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Czechoslovak Mathematical Journal, 36 (111) 1986, Praha 

NONOSCILLATORY SOLUTIONS OF DIFFERENTIAL EQUATIONS 
WITH DEVIATING ARGUMENT 

VALTER SEDA, Bratislava 

(Received October 25, 1984) 

In the paper a result of J. Ohriska in [3] concerning oscillation of the second order 
Hnear differential equation with delay is extended to an n-th order differential 
equation with deviating argument. The main tool in establishing the results are 
Kiguradze lemmas. 

We consider the differential equation 

(1) L,,y{t)+f{t,y[g{t)]) = 0 

where n > 1, 
L„ y{t) = p„(t) b„- i(o (... IPM (poit) ym' • • •)']' -

Pi, i = 0,1, ...,n are positive and continuous functions on <̂ о? ̂ ) j / i s real valued 
and continuous on D = <Го, oo) x R, g: <(tQ, oo) -> <^Q, OO) is continuous and ô ̂  ^• 

The expressions 

(2) Lo y{t) = Po{t) y{t) , L, y{t) = pit) [L,_ 1 y{i)\ , 1 = 1,2, . . . , /! , 

are called the quasi-derivatives of у at the point t e <fo? ^ ) - We restrict our consider
ations to those solutions of (1) which exist on some ray <^Ty, oo) and satisfy the 
condition 

(3) sup (iXOi- 1̂ ^ ^ < oo} > 0 for any t^ e {Ту, oo) . 

Such a solution is called oscillatory if it has arbitrarily large zeros. Otherwise a solu
tion is called nonoscillatory. The equation (1) is called oscillatory if all solutions 
of (1) are oscillatory. 

Sometimes we will require the following conditions to be satisfied: 

(4) ^^p7\t)dt= œ, i = U2,...,n - 1 ; 

(5) yf{t, y) ^ 0 for all [t, y) e D, and for any interval of the form {t^, oo) with 
t^ ^ to and any function h e C(<ri, со)), f[t, h(t)'] = 0 impUes h{t) = 0; 

(6) yf{t, y) й ^ for all (t, y) E D, and for any interval of the form {t^, oo) with 
t^ ^ 0̂ aiid any function h E C«f i , oo)), f\j, h{t)] = 0 implies h{t) = 0; 

(7) \im g(t) = oo. 
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To obtain the main results we need three lemmas. The first is adapted from the 
papers [1], [4], [5], [7] and contains a generahzation of the well-known first two 
Kiguradze lemmas. 

Lemma 1. Let the condition (4) be satisfied and let y be a positive function on the 
interval {fj, oo), t^ ^ tQ, such that L„y exists on <(̂ i, oo), is of constant sign and is 
not identically zero on any interval of the form (t2^ oo), ?2 ^ ^i-

Then there exists an integer /, 0 ^ / ^ n, with n + I odd for L„y ^ 0 or n + I 
even for L„y ^ 0, such that 

I й n - 1 implies (-1)^"*"-'L .̂ y{t) > 0 for every t ^ t^ ^ 

(j = 1,1 + 1 , . . . , П - 1) , 

/ > 1 implies Li y(t) > 0 for all large t (i = 1, 2, . . . , /— 1) . 

Further, for every i = 0,1, ...,n — 1, lim Liy{t) exists in the extended real 
line jR* = JR u { —00, oo} whereby '"̂ "̂  

for I ^ n — 1 , lim Li y(t) = C| ^ 0 is finite , 
f-*oo 

for 1 ^ n - 2, lim Lj y{t) = 0 (j = I + 1,,.., n - 1) , 
f-»oo 

for / ^ 2 , hm Li y{t) = oo (z = 0 , . . . , / - 2) 
f->00 

Remark . If 1 ^ / ^ n -- 1, the lemma gives no exact result about Ci and Cj_i = 
= lim Li_i y(t). If Ci > 0, then Ci-i = oo. For Ci = 0, c^_i > 0 may be finite or 

infinite as the example of functions 

y,{t) = arc tg t, y[{t) = 1/(1 + t'), yl{t) = -2tl{l + t^y , 

y2{i) = \nt, y'^{t)== \jt, yl{t)= -\\t^ 

with I = \,n =^ 2,PQ = p^ = P2 = I shows. Similarly,if / = и, then limL„_i y{t) = 
= c„_i > 0 may be finite or infinite. "̂""̂  

