\right]^{\prime}, \quad i=1,2, \ldots, n, \tag{2}
\end{equation*}
$$

are called the quasi-derivatives of y at the point $t \in\left\langle t_{0}, \infty\right)$. We restrict our considerations to those solutions of (1) which exist on some ray $\left\langle T_{y}, \infty\right)$ and satisfy the condition

$$
\begin{equation*}
\sup \left\{|y(t)|: t_{1} \leqq t<\infty\right\}>0 \quad \text { for any } \quad t_{1} \in\left\langle T_{y}, \infty\right) \tag{3}
\end{equation*}
$$

Such a solution is called oscillatory if it has arbitrarily large zeros. Otherwise a solution is called nonoscillatory. The equation (1) is called oscillatory if all solutions of (1) are oscillatory.

Sometimes we will require the following conditions to be satisfied:
(4) $\int^{\infty} p_{i}^{-1}(t) \mathrm{d} t=\infty, \quad i=1,2, \ldots, n-1$;
(5) $y f(t, y) \geqq 0$ for all $(t, y) \in D$, and for any interval of the form $\left\langle t_{1}, \infty\right)$ with $t_{1} \geqq t_{0}$ and any function $h \in C\left(\left\langle t_{1}, \infty\right)\right), f[t, h(t)] \equiv 0$ implies $h(t) \equiv 0$;
(6) $y f(t, y) \leqq 0$ for all $(t, y) \in D$, and for any interval of the form $\left\langle t_{1}, \infty\right)$ with $t_{1} \geqq t_{0}$ and any function $h \in C\left(\left\langle t_{1}, \infty\right)\right), f[t, h(t)] \equiv 0$ implies $h(t) \equiv 0$;
(7) $\lim _{t \rightarrow \infty} g(t)=\infty$.

To obtain the main results we need three lemmas. The first is adapted from the papers [1], [4], [5], [7] and contains a generalization of the well-known first two Kiguradze lemmas.

Lemma 1. Let the condition (4) be satisfied and let y be a positive function on the interval $\left\langle t_{1}, \infty\right), t_{1} \geqq t_{0}$, such that $L_{n} y$ exists on $\left\langle t_{1}, \infty\right)$, is of constant sign and is not identically zero on any interval of the form $\left\langle t_{2}, \infty\right), t_{2} \geqq t_{1}$.

Then there exists an integer $l, 0 \leqq l \leqq n$, with $n+l$ odd for $L_{n} y \leqq 0$ or $n+l$ even for $L_{n} y \geqq 0$, such that

$$
\begin{gathered}
l \leqq n-1 \quad \text { implies } \quad(-1)^{l+j} L_{j} y(t)>0 \quad \text { for every } t \geqq t_{1} \\
(j=l, l+1, \ldots, n-1) \\
l>1 \quad \text { implies } \quad L_{i} y(t)>0 \quad \text { for all large } t \quad(i=1,2, \ldots, l-1)
\end{gathered}
$$

Further, for every $i=0,1, \ldots, n-1, \lim _{t \rightarrow \infty} L_{i} y(t)$ exists in the extended real line $R^{*}=R \cup\{-\infty, \infty\}$ whereby

$$
\begin{array}{ll}
\text { for } & l \leqq n-1, \quad \lim _{t \rightarrow \infty} L_{l} y(t)=c_{i} \geqq 0 \quad \text { is finite, } \\
\text { for } & l \leqq n-2, \quad \lim _{t \rightarrow \infty} L_{j} y(t)=0 \quad(j=l+1, \ldots, n-1), \\
\text { for } & l \geqq 2, \quad \lim _{t \rightarrow \infty} L_{i} y(t)=\infty \quad(i=0, \ldots, l-2)
\end{array}
$$

Remark. If $1 \leqq l \leqq n-1$, the lemma gives no exact result about c_{l} and $c_{l-1}=$ $=\lim _{t \rightarrow \infty} L_{l-1} y(t)$. If $c_{l}>0$, then $c_{l-1}=\infty$. For $c_{l}=0, c_{l-1}>0$ may be finite or infinite as the example of functions

$$
\begin{aligned}
& y_{1}(t)=\operatorname{arctg} t, \quad y_{1}^{\prime}(t)=1 /\left(1+t^{2}\right), \quad y_{1}^{\prime \prime}(t)=-2 t /\left(1+t^{2}\right)^{2}, \\
& y_{2}(t)=\ln t, \quad y_{2}^{\prime}(t)=1 / t, \quad y_{2}^{\prime \prime}(t)=-1 / t^{2}
\end{aligned}
$$

with $l=1, n=2, p_{0} \equiv p_{1} \equiv p_{2} \equiv 1$ shows. Similarly, if $l=n$, then $\lim _{t \rightarrow \infty} L_{n-1} y(t)=$ $=c_{n-1}>0$ may be finite or infinite.
Define functions

$$
\begin{gather*}
I_{0} \equiv 1, \quad I_{k}\left(t, a ; p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{k}}\right)= \tag{8}\\
=\int_{a}^{t} p_{i_{1}}^{-1}\left(t_{i_{1}}\right) \int_{a}^{t_{i_{1}}} p_{i_{2}}^{-1}\left(t_{i_{2}}\right) \int_{a}^{t_{i_{2}}} \ldots \int_{a}^{t_{i_{k}-1}} p_{i_{k}}^{-1}\left(t_{i_{k}}\right) \mathrm{d} t_{i_{k}} \mathrm{~d} t_{i_{k-1}} \ldots \mathrm{~d} t_{i_{1}} \\
1 \leqq k \leqq n-1, \quad t_{0} \leqq a \leqq t<\infty
\end{gather*}
$$

