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0. INTRODUCTION

The theory of random operators was initiated in the 1950’s by the Prague School
of mathematicians around Spacek and Hans. Such “operators” are simply m easurable
(in some sense) families of operators parametrized by points of a probability space.
Various problems were studied in this theory: random inverses and generalized
inverses, random solutions of random equations, random fixed points, etc. (see,
for example, [1, 2, 4] and references in these papers). The theory covers many im-
portant classes of random operators such as ordinary and partial differential opera-
tors with random coefficients, integral operators with random kernels etc. But it
should be noted that there are some examples forcing us to extend the notion of
random operator (see [9]). Nonetheless, the present paper deals with the usual
random operators only. Its main aim is to prove existence of random regularizers
to Fredholm random operators. This is closely related to the work of H. W. Engl
and M. Z. Nashed [4]. Our approach is based on examining finite (co)dimensional
random subspaces of Banach spaces and is partially inspired by works of S. G. Krein
and others on continuous and analytic families of operators (see the survey [7]).

The author would like to thank H. W. Engl for detailed information on his work
and V. E. Ljance for helpful discussions.

1. PRELIMINARIES

Let E and F be separable Banach spaces (real or complex) and let L(E, F) be
the space of all bounded linear operators from E into F. Let (Q, <, p) be a probability
space, i.e. Q is a set with a s-algebra &/ and with a measure p such that 4 Q) = 1.
(In fact we may suppose the measure p only to be o-finite.) We will suppose u to
be a complete measure. This assumption may be omitted if we replace “all w”
by “almost all @” in our results. ‘

A family A(w) e L(E, F), w € Q, is called a random operator if for any u € E the
F-valued function A(w) u is p-measurable. A family M(w) < E, w € Q, of subsets
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is called a random subset in E if for any open U < E the set {w € @ | M.w) n U * 0}
is measurable (in [4] the term “measurable family” is used, but here these words
have another meaning). It is known [4] that for any random operator A'w) € L(E,F)
the families ker A(w), im A(w) and im A(w) are random subspaces. As usual we
denote by ker 4 and im A4 the kernel (or null-space) and the image (or range) of 4,
respectively.

Later we will study Fredholm random operators. One says that A(w) is a Fredholm
random operator (or Noether in terms of [8]) if A(w) is a Fredholm operator for any
we Q, i.e. dim ker A(w) < oo and codim im 4(w) < co.

We denote by G(E) the set of all closed subspaces in the space E. There is a metric
on G(E) called an opening or a gap [5]. It is defined by the formula

d(M, N) = max [ sup dist (u, Sy), sup dist (v, Sy)] ,
ueSne veSN
where M, N € G(E) and Sy, Sy are the unit spheres in M and N, respectively. The
metric space (G(E), d) is complete.

Taking the annihilator M+ M* we obtain the isometric homeomorphism
1:G(E) >~ G(E*), where the asterisk stands for the dual Banach space. Denote
by G(E) or G’(E) the set of all subspaces in E having a finite dimension or codimen-
sion, respectively. For any ne Z, set

G,E) = {MeG(E)| dimM = n},
G'(E) = {M e G(E)| codim M = n}.
They all are open-closed subsets in G(E). The same is true for
G, E) = U G(E),

neZ +

G/(E) = U G'(E).

neZ 4
The map L induces homeomorphisms G,(E) >~ G"(E*) and G"(E) —»~ G,(E¥*).
The following statement is well-known.

Lemma. The spaces G,(E), ne Z,, and G,(E) are separable. If E* is separable,
then G'(E), ne Z,, and G’(E) are separable as well.