Define functions 

(8) IQ = 1, h{t, a; pi^, p^^,..., p j = 

Ja ja Ja 

Then the functions 
(9) Xj{t,a) = Pö\t) Ij_^{t, a; pi, p2,..., pj-:^) , j = h2,...,n, 
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form a fundamental system of solutions of the equation L^ x{t) = 0 in <a, со) and 

(10) Lj^^Xj{t, a) = 1 , LiXj{t, a) = 0 for i ^ j , 

LiXj{t, a) > 0 in (a, oo) for i < j — 1 . 

For the sake of brevity, denote 

(11) Po{t, a) = l , Pj{t, a) = Ij{t, a; p„ ..., Pj) , 

j = 1, 2 , . . . , n — 1 , to ^ a S Ь < CO 
and 

(12) Qn{U a) = 1, Qj{t, a) = / „_ / t , a; p„_i, p„_2, . . . , Pj) , 

j = 1, 2, . . . , и - 1 , 0̂ ^ a ^ t < 00 . 

In the case all p^ = 1 

P.{t,a) = ^-^-^, j = 0 , l , . . . , n - l 
ß 

and 

(2.(f, a) = ^ ^ ~ ' ' \ / , j = U...,n-Un. 

Remark . If Z from Lemma 1 satisfies 0 g / ^ n - 1, then by the variation of 
constants formula ( [ l ] , p. 96, (9oi)) with a sufficiently great and with respect to (11) 
and 

Lo y{t) = Y Lj y{a) Pj{t, a) + { p;^\{s) L,+ , y{s) Piu s) ds , t^a 

where Lj y{d) > 0, J = 0, 1, ..., I, and Lf+i y(t) g 0, ^ ^ «, we get that 

L o y ( 0 ^ i : L , j ; ( a ) P , ( ^ a ) . 

In the general case, when y is either positive in a neighbourhood of infinity or 
negative, we come to the inequality 

Щ \L,y{t)\uJ:\Ljy{a)\Plt,a). 
J = 0 

Further, (4) imphes that 
Ph a\ 

Иш - £ ^ i = 0 , j = 0 , l , . . . , / 
f-̂ oo Pi+i\t, a) 

and hence, by (13), 

(14) lim ^ ^ ^ ^ = 0 , k = / + l , . . . , n . 
f->oo Pjyt, a) 
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In the case / = 0, by Lemma 1, \Ьоу\ is a nonincreasing function and hence there 
exists 

(15) '""iTr^-'-
f->oo JTOV^' ^ j 

In the case I S I й n - 1, by Lemma 2.1 ([6], p. 298), 

(16) hm ^^^/ÖI. = Иш Lj y{t) = cj , J = 0, . . .Л 
t-*œ Pj\t, a) t->oo 

whereby \cj\ = oo for j = 0 , . . . , / — 2, and 0 < jc;_ij ^ oo. Thus the following 
statement is true: 

If the conditions of Lemma 1 are satisfied and there is an integer /c, 0 ^ /c ^ n — 2, 
such that 

t-^ooPk{t,a) t->oo Pfe+i(f, a) 

then by the former relation k S I and by the latter /c ^ / — 1, hence 

к is either / — 1 or / . 

U. Elias in [2] has generahzed the third Kiguradze lemma. From his results (Theo
rem 3, case j = к + 1) the following lemma is important for our considerations. 

Lemma 2. Let I be an integer, 1 ^ I ^ n — 1, a e <to, oo). / / the function у 
satisfies 

Loy{a),...,Li^^y{a)'^0, Li+i j(^) ^ 0 for a S t < со , 
then 

(a) f^tyi^) \ ^0, i = 0,l,...,l, a<t <oo 

and 

(b) L, y{t) à L,.^i y(t) J ^ ^ i i i ^ i = 0, 1, ..., / , a < ^ < 00 . 
Li+iXi+i[t, a) 

Hence by (a), (Ъ), (2), (9), {U), 

(cj IS a nonincreasing Junction in [a, oo), 
Pi{t, a) 