Then the functions

$$
\begin{equation*}
x_{j}(t, a)=p_{0}^{-1}(t) I_{j-1}\left(t, a ; p_{1}, p_{2}, \ldots, p_{j-1}\right), \quad j=1,2, \ldots, n \tag{9}
\end{equation*}
$$

form a fundamental system of solutions of the equation $L_{n} x(t)=0$ in $\langle a, \infty)$ and

$$
\begin{gather*}
L_{j-1} x_{j}(t, a) \equiv 1, \quad L_{i} x_{j}(t, a) \equiv 0 \quad \text { for } \quad i \geqq j \tag{10}\\
L_{i} x_{j}(t, a)>0 \quad \text { in } \quad(a, \infty) \text { for } \quad i<j-1
\end{gather*}
$$

For the sake of brevity, denote

$$
\begin{gather*}
P_{0}(t, a) \equiv 1, \quad P_{j}(t, a)=I_{j}\left(t, a ; p_{1}, \ldots, p_{j}\right) \tag{11}\\
j=1,2, \ldots, \quad n-1, \quad t_{0} \leqq a \leqq b<\infty
\end{gather*}
$$

and

$$
\begin{align*}
Q_{n}(t, a) \equiv 1, & Q_{j}(t, a)=I_{n-j}\left(t, a ; p_{n-1}, p_{n-2}, \ldots, p_{j}\right) \tag{12}\\
& j=1,2, \ldots, n-1, \quad t_{0} \leqq a \leqq t<\infty
\end{align*}
$$

In the case all $p_{i} \equiv 1$

$$
P_{j}(t, a)=\frac{(t-a)^{j}}{j!}, \quad j=0,1, \ldots, n-1
$$

and

$$
Q_{j}(t, a)=\frac{(t-a)^{n-j}}{(n-j)!}, \quad j=1, \ldots, n-1, n
$$

Remark. If l from Lemma 1 satisfies $0 \leqq l \leqq n-1$, then by the variation of constants formula ([1], p. 96, $\left(9_{01}\right)$) with a sufficiently great and with respect to (11) and

$$
L_{0} y(t)=\sum_{j=0}^{l} L_{j} y(a) P_{j}(t, a)+\int_{a}^{t} p_{l+1}^{-1}(s) L_{l+1} y(s) P_{l}(t, s) \mathrm{d} s, \quad t \geqq a
$$

where $L_{j} y(a)>0, j=0,1, \ldots, l$, and $L_{l+1} y(t) \leqq 0, t \geqq a$, we get that

$$
L_{0} y(t) \leqq \sum_{j=0}^{l} L_{j} y(a) P_{j}(t, a) .
$$

In the general case, when y is either positive in a neighbourhood of infinity or negative, we come to the inequality

$$
\begin{equation*}
\left|L_{0} y(t)\right| \leqq \sum_{j=0}^{l}\left|L_{j} y(a)\right| P_{j}(t, a) . \tag{13}
\end{equation*}
$$

Further, (4) implies that

$$
\lim _{t \rightarrow \infty} \frac{P_{j}(t, a)}{P_{l+1}(t, a)}=0, \quad j=0,1, \ldots, l
$$

and hence, by (13),

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{L_{0} y(t)}{P_{k}(t, a)}=0, \quad k=l+1, \ldots, n \tag{14}
\end{equation*}
$$

In the case $l=0$, by Lemma $1,\left|L_{0} y\right|$ is a nonincreasing function and hence there exists

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{L_{0} y(t)}{P_{0}(t, a)}=c_{0} \tag{15}
\end{equation*}
$$

In the case $1 \leqq l \leqq n-1$, by Lemma 2.1 ([6], p. 298),

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{L_{0} y(t)}{P_{j}(t, a)}=\lim _{t \rightarrow \infty} L_{j} y(t)=c_{j}, \quad j=0, \ldots, l \tag{16}
\end{equation*}
$$

whereby $\left|c_{j}\right|=\infty$ for $j=0, \ldots, l-2$, and $0<\left|c_{l-1}\right| \leqq \infty$. Thus the following statement is true:

If the conditions of Lemma 1 are satisfied and there is an integer $k, 0 \leqq k \leqq n-2$, such that

$$
\lim _{t \rightarrow \infty} \frac{L_{0} y(t)}{P_{k}(t, a)}>0, \quad \lim _{t \rightarrow \infty} \frac{L_{0} y(t)}{P_{k+1}(t, a)}=0
$$

then by the former relation $k \leqq l$ and by the latter $k \geqq l-1$, hence

$$
k \text { is either } l-1 \text { or } l .
$$

U. Elias in [2] has generalized the third Kiguradze lemma. From his results (Theorem 3, case $j=k+1$) the following lemma is important for our considerations.

Lemma 2. Let l be an integer, $1 \leqq l \leqq n-1, a \in\left\langle t_{0}, \infty\right)$. If the function y satisfies

$$
L_{0} y(a), \ldots, L_{l-1} y(a) \geqq 0, \quad L_{l+1} y(t) \leqq 0 \quad \text { for } \quad a \leqq t<\infty,
$$

then
(a) $\quad\left(\frac{L_{i} y(t)}{L_{i} x_{l+1}(t, a)}\right)^{\prime} \leqq 0, \quad i=0,1, \ldots, l, \quad a<t<\infty$
and
(b) $\quad L_{i} y(t) \geqq L_{i+1} y(t) \frac{L_{i} x_{l+1}(t, a)}{L_{i+1} x_{l+1}(t, a)}, \quad i=0,1, \ldots, l, \quad a<t<\infty$.

