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1. INTRODUCTION, STATEMENT OF THE MAIN RESULTS

The purpose of this paper is to deal with some types of nonlinear telegraph
and beam equations. We are interested in the case when the nonlinear term in the
equation depends not only on the time and space variables (f and x), on the behaviour
of the solution u(t, x), but also when it depends on the behaviour of the solution at
some fixed time ¢t = t,.

More precisely, we shall study the existence of generalized periodic solutions
(GPS) of a nonlinear telegraph equation of the form

(1.1) Bu, + uy — uy — W(t, x, u(t, x), u(ty, x)) = g(t, x),
and the existence of the GPS of a nonlinear beam equation
(12) ﬁut + Ut + Usxxx — l//(t’ X, M(t, X), u(t09 X)) = g(t, x) >

(where B =+ 0).

In the sequel we shall denote by I the open interval ]0, 275[, N and R will denote the
set of positive integers and real numbers, respectively. Let us denote by H the space
of all measurable real valued functions u(t, x) defined a.e. in R* which are 2n-periodic
in variables ¢ and x, i.e. u(t + 2n, x 4+ 2n) = u(t + 27, x) = u(t, x + 2n) = u(t, x)
for almost all (t, x) e R?, and which are square integrable over I*> = I x I. The
symbol C5;Z, where p, g e N L {0}, will denote the space of all continuous functions
on R? which are 2n-periodic in both variables and such that the partial derivatives
of order p with respect to ¢t and partial derivatives of order g with respect to x are
continuous on R?, while C,, is used for C3;°. Let us denote by ||+ || and (+, -) the norm
and the scalar product in H, respectively, and by |||+ the usual norm in C,,.

Let H”? denote the Sobolev space of functions from H, the partial derivatives of
which up to order p with respect to ¢ and up to order g with respect to x belong to H
(see e.g. Vejvoda [8]).

Let us suppose that

Y, x5z IxIXxRXR->R
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is a Caratheodory’s function, i.e., it is continuous in (s, z) for a.a. (, x) € I* and
measurable in (1, x) for all (s, z) e R*. Suppose that there exist a function r{t, x) €
€ L*(I?) and a real constant ¢ > 0 such that

(1.3) [Wit, x, s, 2)| < r(t, x) + cls|
for all (¢, x) e I%, (s, z) € R,

Let us remark that under the assumption (1.3) the Nemytskii operator u —
= Y(t, x, u(t, x), u(to, x)) is well defined from C,, into H.

Definition. GPS of (1.1) is a real valued function u € C,, such that

(1.4) (uy =P, + v, — v4y) = (Y(1, x, u(t, x), u(te, x)) + g(t, x), v)
holds for each v e C3;2.
Analogously, GPS of (1.2) is a real valued function u € C,, such that

(1.5) (u, =B, + vy + V) = (Y(1, x, u(t, x), u(to, x)) + g(t, x), v)

holds for each v € C3;*. Our aim was to state sufficient conditions on the nonlinearity
¥ for the periodic problem for the equation (1.1) or (1.2) to have at least one GPS
for an arbitrary right-hand side g € H. Let us remark that the generalized periodic
solvability of the equation (1.1) was studied by Fu¢ik, Mawhin [3] and the generalized
periodic solvability of the equation (1.2) by Krejéi [4]. In both papers it is essential
that the nonlinearity  depends only on u(t, x) and that the limits

lim @—;u, lim M:v
s>+ § s>—wo §
exist.

On the other hand, our assumptions allow some bounded oscillations of the
nonlinear function y (when |s| - c0) which may be caused by the behaviour of the
solution u(t, x) at some fixed time level ¢,.

More precisely, we shall suppose that there exist bounded measurable functions

V_ (X, 2), ¥4 (%, z) such that
(1.6) lim v(t x, 5, 2) =yY_o(x,2), lim ¥(t.x, 5, 2) =YX, 2)
s =00 s—+ 00 N

uniformly with respect to ¢, x, z, in the sense of the L®-norm.
As an example the reader may bear in mind the function

(17 ¥(t,x,s,2) = p(x) s*(1 + sinz) + v(x)s™(cos z — 1) + /|s|sin ¢,

(t,x)e1? (s,z) e R?, where s*, s~ denote the positive and negative parts of s,
respectively. '
Let us formulate our main results. Analogously as in [3], put

M= {(n,v)eR* p <0, v<0}u

© k
Ukll)o {(y, v eR?; Ju > 5 w1 < NARS \/y},
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where

kt k
o7) = , 're]i,+00|:.

2t — k

It is easy to see that .# is the union of components of R* which have a nonempty
intersection with the diagonal /# = /v, and which are separated by the curves

k/u k
Co=v=— Y| >Z5, k=0,1,2,....
(= 2 /n—k Ju 2

\lv

G
G
N . - C’ C.
0 17 2 3 Vu

Figure 1.

Our main result concerning the solvability of the equation (1.1) is formulated in
the following theorem.

Theorem 1. Let us suppose that there exist k € N U {0}, (t, vi) € G, (Hies 1> Vs 1)E
€ C,., and a sufficiently small n > O such that either

(1~8) e+ = Wag(x, Z) Sy =N, e tn s ‘//—oo(x’ Z) S Vs — 1
and w, + N, Vg + N, Wer1 — N Vi1 — 1 do not belong to any C; or
(18’) 'l/+oo(xa Z) é it/ w—m(x: Z) é -n,

for all (x,z)eX x R. Then (1.1) has at least one GPS for an arbitrary right-
hand side g € H.