(d) Loy{t)^L,y{t)- ^'^^'^^ . i = l , . . . , / , a<t<a, 
LiXi+^[t,a) 

and with respect to (10), 

(e) Lo y{t) ^ Li y{t) Pi{t, a), a й t < со . 
Lemma 3. Let the conditions (4), (5), (7) {the conditions (4), (6), (?)) be satisfied 

and let и be a nonoscillatory solution of the equation (1). Denote by ô the sign of 
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u(^t) in a sufficiently small neighbourhood of infinity. Then there exists a number 
ti, ti ^ 0̂? ^^^ ^^ integer /, 0 ^ / ^ и, with n + / odd {n + / even), such that 

(a) for I S n - 1, (-l)^^-'* ôLj u{t) > 0 for every t ^ t^J = I, I + U ..., n - 1, 
and 

hm Li u[t) = Ci is finite, whereby ^c^ ^ 0 ; 
t-*oo 

(b) for I Sn - 2, 
lim Lj u{t) = 0 , J = / + 1, ..., и - 1 ; 
t-*oo 

(c) for 1^2, 
ôLi u{t) > 0 for all large t, i = 1,2, ..., I — 1 

and 
hm ôLi u(t) = 00 , i = 0, ..., I — 2 ; 

(d) for I ^ n — 1, и is a solution of the integro-differential equation 

(17) L,3;(0 = /̂ + ( - l ) " " ^ ^ ' p,\s)f{s,ylg{s)~\)Q,^^{s,t)ds 

Proof. Suppose и is nonoscillatory and positive in a neighbourhood of infinity. 
If и is negative, the proof can be done in a similar way. With respect to (7), there 
exists a t^, t^ ^ tQ, such that u{t) > 0 and also w[6f(0] > ^ f̂ ^ t ^ t^. Then on the 
basis of (1), (5) imphes ((6) imphes) that L„w g 0 (L„M ^ 0) on <^i, oo) and L„w is 
not identically zero on any interval of the form <Г2, oo), 2̂ è ^i- Hence Lemma 1 
can be apphed. By that lemma the statements (a), (b), (c) are true. 

Suppose now that J ^ n — 1. If/ = n — 1, then integrating we obtain 

Лоо 

L„_i u{i) = c„_i + p~\s)f{s, ulg{s)']) as 

and hence in the case / = n — 1, (17) is satisfied by u. When I ^ n — 2, then taking 
into account (b), by repeated integration we get 

(18) L,<0 = (-iy'-̂ "̂  Pn \s)f{s, w[ö^(s)]) Qj+i{s, t) ds , 

j = n - l,...,l + 1 . 

Finally, integrating (18) for/ = / + 1 we come to the conclusion that w is a solution 
of (17). 

Now we can solve the first problem which is to find a sufficient condition for Ci 
in Lemma 3 to be zero. 

Remark . It is clear that the number / in Lemma 3 is uniquely determined. This 
justifies the following 

Definition 1. Suppose that the conditions (4), (5), (7) (the conditions (4), (6), (7)) 
are satisfied. Let м be a nonoscillatory solution of the equation (1) and ô its sign in 
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a sufficiently small neighbourhood of oo. We say that и has property P^ with I e 
e { 0 , 1 , . . . , n] and n + I is odd (n + / is even) if it has properties (a), (b), (c) from 
Lemma 3. 

We recall that under the conditions (4), (5), (7) (the conditions (4), (6), (7)) each 
nonoscillatory solution of (1) has property P^ with some / e {0, 1, ..., n}. 

Theorem 1. Let the conditions (4), (5), (7) [the conditions (4), (6), (7)) be satisfied 
and let и be a nonoscillatory solution of the equation (1) with property P^, where 
0^1 S n - 1. 

Let there exist a function G = G{t, y): D^ = <̂ о? ^o) x <0, oo) -^ <0, oo), which 
is continuous, nondecreasing in у for each fixed t and such that 

(19) \f{t,y)\^Git,\y\) i{t,y)eD). 