Hence by (a), (b), (2), (9), (11),
(c) $\frac{L_{0} y(t)}{P_{l}(t, a)}$ is a nonincreasing function in (a, ∞),
(d)

$$
L_{0} y(t) \geqq L_{i} y(t) \frac{P_{l}(t, a)}{L_{i} x_{l+1}(t, a)}, \quad i=1, \ldots, l, \quad a<t<\infty
$$

and with respect to (10),

$$
\begin{equation*}
L_{0} y(t) \geqq L_{l} y(t) P_{l}(t, a), \quad a \leqq t<\infty \tag{e}
\end{equation*}
$$

Lemma 3. Let the conditions (4), (5), (7) (the conditions (4), (6), (7)) be satisfied and let u be a nonoscillatory solution of the equation (1). Denote by δ the sign of
$u(t)$ in a sufficiently small neighbourhood of infinity. Then there exists a number $t_{1}, t_{1} \geqq t_{0}$, and an integer $l, 0 \leqq l \leqq n$, with $n+l$ odd $(n+l$ even $)$, such that
(a) for $l \leqq n-1,(-1)^{l+j} \delta L_{j} u(t)>0$ for every $t \geqq t_{1}, j=l, l+1, \ldots, n-1$, and

$$
\lim _{t \rightarrow \infty} L_{l} u(t)=c_{l} \quad \text { is finite, whereby } \quad \delta c_{l} \geqq 0 ;
$$

(b) for $l \leqq n-2$,

$$
\lim _{t \rightarrow \infty} L_{j} u(t)=0, \quad j=l+1, \ldots, n-1 ;
$$

(c) for $l \geqq 2$,

$$
\delta L_{i} u(t)>0 \quad \text { for all large } t, \quad i=1,2, \ldots, l-1
$$

and

$$
\lim _{t \rightarrow \infty} \delta L_{i} u(t)=\infty, \quad i=0, \ldots, l-2 ;
$$

(d) for $l \leqq n-1, u$ is a solution of the integro-differential equation

$$
\begin{equation*}
L_{l} y(t)=c_{l}+(-1)^{n-l+1} \int_{t}^{\infty} p_{n}^{-1}(s) f(s, y[g(s)]) Q_{l+1}(s, t) \mathrm{d} s \tag{17}
\end{equation*}
$$

Proof. Suppose u is nonoscillatory and positive in a neighbourhood of infinity. If u is negative, the proof can be done in a similar way. With respect to (7), there exists a $t_{1}, t_{1} \geqq t_{0}$, such that $u(t)>0$ and also $u[g(t)]>0$ for $t \geqq t_{1}$. Then on the basis of (1), (5) implies ((6) implies) that $L_{n} u \leqq 0\left(L_{n} u \geqq 0\right)$ on $\left\langle t_{1}, \infty\right)$ and $L_{n} u$ is not identically zero on any interval of the form $\left\langle t_{2}, \infty\right), t_{2} \geqq t_{1}$. Hence Lemma 1 can be applied. By that lemma the statements (a), (b), (c) are true.

Suppose now that $l \leqq n-1$. If $l=n-1$, then integrating we obtain

$$
L_{n-1} u(t)=c_{n-1}+\int_{t}^{\infty} p_{n}^{-1}(s) f^{\prime}(s, u[g(s)]) \mathrm{d} s
$$

and hence in the case $l=n-1,(17)$ is satisfied by u. When $l \leqq n-2$, then taking into account (b), by repeated integration we get

$$
\begin{gather*}
L_{j} u(t)=(-1)^{n-j+1} \int_{t}^{\infty} p_{n}^{-1}(s) f(s, u[g(s)]) Q_{j+1}(s, t) \mathrm{d} s, \tag{18}\\
j=n-1, \ldots, l+1 .
\end{gather*}
$$

Finally, integrating (18) for $j=l+1$ we come to the conclusion that u is a solution of (17).
Now we can solve the first problem which is to find a sufficient condition for c_{l} in Lemma 3 to be zero.

Remark. It is clear that the number l in Lemma 3 is uniquely determined. This justifies the following

Definition 1. Suppose that the conditions (4), (5), (7) (the conditions (4), (6), (7)) are satisfied. Let u be a nonoscillatory solution of the equation (1) and δ its sign in
a sufficiently small neighbourhood of ∞. We say that u has property P_{l} with $l \in$ $\in\{0,1, \ldots, n\}$ and $n+l$ is odd $(n+l$ is even $)$ if it has properties (a), (b), (c) from Lemma 3.

We recall that under the conditions (4), (5), (7) (the conditions (4), (6), (7)) each nonoscillatory solution of (1) has property P_{l} with some $l \in\{0,1, \ldots, n\}$.

Theorem 1. Let the conditions (4), (5), (7) (the conditions (4), (6), (7)) be satisfied and let u be a nonoscillatory solution of the equation (1) with property P_{l}, where $0 \leqq l \leqq n-1$.

Let there exist a function $G=G(t, y): D_{1}=\left\langle t_{0}, \infty\right) \times\langle 0, \infty) \rightarrow\langle 0, \infty)$, which is continuous, nondecreasing in y for each fixed t and such that

$$
\begin{equation*}
|f(t, y)| \geqq G(t,|y|) \quad((t, y) \in D) . \tag{19}
\end{equation*}
$$

Then the condition: For each $k>0$ and each a from a neighbourhood of ∞ either

$$
\begin{equation*}
\int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G\left(s, k p_{0}^{-1}[g(s)] P_{l}[g(s), a]\right) \mathrm{d} s=\infty \tag{20}
\end{equation*}
$$

for all $t \geqq a$ or

$$
\lim _{t \rightarrow \infty} \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G\left(s, k p_{0}^{-1}[g(s)] P_{l}[g(s), a]\right) \mathrm{d} s>0
$$

implies that

$$
\begin{equation*}
c_{l}=\lim _{t \rightarrow \infty} L_{l} u(t)=0 \tag{21}
\end{equation*}
$$

Remark. Suppose that $m:\left\langle t_{0}, \infty\right) \rightarrow\langle 0, \infty)$ is a continuous function and let us investigate

$$
\int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) m(s) \mathrm{d} s
$$

which represents the general form of the integrals in (20) or (20'). As the function $p_{n}^{-1}(s) Q_{l+1}(s, t) m(s)$ is nonincreasing in the variable t for $t<s, s$ being fixed, and nonnegative, two cases are possible concerning (20"). Either $\int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t)$. . $m(s) \mathrm{d} s=\infty$ for all $t \geqq a$, or there is a $t_{1}, a \leqq t_{1}<\infty$, such that $\int_{t}^{\infty} p_{n}^{-1}(s)$. . $Q_{l+1}(s, t) m(s) \mathrm{d} s<\infty$ for all $t \geqq t_{1}$ and this function is nonincreasing in $\left\langle t_{1}, \infty\right)$. Hence $\lim _{t \rightarrow \infty} \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) m(s) \mathrm{d} s$ exists and is finite and nonnegative.