Proof. Let R(E) = E x ... x E = E" be the set of all linearly independent
[ —

n-tuples (ey, ..., e,), e; € E (n-frames). The map
(1 R,E) - G,(E),
(eg, ..., e,) >span(ey, ..., e,)

is continuous and onto. As R,(E) is separable, this implies separability of G,(E).
The second statement is obvious in view of the homeomorphism L. []
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2. RANDOM LINEAR SUBSPACES

Any family of subspaces M(w) < E, w € Q, induces a map M: Q - G(E). We
say that M(w) is measurable if the map M is measurable with respect to the canonical
Borel structure on G(E) induced by the metric d. Itis easy to see that any measurable
family is a random subspace. The family M(w) is called finite-dimensional (or
having a finite codimension), if dim M(w) < o (codim M(w) < oo, respectively)
for any w e Q.

Theorem 1. Assume that M(w) < E is a finite-dimensional random subspace
(or has a finite codimension and E* is separable). Then the integer-valued function
dim M(w) (codim M(w), respectively) is measurable.

Proof. In view of duality M < M* it is sufficient to prove the dim-assertion only.
For any n-frame f = (f, ..., f,) € R,(E) we define r(f) as the radius of the maximal
ball in E" with the center f which is contained in R,(E), i.e. B(f; r{f)) = R(E).
Here and in the sequel,
B(f;r) ={g||f — 9] <7}
is the open ball centered at f with the radius r, E" is endowed with the norm
u]|en = max {{|u;|g, u = (uy, ..., u,)} .

Let us consider {f'} .z, = {(fi,..-»f2)}1z., @ countable dense subset in R,(E),
and set r, = r(f'). Define the following (evidently, measurable) sets

;= {we 2 M(w) " B(f}, ) + 0},
% =0N2,; Q= Ll)Qf,,
j
where le Z, and j = 1, ..., n. Then
Q, = {we Q| dim M(w) = n} .
Actually, if w € Q,, then w € @}, for some [ e Z,. Hence
B(f,r)n M) +0, j=1,..,n,
and we see that there is an n-frame in M() lying in B(f?; r;). Thus
(2) dim M(w) 2 n.

Conversely, suppose that (2) is fulfilled. Then there is an n-frame f = M(w).
For any given sufficiently small ¢ > 0 we may find f* such that

If = FYen<e.
For r = r(f) it is easy to see that

B(fir —e)UB(f';r,—¢) = Bf;r)n B.f'r)
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and, as a consequence, |r - r,| < &. Therefore, if ¢ < r/2, then r, >r —¢ >
> /2 > & Hence f e B(f'; r;) and » € Q.. The proof is complete. []

Theorem 2. Let M(w) be a random subspace in E. If M(w) is finite-dimensional,
then it is measurable. If E¥* is separable and M!w) is of finite codimension, then it
is measurable as well.

Proof. As above it is sufficient to prove the first statement only. By Theorem 1,
without loss of generality we may assume that dim M(w) = n.

As the canonical map R,(E) — G,(E) defined by (1) is continuous, it is suf-
ficient to construct a measurable n-frame

(3) f(@) = (fi(@), ... fi(w)) = M(0)

(measurable in the sense that f: @ — R,(E) is a measurable map). To select f(w) we
use the following recurrent procedure.
The family M{w) and, as a consequence,

S = SN M(w)

are measurable multivalued maps with closed values. Here S is the unit sphere
of E. Therefore, by the fundamental theorem of K. Kuratowskiand C. Ryll-Nardzewski
[6, 3] there is a measurable selection f3(®) € Sy (,,). Now we suppose that a measurable
k-frame

(fi(@), ... filw)) e M(w), 1£k<n,

has been constructed. In addition we may suppose that |f(w)]| =1,j=1,..., k.
Denote by U, w) the r-neighbourhood (r < 1) of span (fy(®), ..., fi()). It is not
hard to verify that U,(w) and

Vi) = S o (M(0) UL)
are measurable multivalued maps and the latter has closed values. By the Kuratowski
and Ryll-Nardzewski theorem there is a measurable selection fy. ()€ V().

Obviously
(fi®), -..s frs1(0)) = M(w)

is a unit (k + 1)-frame. Thus we can construct the required n-frame and the proof
is complete. []

The following statement is our key step.