Then the condition: For each к > 0 and each a from a neighbourhood of oo 
either 

/•oo 

(20) p;\s) е^-ы(5, t) G(5, к РоЪШ Pi[g{s), a]) ds = a, 

for all t '^ a or 
/•oo 

(2O0 lim p; '(s) Q,^ ,(s, t) G{s, к p- ' [^(5)] Pгig{s\ ^]) ds > 0 
f - o o j f 

implies that 
(21) ci = hm Li u{t) = 0 . 

f->00 

Remark . Suppose that m: {tg, 00) -^ <0, 00) is a continuous function and let 
us investigate 

(200 Pn \s) Qi+^{s,t)m{s)ds 

which represents the general form of the integrals in (20) or (20'). As the function 
Pn^{s) Qi+i(s, t) m{s) is nonincreasing in the variable t for t < s, s being fixed, and 
nonnegative, two cases are possible concerning (20"). Either |̂ °° Pn^{s) Qi+i{s, t) . 
. m{s) ds = 00 for all t ^ a, or there is SL t^, a ^ t^ < 00, such that ^'^ Pn^{s) • 
. Qi+i{s, t) m{s) ds < CO for all t ^ t^ and this function is nonincreasing in <^i, 00). 
Hence lim Jj^ Pn^{s) Qi+i{s, t) m{s) ds exists and is finite and nonnegative. 

f-^00 

In the case / = n — 1, the condition (20') cannot hold, because if Ĵ °° p~ ^(s) m(s) ds 
exists, then lim Jj^ Pn^{s) m{s) ds = 0. 

t->oo 

Proof of Theo rem 1. Suppose the conditions (4), (5), (7) and (19) are satisfied 
and Ci Ф 0. Then, by Lemma 3,n + lis odd, and hence(17) implies that the equahty 

Л00 

(22) L, u{t) = c, + p;\s) e,+ i(s, t)f{s, u[g{s)]) ds 
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is true. Denote by ô the sign of w in a sufficiently small neighbourhood of oo. Let t^ 
be such that 

(23) ОЦ u{t) > 0 in <fi, oo), i = 0,...J, 

öLi+^ u(t) g 0 in <^i, oo) . 

By (7), there exists an a ^ t^ such that g(t) ^ t^ for each t ^ a. We shall distin
guish two cases: 

L / = 0. 
By (23), SLQU is nonincreasing in {t-^, oo) and as it converges to ÔCQ, we have 

ÖLQU ^ ÔCQ > 0 . 
This implies 

(24) K O i ^ ^ . teO,,œ). 
Po{t) 

(22) can be written in the form 
/»00 

(25) ÔLo u{t) = ÔCo + ô\ p; \s) Qi(s, t)f{s, u[g{s)J) ds . 
J t 

By (5), this means 
Л00 

(26) |Lo u{t)\ = \co\ + p;\s) ßi(s, 0 1/(5, u[g{s)])\ ds 

and hence, (19) and (24) yield 
/•00 

\Lo u(t)\ ^ \co\ + P:\S)G{S, |M[0(S)]|) ßi(5, () ds è 

^ kol + |co| [ % „ - ( . ) ^ ^ o _ ! M ) l ) ß^ ( , , , ) d . 

J t Ы 
which gives 

(27) , È j-bL Л + r ,;.(,) e,,,,,) ощ^т) A 
and this contradicts (20) or (20') because 

lim J £ o L ^ 1 . 
f̂ oo \LQ u[t)\ 

2. 1 й I è n - 1. 
By Lemma 2, ÔLQ u(t) ^ ^L^ w(0 Pi{t, a) for all f ^ a and hence, with respect 

to (22), 
ÖLo u{t) ^ ÔLi u{t) Pi{t, a) = 

/*00 

= ÔCi Pit, a) + Pit, a) p; \s) e,+ i(s, /) | / (s , M[^(S)]) | ds ^ 

Лоо 

^ |c,| P,(f, fl) + Pit, a) p;\s) ß,+ i(s, t) G{s, \u[g(s)]\) ds , t ^ a . 
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Thus 
Лоо 

(28) |Lo u{t)\ è |c,| P,{t, a) + P/,t, a) p;\s) Q,^,{s, t) . 
J t 

• G(s, |«[ö(s)]|) as, aut< CO. 

This implies that 

|Lo u{t)\ ^ \c,\ Pit, a) 

and 

|u(f)| ^ |c;|x,+ i ( f , a ) , t ^ a . 