In the case $l=n-1$, the condition (20') cannot hold, because if $\int_{t}^{\infty} p_{n}^{-1}(s) m(s) \mathrm{d} s$ exists, then $\lim _{t \rightarrow \infty} \int_{t}^{\infty} p_{n}^{-1}(s) m(s) \mathrm{d} s=0$.

Proof of Theorem 1. Suppose the conditions (4), (5), (7) and (19) are satisfied and $c_{l} \neq 0$. Then, by Lemma $3, n+l$ is odd, and hence (17) implies that the equality

$$
\begin{equation*}
L_{l} u(t)=c_{l}+\int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) f(s, u[g(s)]) \mathrm{d} s \tag{22}
\end{equation*}
$$

is true. Denote by δ the sign of u in a sufficiently small neighbourhood of ∞. Let t_{1} be such that

$$
\begin{align*}
& \delta L_{i} u(t)>0 \quad \text { in }\left\langle t_{1}, \infty\right), \quad i=0, \ldots, l, \tag{23}\\
& \delta L_{l+1} u(t) \leqq 0 \quad \text { in }\left\langle t_{1}, \infty\right) .
\end{align*}
$$

By (7), there exists an $a \geqq t_{1}$ such that $g(t) \geqq t_{1}$ for each $t \geqq a$. We shall distinguish two cases:

1. $l=0$.

By (23), $\delta L_{0} u$ is nonincreasing in $\left\langle t_{1}, \infty\right)$ and as it converges to δc_{0}, we have

$$
\delta L_{0} u \geqq \delta c_{0}>0
$$

This implies

$$
\begin{equation*}
|u(t)| \geqq \frac{\left|c_{0}\right|}{p_{0}(t)}, \quad t \in\left\langle t_{1}, \infty\right) . \tag{24}
\end{equation*}
$$

(22) can be written in the form

$$
\begin{equation*}
\delta L_{0} u(t)=\delta c_{0}+\delta \int_{t}^{\infty} p_{n}^{-1}(s) Q_{1}(s, t) f(s, u[g(s)]) \mathrm{d} s . \tag{25}
\end{equation*}
$$

By (5), this means

$$
\begin{equation*}
\left|L_{0} u(t)\right|=\left|c_{0}\right|+\int_{t}^{\infty} p_{n}^{-1}(s) Q_{1}(s, t)|f(s, u[g(s)])| \mathrm{d} s \tag{26}
\end{equation*}
$$

and hence, (19) and (24) yield

$$
\begin{array}{r}
\left|L_{0} u(t)\right| \geqq\left|c_{0}\right|+\int_{t}^{\infty} p_{n}^{-1}(s) G(s,|u[g(s)]|) Q_{1}(s, t) \mathrm{d} s \geqq \\
\quad \geqq\left|c_{0}\right|+\left|c_{0}\right| \int_{t}^{\infty} p_{n}^{-1}(s) \frac{G\left(s,\left|c_{0}\right| p_{0}^{-1}[g(s)]\right)}{\left|c_{0}\right|} Q_{1}(s, t) \mathrm{d} s
\end{array}
$$

which gives

$$
\begin{equation*}
1 \geqq \frac{\left|c_{0}\right|}{\left|L_{0} u(t)\right|}\left(1+\int_{t}^{\infty} p_{n}^{-1}(s) Q_{1}(s, t) \frac{G\left(s,\left|c_{0}\right| p_{0}^{-1}[g(s)]\right)}{\left|c_{0}\right|} \mathrm{d} s\right) \tag{27}
\end{equation*}
$$

and this contradicts (20) or $\left(20^{\prime}\right)$ because

$$
\lim _{t \rightarrow \infty} \frac{\left|c_{0}\right|}{\left|L_{0} u(t)\right|}=1
$$

2. $1 \leqq l \leqq n-1$.

By Lemma 2 , $\delta L_{0} u(t) \geqq \delta L_{l} u(t) P_{l}(t, a)$ for all $t \geqq a$ and hence, with respect to (22),

$$
\begin{gathered}
\delta L_{0} u(t) \geqq \delta L_{l} u(t) P_{l}(t, a)= \\
=\delta c_{l} P_{l}(t, a)+P_{l}(t, a) \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t)|f(s, u[g(s)])| \mathrm{d} s \geqq \\
\geqq\left|c_{l}\right| P_{l}(t, a)+P_{l}(t, a) \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G(s,|u[g(s)]|) \mathrm{d} s, \quad t \geqq a .
\end{gathered}
$$

Thus

$$
\begin{gather*}
\left|L_{0} u(t)\right| \geqq\left|c_{l}\right| P_{l}(t, a)+P_{l}(t, a) \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) . \tag{28}\\
. G(s,|u[g(s)]|) \mathrm{d} s, \quad a \leqq t<\infty .
\end{gather*}
$$

This implies that

$$
\left|L_{0} u(t)\right| \geqq\left|c_{l}\right| P_{l}(t, a)
$$

and

$$
|u(t)| \geqq\left|c_{l}\right| x_{l+1}(t, a), \quad t \geqq a .
$$

Therefore

$$
\left|L_{0} u(t)\right| \geqq\left|c_{l}\right| P_{l}(t, a)+\left|c_{l}\right| P_{l}(t, a) \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) \frac{G\left(s,\left|c_{l}\right| x_{l+1}[g(s), a]\right)}{\left|c_{l}\right|} \mathrm{d} s
$$

for all $t \geqq b$ such that $g(t) \geqq a$ for $t \geqq b$. Then

$$
\begin{equation*}
1 \geqq \frac{\left|c_{l}\right| P_{l}(t, a)}{\left|L_{0} u(t)\right|}\left(1+\int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) \frac{G\left(s,\left|c_{l}\right| x_{l+1}[g(s), a]\right)}{\left|c_{l}\right|} \mathrm{d} s\right) \tag{29}
\end{equation*}
$$