Theorem 3. Suppose E* is separable and M(w) is a random subspace in E of
a finite dimension or codimension. Then there is a random direct complement
t0o M(w).

Proof. It is sufficient to consider the case of finite dimension only. By Lemma
there is a countable dense subset {N;} ez, in G/(E). Set

Q ={weQ Mw) @®N, =E}.
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The set of all direct complements to a fixed subspace is open in G(E) (stability of

direct complements). In view of Theorem 2 this implies that all Q, are measurable.

Further, stability of direct complements implies that Q = (JQ,. Hence we may con-
1

struct a random direct complement N(w) to M(w) by the formula
N(w)=N,, oe2\UiZ12)
and the proof is complete. [J
Remark 1. Theorem 3 implies existence of a random projector onto M(w)

Remark 2. V. E. Ljance suggested another proof of Theorem 3. We may suppose
that dim M(w) = n. Let (fi(®), ..., f,(w)) be a measurable basis for M(w). By
a standard argument we can prove the random version of the Hahn-Banach theorem.
Hence we may construct the biorthogonal n-frame (fY(), ..., "(w)) = E*. It is
easy to see that the subspace

N(w) = {ue E| {f/(w),uy =0, j=1,...,n}

is a random direct complement to M(w).

3. RANDOM FREDHOLM OPERATORS

Now we consider random Fredholm operators A’w) from E into F. If we assume F*
to be separable, then Theorem 1 implies that the integer-valued functions

dim ker A(w),

codim im A(w) = dim coker A{w),
and
index A(w) = dim ker A(w) — dim coker A{w)
are measurable.

Now we consider the problem of existence of random regularizers to random Fred-
holm operators. Recall that a linear operator B is a regularizer to a linear operator A,
if both the composition AB and BA are of the form “identity plus a compact opera-
tor”. In addition, if B is invertible, we say that B is an equivalent regularizer.
It is well-known that A has a regularizer if and only if it is Fredholm. An equivalent
regularizer to A exists if and only if A4 is a Fredholm operator of zero index. For the
general theory of Fredholm operators including regularizers see, for example, [8].
Up to the end of the paper we shall assume both the spaces E* and F* to be separable.

Theorem 4. Suppose E* and F* are separable. Then any random Fredholm
operator from E into F has a random regularizer.

Proof. Such a regularizer may be constructed in the following way. Let M(w)
and N(w) be random direct complements to im A(w) and ker A(w), respectively.
They exist in view of Theorem 3. Let P(w) be the projector onto im A(w) along M(w)
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and let A(w) be the restriction A(®)|y, considered as a map from N ) into
im A(w). Then

4) Bw) = (4(w))™" P(w)

is a random operator by [4, Theorem 5.9]. It is evident that Bw) is a regularizer
to A(w) forany we Q. [

Remark 3. For the regularizers constructed by the formula (4) we see that both
A(w) B(w) and B{w) A(w) are of the form “identity plus a random finite-dimensional
operator”.

Theorem 5. Assume E* and F* to be separable. Then any random Fredholm
operator from E into F with zero index has an equivalent regularizer.

Proof. We use the notations as in the proof of Theorem 4. By Theorem 1, without
loss of generality we may assume that dim ker A(w) = dim M(w) = n. Choose
measurable bases (e;(w), ..., e,(®)) and

(fi(®), ... fi{w)) in ker A(w) and M(w),
respectively. Consider the map T(w): M(w) — ker A(w) defined by
T(o): fw)—efw), j=1,...n

It is not hard to verify that

By() = T\0) (I - P(w))
is a random operator. Then

B(w) = B(w) + By(w),
where B(w) defined by (4) is the required equivalent regularizer. [

Remark 4. As usual (see [8]), Theorem 5 implies that under our separability
assumption on E* and F* any random Fredholm operator 4(w) with index A(w) = 0
has the form

A(w) = V(o) + K(w),

where the random operators V(w) and K(w) are invertible and compact, respectively.
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