Therefore 

for alU ^ Ь such that ^((0 ^ a for ^ ^ b. Then 

As hm Li u{t) = Cj ф 0, Lemma 3, [5], p. 199 yields 

lim : ^ - ^ = hm L, u{t) = c^, 
f->oo Pi{t, a) t^oo 

which shows that (29) contradicts (20) or (20'). 
Let now the conditions (4), (6), (7), (19) be satisfied. Then, by Lemma 3, n + I 

is even, and instead of (22) we have 

(22') Li u{t) = ci p;4^)e^+i(^'0/(^'^[^(^)])^^ 

The relations (23), (24) remain valid. 
When I = 0, from (22') we get 

Л00 

(25') <5Lo u(0 =ôc^-ô\ p; \s) Ôi(s, t)f{s, u[g{sj]) ds . 

Again we come to (26) and (27) which imphes that (21) is true. 

When 1 g г ^ n - 1, we obtain (28) and (29). This gives that (20) or (20') implies 
(21). 

Corollary 1. Suppose that all assumptions of Theorem 1 are satisfied but (19) 
is replaced by 
(30) \f{t,y)\^a{t)\y\ {{t,y)eD), 

where a e C(<((„ oo)) is a nonnegative function. Let и be a nonoscillatory solution 
of the equation (1) with property P, and let I satisfy 0 ^ / ^ n — 1. 
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Then the condition: For each a from a neighbourhood of oo either 

(31) г p;\s) Ô,+ i(5, t) a(s) РоЪШ Р,Ы^)' «] ds = 00 

for all t ^ a, or 

(ЗГ) lim Pn '{s) Ô^+i(s, t) a{s) po ^[g{s)] Pi[g{s), a] ds > 0 , 

is sufficient for the equality 
Ci = lim Li u{t) = 0 

to hold. 

Remark . In the special case g(t) = t the condition (ЗГ) is weaker than the con
dition (38') in [7], p. 127, 

-~7V-7 ^ ^^(' ' ^̂  0^+^^'' t)ds = CO 
t Po{s)Pn[S) 

and hence Corollary 1 improves and generalizes the sufficient condition in Corollary 1 
to Theorem 6 in that paper when h = h{t, y). 

Denote 
h{t) = max [ï, max gÇsJ] for all t '^ a , 

where a has the same meaning as in Theorem 1. Clearly h{t) ^ t and h is non-
decreasing in {a, oo). 

Theorem 2. Let l ^ l ^ n — lbean integer. Let the conditions (4), (5), (7), (19), 
(20) or (20') {the conditions (4), (6), (7), (19), (20) or (20')) fee satisfied. Let n + I 
be odd {n + I be even). Let the function G be such that 

(32) G{t, ky) ^ к G{t, y) 

for each к > 0 and each {t, y) e D^. 
Then the condition: For each a from a neighbourhood of oo either 

(33) j % - ( . ) ß , , , ( . , O G ( s , p o ' [ ^ ) ] ^ ^ ] ) d s = a ) 

for all t ^ a or 

(33') l imsupP,(f ,a) {\;'is) Qi,,(s, t) G(S,p-'[g{s)]^^-^^^ > 1 

is a sufficient condition that there exists no nonoscillatory solution и of the equation 
(1) with property Pf. 

Proof. Let и be an arbitrary nonoscillatory solution of (l) such that the integer / 
from Lemma 3 satisfies 1 -^ I ^ n — 1. As all assumptions of Theorem 1 are 
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satisfied, C/ = О in (22) or (22') and hence и satisfies (28) in the form 
1*00 

(280 1̂ 0 ^(01 ^ Piit^ ^) Pn \s) Ô,+1(5, 0 G(5, \u[g{s)]\) ds . 

As |LOW| is an increasing function and h[t) ^ t, 

(34) |Low[ft(0]| ^ |bo w(01 for all t ^ a. 

By Lemma 2, [LQ u(t)\lPi{t, a) is a nonincreasing function in (a, 00) and hence, 
g(s) S h(s) implies 

(35) K.(^)]| = J ^ f ^ l ^ 1 Ш ^ ^ ,b,u[4s)]| . 

Further, h is nondecreasing and therefore 

(36) |bow[/z(5)]| ^ |Low[/z(0]| , ^ ^ ^. 