As $\lim _{t \rightarrow \infty} L_{l} u(t)=c_{l} \neq 0$, Lemma 3, [5], p. 199 yields

$$
\lim _{t \rightarrow \infty} \frac{L_{0} u(t)}{P_{l}(t, a)}=\lim _{t \rightarrow \infty} L_{l} u(t)=c_{l},
$$

which shows that (29) contradicts (20) or $\left(20^{\prime}\right)$.
Let now the conditions (4), (6), (7), (19) be satisfied. Then, by Lemma $3, n+l$ is even, and instead of (22) we have

$$
L_{l} u(t)=c_{l}-\int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) f(s, u[g(s)]) \mathrm{d} s
$$

The relations (23), (24) remain valid.
When $l=0$, from (22^{\prime}) we get

$$
\delta L_{0} u(t)=\delta c_{0}-\delta \int_{t}^{\infty} p_{n}^{-1}(s) Q_{1}(s, t) f(s, u[g(s)]) \mathrm{d} s
$$

Again we come to (26) and (27) which implies that (21) is true.
When $1 \leqq l \leqq n-1$, we obtain (28) and (29). This gives that (20) or (20') implies (21).

Corollary 1. Suppose that all assumptions of Theorem 1 are satisfied but (19) is replaced by

$$
\begin{equation*}
|f(t, y)| \geqq \alpha(t)|y| \quad((t, y) \in D), \tag{30}
\end{equation*}
$$

where $\alpha \in C\left(\left\langle t_{0}, \infty\right)\right)$ is a nonnegative function. Let u be a nonoscillatory solution of the equation (1) with property P_{l} and let l satisfy $0 \leqq l \leqq n-1$.

Then the condition: For each a from a neighbourhood of ∞ either

$$
\begin{equation*}
\int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) \alpha(s) p_{0}^{-1}[g(s)] P_{l}[g(s), a] \mathrm{d} s=\infty \tag{31}
\end{equation*}
$$

for all $t \geqq a$, or

$$
\lim _{t \rightarrow \infty} \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) \alpha(s) p_{0}^{-1}[g(s)] P_{l}[g(s), a] \mathrm{d} s>0
$$

is sufficient for the equality

$$
c_{l}=\lim _{t \rightarrow \infty} L_{l} u(t)=0
$$

to hold.
Remark. In the special case $g(t) \equiv t$ the condition (31') is weaker than the condition (38') in [7], p. 127,

$$
\int_{t}^{\infty} \frac{\alpha_{(}(s)}{p_{0}(s) p_{n}(s)} P_{l}(s, t) Q_{l+1}(s, t) \mathrm{d} s=\infty
$$

and hence Corollary 1 improves and generalizes the sufficient condition in Corollary 1 to Theorem 6 in that paper when $h=h(t, y)$.

Denote

$$
h(t)=\max \left[t, \max _{a \leqq s \leqq t} g(s)\right] \text { for all } t \geqq a,
$$

where a has the same meaning as in Theorem 1. Clearly $h(t) \geqq t$ and h is nondecreasing in $\langle a, \infty)$.

Theorem 2. Let $1 \leqq l \leqq n-1$ be an integer. Let the conditions (4), (5), (7), (19), (20) or (20') (the conditions (4), (6), (7), (19), (20) or (20')) be satisfied. Let $n+l$ be odd ($n+l$ be even). Let the function G be such that

$$
\begin{equation*}
G(t, k y) \geqq k G(t, y) \tag{32}
\end{equation*}
$$

for each $k>0$ and each $(t, y) \in D_{1}$.
Then the condition: For each a from a neighbourhood of ∞ either

$$
\begin{equation*}
\int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G\left(s, p_{0}^{-1}[g(s)] \frac{P_{l}[g(s), a]}{P_{l}[h(s), a]}\right) \mathrm{d} s=\infty \tag{33}
\end{equation*}
$$

for all $t \geqq$ a or
(33') $\limsup _{t \rightarrow \infty} P_{l}(t, a) \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G\left(s, p_{0}^{-1}[g(s)] \frac{P_{l}[g(s), a]}{P_{l}[h(s), a]}\right) \mathrm{d} s>1$
is a sufficient condition that there exists no nonoscillatory solution u of the equation (1) with property P_{l}.

Proof. Let u be an arbitrary nonoscillatory solution of (1) such that the integer l from Lemma 3 satisfies $1 \leqq l \leqq n-1$. As all assumptions of Theorem 1 are
satisfied, $c_{l}=0$ in (22) or (22') and hence u satisfies (28) in the form

$$
\left|L_{0} u(t)\right| \geqq P_{l}(t, a) \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G(s,|u[g(s)]|) \mathrm{d} s .
$$

As $\left|L_{0} u\right|$ is an increasing function and $h(t) \geqq t$,

$$
\begin{equation*}
\left|L_{0} u[h(t)]\right| \geqq\left|L_{0} u(t)\right| \text { for all } t \geqq a . \tag{34}
\end{equation*}
$$

By Lemma 2, $\left|L_{0} u(t)\right| \mid P_{l}(t, a)$ is a nonincreasing function in (a, ∞) and hence, $g(s) \leqq h(s)$ implies

$$
\begin{equation*}
|u[g(s)]|=\frac{\left|L_{0} u[g(s)]\right|}{p_{0}[g(s)]} \geqq \frac{1}{p_{0}[g(s)]} \frac{P_{l}[g(s), a]}{P_{l}[h(s), a]}\left|L_{0} u[h(s)]\right| . \tag{35}
\end{equation*}
$$

Further, h is nondecreasing and therefore

$$
\begin{equation*}
\left|L_{0} u[h(s)]\right| \geqq\left|L_{0} u[h(t)]\right|, \quad s \geqq t . \tag{36}
\end{equation*}
$$

Putting (34), (35) and (36) into (28') we get

$$
\left|L_{0} u[h(t)]\right| \geqq P_{l}(t, a) \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G\left(s, \frac{1}{p_{0}[g(s)]} \frac{P_{l}[g(s), a]}{P_{l}[h(s), a]}\left|L_{0} u[h(t)]\right|\right) \mathrm{d} s
$$

Now using (32) we come to the inequality

$$
1 \geqq P_{l}(t, a) \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G\left(s, p_{0}^{-1}[g(s)] \frac{P_{l}[g(s), a]}{P_{l}[h(s), a]}\right) \mathrm{d} s
$$

which contradicts (33) or (33').
Corollary 2. If the assumptions of Theorem 2 are satisfied but (19) is replaced by (30), (20) or (20') by (31) or (31') and (32) is omitted, then the condition: For each a from a neighbourhood of ∞ either

$$
\begin{equation*}
\int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) \alpha(s) p_{0}^{-1}[g(s)] \frac{P_{l}[g(s), a]}{P_{l}[h(s), a]} \mathrm{d} s=\infty \tag{37}
\end{equation*}
$$

for all $t \geqq a$ or

$$
\lim _{t \rightarrow \infty} \sup P_{l}(t, a) \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) \alpha(s) p_{0}^{-1}[g(s)] \frac{P_{l}[g(s), a]}{P_{l}[h(s), a]} \mathrm{d} s>1
$$

where a is a sufficiently great number is a sufficient condition that there exists no nonoscillatory solution u of the equation (1) with property P_{l}.
The next theorem concerns all solutions of the equation (1). Similarly as in [1] we introduce the definitions.

Definition 2. The equation (1) is said to have property A if for n even each solution u of that equation is oscillatory and for n odd each solution is either oscillatory or satisfies the conditions:
(a) There exists a $t_{1}, t_{1} \geqq t_{0}$, such that $(-1)^{j} \delta L_{j} u(t)>0$ for every $t \geqq t_{1}$, $j=0,1, \ldots, n-1$
and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} L_{j} u(t)=0, \quad j=0,1, \ldots, n-1 \tag{b}
\end{equation*}
$$

Definition 3. The equation (1) is said to have property B if for n even each solution of that equation is either oscillatory or satisfies conditions (a), (b) from Definition 2 or the conditions
(c) There exists a $t_{2}, t_{2} \geqq t_{0}$, such that $\delta L_{i} u(t)>0$ for every $t \geqq t_{2}, i=0,1, \ldots$..., $n-1$;
(d)

$$
\lim _{t \rightarrow \infty} \delta L_{i} u(t)=\infty, \quad i=0, \ldots, n-1
$$

and for n odd each of its solutions is either oscillatory or satisfies conditions (c) and (d).

In both definitions δ means the sign of the nonoscillatory solution u in a neighbourhood of infinity.

Theorem 3. Let the conditions (4), (5), (7), (19) and (32) be satisfied. Further, let the conditions (20) or (20') and (33) or (33') be fulfilled for $l=n-1, n-3, \ldots, 1$ provided n is even $(l=n-1, n-3, \ldots, 2$ provided n is odd $)$.

Then the equation (1) has property A.
Proof. Let u be a nonoscillatory solution of the equation (1). Then, by Lemma 3, there exists an integer $l, 0 \leqq l \leqq n$, with $n+l$ odd, such that the statement of that lemma is true. Hence l is one of the numbers $n-1, n-3, \ldots, 1$ when n is even and l belongs to the set consisting of the numbers $n-1, n-3, \ldots, 2,0$ when n is odd. By Theorem 2 , for $l \neq 0$ no such solution exists. Hence, if n is even, each solution u of (1) is oscillatory and if n is odd, u is either oscillatory or possesses properties (a), (b) from Definition 2. Thus the equation (1) has property A.

Corollary 3. Let the conditions (4), (5), (7), (30) be satisfied. Further, let the conditions (31) or (31'), (37) or (37') be fulfilled for $l=n-1, n-3, \ldots, 1$ provided n is even ($l=n-1, n-3, \ldots, 2$ provided n is odd). Then the equation (1) has property A .

Remark. In the case $n=2, l=1, p_{0}=p_{1}=p_{2} \equiv 1, g(t) \leqq t$, (31) or (31') and (37) or (37') are reduced to the conditions

$$
\int_{t}^{\infty} p(s) \frac{g(s)}{s} \mathrm{~d} s=\infty
$$

and

$$
\lim _{t \rightarrow \infty} \sup t \int_{t}^{\infty} p(s) \frac{g(s)}{s} \mathrm{~d} s>1
$$

Hence Corollary 3 generalizes the first part of Theorem 1 in [3].
If instead of (5) we suppose (6) we obtain the following theorem.
Theorem 4. Let the conditions (4), (6), (7), (19) and (32) be satisfied. Further, let
the conditions (20) or (20') and (33) or (33') be fulfilled for $l=n-2, n-4, \ldots, 2$ for n even $(l=n-2, n-4, \ldots, 3,1$ for n odd $)$. Finally, let the condition

$$
\begin{equation*}
\int_{a}^{\infty} G\left(t, \frac{c P_{n-1}[g(t), a]}{p_{0}[g(t)]}\right) \mathrm{d} t=\infty \tag{38}
\end{equation*}
$$

be fulfilled for each $c>0$ and each sufficiently great a.
Then the equation (1) has property B.
The proof of this theorem proceeds in the same way as that of Theorem 3. Comparing Definition 3 with Lemma 3 yields that the only thing which remains to show is that in the case $l=n$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \delta L_{n-1} u(t)=\infty . \tag{39}
\end{equation*}
$$