Putting (34), (35) and (36) into (28') we get 

\L,u[h{t)]\ ^ P,{t, a) f % - ( 5 ) Q,,,{s, t) G (s, - ^ ^ j f ^ |bot^[40]i) as . 
Jt \ Polg{s)iPi[h{s),aj ) 

Now using (32) we come to the inequaUty 

1 ^ Pit. a) Г Vn\^ QiUs, t) G (s, p^^is)! Й т г Н ) ^' 

which contradicts (33) or (33'). 
Corollary 2. / / the assumptions of Theorem 2 are satisfied but (19) /5 replaced 

by (30), (20) or (20') by (31) or (ЗГ) and (32) is omitted, then the condition: For 
each a from a neighbourhood of 00 either 

(37) Г p;4s) QUs> t) a(s) Ро'Ы^П Ш ^ d5 = О) 

for all t "^ a or 

(37') lim sup Pit, a) Г p;\s) Q,U^, t) a{s) p-,\g{s)\ ^ ^ ^ ds > 1 
t-o) J , Pi\h[s),a\ 

where a is a sufficiently great number is a sufficient condition that there exists 
no nonoscillatory solution и of the equation (l) with property P^. 

The next theorem concerns all solutions of the equation (1). Similarly as in [1] 
we introduce the definitions. 

Definition 2. The equation (1) is said to have property A if for n even each solution и 
of that equation is oscillatory and for n odd each solution is either oscillatory or 
satisfies the conditions: 

(a) There exists a t^, t^ ^ tQ, such that (—1)-̂ ' ô Lj u(t) > 0 for every t ^ t^ , 
j = 0 , 1 , . . . , / ! - 1 
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and 
(b) lim Lj u{t) = 0 , j = 0 , 1 , . . . , n - 1 . 

Definition 3. The equation (1) is said to have property В if for n even each solution 
of that equation is either oscillatory or satisfies conditions (a), (b) from Definition 2 
or the conditions 

(c) There exists a ^2, ?2 = ô? such that ôL^ u{t) > 0 for every ^ ^ ^2, i = 0, 1 , . . . 
,..,n — 1; 

(d) lim ОЦ u(t) = 00 , г = 0 , . . . , и — 1 , 
t->oo 

and for n odd each of its solutions is either oscillatory or satisfies conditions (c) 
and (d). 

In both definitions S means the sign of the nonoscillatory solution w in a neigh
bourhood of infinity. 

Theorem 3. Let the conditions (4), (5), (7), (19) and (32) be satisfied. Further, let 
the conditions (20) or (20') and (33) or (33') be fulfilled for I = n — 1, n — 3, ...,1 
provided n is even (/ = и — 1, w — 3 , . . . , 2 provided n is odd). 

Then the equation (l) has property A. 
Proof. Let w be a nonoscillatory solution of the equation (l). Then, by Lemma 3, 

there exists an integer 1,0 ^ I ^ n, with n + I odd, such that the statement of that 
lemma is true. Hence / is one of the numbers n — 1, n — 3, ...,1 when n is even 
and / belongs to the set consisting of the numbers n — 1, n — 3 , . . . , 2, 0 when n is 
odd. By Theorem 2, for / Ф 0 no such solution exists. Hence, if n is even, each 
solution и of (1) is oscillatory and if n is odd, и is either oscillatory or possesses 
properties (a), (b) from Definition 2. Thus the equation (1) has property A. 

Corollary 3. Let the conditions (4), (5), (7), (30) be satisfied. Further, let the 
conditions (31) or (ЗГ), (37) or (37') be fulfilled for / = n — 1, и — 3 , . . . , 1 provided 
n is even (I = n — 1, n — 3, ...,2 provided n is odd). Then the equation (1) has 
property A. 

Remark . In the case n = 2, I = 1, Po = Pi = Pi ~ ^^ 6̂ (0 = '̂ (^0 ^^ (^^0 
and (37) or (37') are reduced to the conditions 

and 

hm sup t 

00 
s 

f-»00 

p{s)^ds>l.. 

Hence Corollary 3 generahzes the first part of Theorem 1 in [3]. 
If instead of (5) we suppose (6) we obtain the following theorem. 

Theorem 4. Let the conditions (4), (6), (7), (19) and (32) be satisfied. Further, let 
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the conditions (20) or (20') and (33) or (33') be fulfilled for I = n — 2, n — 4, ...,2 
for n even (/ = n ~ 2, n — 4 , . . . , 3, Ifor n odd). Finally, let the condition 

be fulfilled for each с > 0 and each sufficiently great a. 
Then the equation (l) has property B. 
The p roof of this theorem proceeds in the same way as that of Theorem 3. 