Hence let $l=n$. Then by (6), $\delta L_{n-1} u$ is nondecreasing in a neighbourhood of ∞ and hence, by statement (c) in Lemma 3, there exists a constant $c>0$ such that

$$
\begin{equation*}
\delta L_{n-1} u(t) \geqq c>0 \tag{40}
\end{equation*}
$$

in $\langle a, \infty)$. Using the same lemma we obtain by repeated integration of (40) that

$$
\delta L_{n-j} u(t) \geqq c I_{j-1}\left(t, a ; p_{n-j+1}, \ldots, p_{n-1}\right), \quad t \geqq a, \quad j=1, \ldots, n
$$

and thus

$$
\delta L_{0} u(t) \geqq c P_{n-1}(t, a), \quad t \geqq a .
$$

This implies that

$$
\left|L_{n} u(t)\right|=|f(t, u[g(t)])| \geqq G\left(t, \frac{\left|L_{0} u[g(t)]\right|}{p_{0}[g(t)]}\right) \geqq G\left(t, \frac{c P_{n-1}[g(t), a]}{p_{0}[g(t)]}\right), \quad t \geqq a
$$

and in view of (38), (39) follows.
Corollary 4. Let the conditions (4), (6), (7), (30) be satisfied. Further, let the conditions (31) or (31') and (37) or (37') be fulfilled for $l=n-2, n-4, \ldots, 2$ when n is even $(l=n-2, n-4, \ldots, 3,1$ when n is odd $)$. Finally, let the condition

$$
\begin{equation*}
\int_{a}^{\infty} \alpha(t) \frac{P_{n-1}[g(t), a]}{p_{0}[g(t)]} \mathrm{d} t=\infty \tag{41}
\end{equation*}
$$

be fulfilled for all sufficiently great a.
Then the equation (1) has property B.
Theorem 2 does not say anything about the case $l=0$. In a special case of the deviating argument the answer is given by

Theorem 5. Let the conditions (4), (5), (7), (19) and (20) or (20') for $l=0$ (the conditions (4), (6), (7), (19) and (20) or $\left(20^{\prime}\right)$ for $l=0$) be satisfied. Let n be odd (n even). For the function g let there exist an increasing sequence of points $\left\{t_{k}\right\}_{k=1}^{\infty}$ with $\lim _{k \rightarrow \infty} t_{k}=\infty$ such that

$$
\begin{equation*}
g\left(\left\langle t_{k}, \infty\right)\right) \subset\left\langle t_{k}, \infty\right), \quad k=1,2, \ldots \tag{42}
\end{equation*}
$$

In particular, (42) is satisfied when $g(t) \geqq t$ for $t \geqq t_{0}$. Let there exist a function $H=H(t, y): D_{1} \rightarrow\langle 0, \infty)$ which is continuous, nondecreasing in y for each fixed t and such that

$$
\begin{equation*}
|f(t, y)| \leqq H(t,|y|) \tag{43}
\end{equation*}
$$

for every $(t, y) \in D$, and for any sufficiently great number a there exists a $k_{0}, 0<$ $<k_{0}<1$ such that for each $k>0$,

$$
\begin{equation*}
\int_{t}^{\infty} p_{n}^{-1}(s) Q_{1}(s, t) \frac{H\left(s, k p_{0}^{-1}[g(s)]\right)}{k} \mathrm{~d} s \leqq k_{0} \tag{44}
\end{equation*}
$$

for all $t \geqq a$.
Then there is no nonoscillatory solution u of the equation (1) with property P_{0}.
Proof. Let u be an arbitrary nonoscillatory solution of (1) with property P_{0}. Since all assumptions of Theorem 1 for $l=0$ are satisfied, $c_{0}=0$ in (22) or (22') and hence

$$
\left|L_{0} u(t)\right|=\int_{t}^{\infty} p_{n}^{-1}(s) Q_{1}(s, t)\left|f\left(s, \frac{L_{0} u[g(s)]}{p_{0}[g(s)]}\right)\right| \mathrm{d} s
$$

and in view of (43) we have

$$
\begin{equation*}
\left|L_{0} u(t)\right| \leqq \int_{t}^{\infty} p_{n}^{-1}(s) Q_{1}(s, t) H\left(s, \frac{\left|L_{0} u[g(s)]\right|}{p_{0}[g(s)]}\right) \mathrm{d} s . \tag{45}
\end{equation*}
$$

By Lemma 3, $\left|L_{0} u\right|$ is a nonincreasing function which converges to 0 as $t \rightarrow \infty$. Thus for any $\varepsilon>0$ there exists a $t_{k}=a$ satisfying (42) and such that

$$
\begin{equation*}
\left|L_{0} u(t)\right| \leqq\left|L_{0} u\left(t_{k}\right)\right| \leqq \varepsilon \tag{46}
\end{equation*}
$$

for all $t \geqq a$. Putting (46) into (45), on the basis of (44) we come to the inequality

$$
\begin{equation*}
\left|L_{0} u(t)\right| \leqq \int_{t}^{\infty} p_{n}^{-1}(s) Q_{1}(s, t) H\left(s, \varepsilon p_{0}^{-1}[g(s)]\right) \mathrm{d} s \leqq k_{0} \varepsilon \tag{47}
\end{equation*}
$$

for all $t \geqq a$. Hence the inequality (46) in $\langle a, \infty$) has led to the inequality (47) in the same interval. Repeating this process p-times we get that

$$
\left|L_{0} u(t)\right| \leqq k_{0}^{p} \varepsilon
$$

in $\langle a, \infty)$ which for $p \rightarrow \infty$ implies that $L_{0} u(t) \equiv 0$ in $\langle a, \infty)$ which contradicts the condition (3). Hence u with property P_{0} does not exist.

Corollary 5. Let the conditions of Theorem 3 be satisfied. Further, if n is odd, let (20) or (20') for $l=0$, (42), (43), (44) be satisfied. Then each solution of the equation (1) is oscillatory.