Comparing Definition 3 with Lemma 3 yields that the only thing which remains 
to show is that in the case I — n, 

(39) Um^L„_i w(0 = 00 . 
t->00 

Hence let / = n. Then by (6), ôL^^^^u is nondecreasing in a neighbourhood of oo 
and hence, by statement (c) in Lemma 3, there exists a constant с > 0 such that 

(40) (5L„_iw(^) ^ о 0 

in <a, oo). Using the same lemma we obtain by repeated integration of (40) that 

ÔL„^ju{t) ^ c/y_i(r, a; p„_y+i, ...,!)„_.i), t ^ a , j = 1 , . . . , и 

and thus 
ÖLou{t) ^ cP,,_i(r, a ) , t '^ a . 

This implies that 

IL., u(t)\ = [fit, иЫт 1 G (и J M # I \ ^ G (t, £ Z . . - M i M \ .^a L.,u{t)\ = \f{t,u[gm\ 1 ^ ( ^ ' 7 ^ 1 ^ ) ^ ^(^' 
i'o[â'(0] 

and in view of (38), (39) follows. 

Corollary 4. Let the conditions (4), (6), (7), (30) be satisfied. Further, let the con
ditions (31) or (31') and (37) or (37') be fulfilled for I = n — 2, n — 4, ...,2 when n 
is even (/ = n — 2, n — 4, ..., 3, 1 when n is odd). Finally, let the condition 

P„_i[^(t),a] /•oo 

(41) J a{t)- dt = OO 
Po[Q{t)] 

be fulfilled for all sufficiently great a. 
Then the equation (1) has property B. 
Theorem 2 does not say anything about the case / = 0. In a special case of the 

deviating argument the answer is given by 

Theorem 5. Let the conditions (4), (5), (7), (19) and (20) or (20') for I = 0 {the 
conditions (4), (6), (7), (19) and (20) or (20') for I = 0) be satisfied. Let n be odd 
(и even). For the function g let there exist an increasing sequence of points {tfc}^=i 
with Mm tj^ = CO such that 

k->oo 

(42) g({t„ со)) с <f„ oo), fc = 1, 2 , . . . . 
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In particular, (42) is satisfied when g{t) ^ t for t ^ t^. Let there exist a function 
H — H(t, y): D^ -> <0, oo) which is continuous, nondecreasing in y for each fixed t 
and such that 

(43) \f{t,y)\uH{t,\y\) 

for every (t, y) e D, and for any sufficiently great number a there exists a ICQ, 0 < 
< /co < 1 such that for each к > 0, 

(44) J%;4^)a.(M)'«^'-fW'№d,s,,„ 
for all t ^ a. 

Then there is no nonoscillatory solution и of the equation (1) with property PQ. 
Proof. Let и be an arbitrary nonoscillatory solution of (1) with property PQ. 

Since all assumptions of Theorem 1 for / = 0 are satisfied, Co = 0 in (22) or (22') 
and hence 

l-Lo «(01 = Г Pn\.^) ßi(s, t) \f(s, ^УЛ^Ш\\ as 

and in view of (43) we have 

(45) |Lo40i ^ r p ; ' ^ Q A s . i ) H ( s ^ ^ 
Jt \ РоЬШ J 

By Lemma 3, \LQU\ is a nonincreasing function which converges to 0 as ^ -^ oo. 
Thus for any г > 0 there exists ditj, = a satisfying (42) and such that 

(46) |Lo u{i)\ й \Lo u{t,)\ ^ 8 

for all t "^ a. Putting (46) into (45), on the basis of (44) we come to the inequality 

(47) JLo u{t)\ й Pn \^ ßi(s, 0 H{^' >''Po ' [зШ as й Кг 

for all t ^ a. Hence the inequahty (46) in <(a, oo) has led to the inequality (47) in 
the same interval. Repeating this process p-times we get that 

|Lo u{t)\ й Кг 

in <a, oo) which for p -^ со implies that LQ u(t) = 0 in <^a, oo) which contradicts 
the condition (3). Hence и with property PQ does not exist. 

Corollary 5. Let the conditions of Theorem 3 be satisfied. Further, if n is odd, 
let (20) or (20') for I = 0, (42), (43), (44) be satisfied. Then each solution of the 
equation (1) is oscillatory. 

Another sufficient condition for the nonexistence of a nonoscillatory solution и 
of (1) with property P^ is given in the next theorem. As usual, let us denote 

(48) y{t) = sup {s ^ toi g{s) й t} for all t-^ to , 
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With help of this function, we define 

m{t) = max {y{t), t) , t '^ t^ , 

By virtue of (48) and the continuity of g, for each s > y{t) we have g{s) > t and 
ör[7(^)] = t. Hence m possesses the following properties: 

(49) s ^ m{t) implies g{s) ^ t, m{t) ^ t and, further, 

if g{t) й t, then m{t) = y(t) . 

Theorem 6. Let 1 ^ / ^ n — 1 be an integer. Let the conditions (4), (5), (7), (19), 
(20) or (20') {the conditions (4), (6), (7), (19), (20) or (20')) be satisfied. Further, 
let (32) be fulfilled. Then the condition: 

For each a from a neighbourhood of со either 
r*oo 

(50) p;\s) Q,^,{s, t) G{s, pôyisj]) ds=œ 
J in(t) 

for all sufficiently great t or 
/•OO 

(50') lim sup P,{t, a) p; \s) 6^+ i(s, t) G{s, pö ' [g{s)]) ds > 1 
^•^°° J mit) 

is a sufficient condition that there exists no nonoscillatory solution и of the equation 
(l) with property P/. 

Proof. If w is a nonoscillatory solution of (1) with property Pi, then similarly as 
in the proof of Theorem 2 we come to the inequahty 

/ •00 

(28') ]Lo u{t)\ г Pit, a) p;\s) Q,^,{s, t) G{s, \u[g(s)-]\) ds ^ 
J ( 

ЛсХ) 

^ Pi{t, a) p;\s) Qi^,{s, t) G{s, \u[g{sy\\) ds , t ^ a , 
J mit) 

Since \LQU\ is increasing, (49) implies that 

\u{g{s)-\\ = \Lou[g{s)]\ РоЪШ ^ \LO u{t)\ РоЪШ 

for all s ^ m{t) and the inequality for LQU turns into 
Лео 

|Lo u{t)\ ^ Pi(t, a) p; \s) ß,+ i(s, 0 G{s, \Lo u{t)\ pô ' [âr(s)]) ds 
J mit) 

which in view of (32) leads to the inequality 
ЛоО 

1 ^ Pit, a) p;'{s) Qi^ i(s, t) G{s, роЪШ as, t ^ a . 
J mit) 

This contradicts (50) or (50') and thus Theorem 6 is proved. 

Corollary 6. / / the assumptions of Theorem 6 are satisfied but (19) is replaced 
by (30), (20) or (20') by (31) or (ЗГ) and (32) is omitted, then the condition: 
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Either 

(51) p;\s) 61+1(5, t) a{s) роЪ{')] ds= œ 

J m(t) 

for all t from a neighbourhood of 00 or for all sufficiently great a, 

(5Г) lim sup Pi{t, a) p; \s) 0^+1(5, t) a{s) p- ' [g{s)] ds > 1 , 
^-"^ Jm(0 

is sufficient that there exists no nonoscillatory solution и of the equation (l) with 
property Fl. 

If instead of Theorem 2 we use Theorem 6 in the proof of Theorem 3, we get 

Corollary 7. Let the conditions (4), (5), (7), (19), (32) be satisfied. Further, let the 
conditions (20) or (20') and (50) or (50') be fulfilled for I = n — 1, n ~ 3, ..., 1 
when n is even [l = n — 1, n — 3, ...,2 when n is odd). 

Then the equation (l) has property A. 

The next corollary is a modification of Theorem 4. 

Corollary 8. Let the conditions (4), (6), (7), (19) and (32) be satisfied. Further, 
let the conditions (20) or (20') and (50) or (50') be fulfilled for I — n — 2,n ~ 4, ...,2 
when n is even (I = n ~ 2, n -^ 4,..., 3, 1 when n is odd). Finally, let the condition 
(38) be satisfied. 

Then the equation (1) has property B. 

Remark . In a similar way Corollaries 3, 4 and 5 can be modified. 
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