Another sufficient condition for the nonexistence of a nonoscillatory solution u of (1) with property P_{l} is given in the next theorem. As usual, let us denote

$$
\begin{equation*}
\gamma(t)=\sup \left\{s \geqq t_{0}: g(s) \leqq t\right\} \text { for all } t \geqq t_{0} \tag{48}
\end{equation*}
$$

With help of this function, we define

$$
m(t)=\max (\gamma(t), t), \quad t \geqq t_{0} .
$$

By virtue of (48) and the continuity of g, for each $s>\gamma(t)$ we have $g(s)>t$ and $g[\gamma(t)]=t$. Hence m possesses the following properties:

$$
\begin{array}{ll}
s \geqq m(t) & \text { implies } g(s) \geqq t, \quad m(t) \geqq t \quad \text { and, further, } \tag{49}\\
& \text { if } g(t) \leqq t, \text { then } m(t)=\gamma(t) .
\end{array}
$$

Theorem 6. Let $1 \leqq l \leqq n-1$ be an integer. Let the conditions (4), (5), (7), (19), (20) or (20') (the conditions (4), (6), (7), (19), (20) or (20')) be satisfied. Further, let (32) be fulfilled. Then the condition:

For each a from a neighbourhood of ∞ either

$$
\begin{equation*}
\int_{m(t)}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G\left(s, p_{0}^{-1}[g(s)]\right) \mathrm{d} s=\infty \tag{50}
\end{equation*}
$$

for all sufficiently great t or

$$
\lim _{t \rightarrow \infty} \sup P_{l}(t, a) \int_{m(t)}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G\left(s, p_{0}^{-1}[g(s)]\right) \mathrm{d} s>1
$$

is a sufficient condition that there exists no nonoscillatory solution u of the equation (1) with property P_{l}.

Proof. If u is a nonoscillatory solution of (1) with property P_{l}, then similarly as in the proof of Theorem 2 we come to the inequality

$$
\begin{align*}
& \left|L_{0} u(t)\right| \geqq P_{l}(t, a) \int_{t}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G(s,|u[g(s)]|) \mathrm{d} s \geqq \\
& \geqq P_{l}(t, a) \int_{m(t)}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G(s,|u[g(s)]|) \mathrm{d} s, t \geqq a .
\end{align*}
$$

Since $\left|L_{0} u\right|$ is increasing, (49) implies that

$$
|u[g(s)]|=\left|L_{0} u[g(s)]\right| p_{0}^{-1}[g(s)] \geqq\left|L_{0} u(t)\right| p_{0}^{-1}[g(s)]
$$

for all $s \geqq m(t)$ and the inequality for $L_{0} u$ turns into

$$
\left|L_{0} u(t)\right| \geqq P_{l}(t, a) \int_{m(t)}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G\left(s,\left|L_{0} u(t)\right| p_{0}^{-1}[g(s)]\right) \mathrm{d} s
$$

which in view of (32) leads to the inequality

$$
1 \geqq P_{l}(t, a) \int_{m(t)}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) G\left(s, p_{0}^{-1}[g(s)]\right) \mathrm{d} s, \quad t \geqq a .
$$

This contradicts (50) or (50^{\prime}) and thus Theorem 6 is proved.
Corollary 6. If the assumptions of Theorem 6 are satisfied but (19) is replaced by (30), (20) or (20') by (31) or (31') and (32) is omitted, then the condition:

Either

$$
\begin{equation*}
\int_{m(t)}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) \alpha(s) p_{0}^{-1}[g(s)] \mathrm{d} s=\infty \tag{51}
\end{equation*}
$$

for all trom a neighbourhood of ∞ or for all sufficiently great a,

$$
\limsup _{t \rightarrow \infty} P_{l}(t, a) \int_{m(t)}^{\infty} p_{n}^{-1}(s) Q_{l+1}(s, t) \alpha(s) p_{0}^{-1}[g(s)] \mathrm{d} s>1,
$$

is sufficient that there exists no nonoscillatory solution u of the equation (1) with property P_{l}.

If instead of Theorem 2 we use Theorem 6 in the proof of Theorem 3, we get
Corollary 7. Let the conditions (4), (5), (7), (19), (32) be satisfied. Further, let the conditions (20) or (20') and (50) or (50') be fulfilled for $l=n-1, n-3, \ldots, 1$ when n is even $(l=n-1, n-3, \ldots, 2$ when n is odd $)$.

Then the equation (1) has property A.
The next corollary is a modification of Theorem 4.
Corollary 8. Let the conditions (4), (6), (7), (19) and (32) be satisfied. Further, let the conditions (20) or $\left(20^{\prime}\right)$ and (50) or $\left(50^{\prime}\right)$ be fulfilled for $l=n-2, n-4, \ldots, 2$ when n is even $(l=n-2, n-4, \ldots, 3,1$ when n is odd $)$. Finally, let the condition (38) be satisfied.

Then the equation (1) has property B .
Remark. In a similar way Corollaries 3, 4 and 5 can be modified.

Literature

[1] Чантурия, Т. А.: О монотонных и колеблющихся решениях обыкновенных дифференциальных уравнений высших порядков, Ann. Polon. Math. 37 (1980), 93-111.
[2] Elias, U.: Generalizations of an Inequality of Kiguradze, J. Math. Anal. Appl. 97 (1983), 277-290.
[3] Ohriska, J.: Oscillation of Second Order Delay and Ordinary Differential Equation, Czech. Math. J. 34 (109) (1984), 107-112.
[4] Philos, Ch. G.: Oscillatory and Asymptotic Behavior of the Bounded Solutions of Differential Equations with Deviating Arguments, Hiroshima Math. J. 8 (1978), 31-48.
[5] Philos, Ch. G.: Oscillatory and asymptotic behaviour of all solutions of differential equations with deviating arguments, Proc. Roy. Soc. Edinburgh 81 A (1978), 195-210.
[6] Philos, Ch. G., Sficas, Y. G. and Staikos, V. A.: Some Results on the Asymptotic Behavior of Nonoscillatory Solutions of Differential Equations with Deviating Arguments, J. Austral. Math. Soc. (Series A) 32 (1982), 295-317.
[7] Švec, M.: Behavior of Nonoscillatory Solutions of Some Nonlinear Differential Equations, Acta Math. Univ. Comen. 39 (1980), 115-130.

Author's address: 84215 Bratislava, Mlynská dolina, Czechoslovakia (Matematicko-fyzikálna fakulta Univerzity Komenského).