Let us remark that the result formulated in our Theorem 1 implies that there is
a GPS for an arbitrary right-hand side g € H even if the nonlinear part y oscillates
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“over” an arbitrary finite number of eigenvalues of the linear part. This oscillation,
of course, is allowed only in the sense of conditions (1.8) or (1.8').

Our result concerning the solvability of the nonlinear beam equation (1.2) is for-
mulated in the following theorem.

Theorem 2. Let us suppose that for some k € N L {0} either
(1.9) K+ S Yg(x,z) S (k+1)* =,
kK*+n<y_ (x,2) < (k+1)* =7
or
(1.9') Viw(,2) S =0, Yoyo(x,2) < =1

holds for all (x,z)el x R with some n > 0. Then (1.2) has at least one GPS
for an arbitrary right-hand side g € H.

The proofs of our main results are based on the homotopy invariance property
of the Leray-Schauder degree which is combined with the ‘“‘shooting method”
for ordinary differential equations.

The paper is organized as follows. In Section 2 we first formulate without proofs
some useful results for the linear telegraph equation giving the necessary re-
ferences. Then we prove Theorem 1. Section 3 contains first some results for
a linear beam equation with references concerning their proofs, and then the proof
of Theorem 2. Section 4 contains some final remarks and some open problems, the
solution of which, in our opinion, would lead to better understanding of periodic
solvability of (1.1) and (1.2) with some other types of the nonlinearity .

2. PROOF OF THEOREM 1

We first recall some properties of the linear telegraph equation
(2.1) Bu, + u, — u,, — Au = h(t, x)
that will be useful in what follows.

Lemma 2.1. The equation (2.1) with B # 0 and A real constants has a GPS for
any he H if and only if A + m?; me N. In this case the solution u of (2.1) defines
a linear compact operator

T:H-H, h—u.
The operator T, has the following regularity properties:
T,(H) G H"(I*) n C,,,
TA(H""‘(IZ)) G Hk+ 1,k+ 1(12) .
Moreover, T, is a completely continuous operator from H to C,,.

Proof (see [5], with the exception of the complete continuity of T, from H
into C,,). The complete continuity of T, from H into C,, may be proved by using
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the Fourier method (see [8]), and one can proceed in the same way as in the proof
of [2, Theorem 2.4(iii)]. m

Using this lemma we see that the equation (1.1) is equivalent to
(2.2) u = T(g — eu + Y(t, x, u(t, x), u(ty, x))) with 0<e<1.
According to Lemma 2.1 and to (1.3) the operator
urT(g —eu + y)

is completely continuous from C,, into C,,. Let us fix a couple (u, v) such that

B N < B<thor = N5 Vet N <V<vy—1
and consider the homotopy
(2.3) H(r,u) =u — T(tg — eu + (1, x, u, u(ty, x)) +

+(1 =ttt —(1=1)w")

where u € C,,, € [0, 1]. We claim that the Leray-Schauder degree
(2.4) deg(9(z, *), Bg(0),0)

(where Bg(0) = C,, is a ball centered at the origin of C,, and with radius R > 0)
is well defined for all 7 € [0, 1], provided R > 0 is large enough. By contradiction,
let us suppose that there exist sequences {7,},.y, 7, € [0, 1] and {u,},cy, t, € Cs,
such that |||u,/|| - oo and

(2.5) Sty u,) = 0.

Let us define
‘ (
h,,(t, X) c= !//\ta X, un(t’ X), un\IO’ x))

Al

From (2.3) and (2.5) we obtain that
2.6) o, T,,(r,, m — toy + Tty %) + (1 — ) i — (1 — 7)) vv,,‘) ~0

where
() o = [l
We know that h,(t, x) and v, are bounded in H, which implies that, after passing

to suitable subsequences, 7, — 7, h,(t, x) — h(t, x) and v, — v in H.
Furthermore, using the compactness of T, from H into C,, we may conclude
that v, = v, v — v*, v, — v~ strongly in C,,. To prove our claim we first give some

properties of the function h(t, x).

Lemma 2.2. Under our hypothesis we have
(2.8) h(t, x) = hy(x) v*(t, x) = h_(x) v (8, x) .
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Proof. For each 6 > 0 let us define
N; = {(t, x) e | |o(t, x)| < 6},
Ny = {(t, x) e | v{t, x) 2 6},
Ny = {(t,x)e*|v(t,x) £ -6},
N, := Ny n Ny = {(t,x) e *| o(t, x) = 0} .
Furthermore, let y; (35 ) be the characteristic function of N, (N;).

First we notice that h(t, x) = 0 almost everywhere on N,. In fact, on the one hand
one has h, — 0 pointwise by (1.3), on the other hand, using a suitable version of
the Lebesgue dominated convergence theorem one gets h, — 0 in L*(N).

Let § > 0 be fixed. We want to estimate the behaviour of the limit function h(t, x)

on the sets N, N;7, Ny ; to this aim we estimate, using (1.6) and (1.3), the following
expression:

(9) 69 = s ) = s o5 i ) ) 75
— o5 (0> X)) (1, X) x5 | -

First of all, 3n, € N such that (¢, x) € N; and Yn > n,

(2.10) o2, x)| < 26

because v, — v in C,,; then by (1.3) one has

(2.11) |h(t, x)| < 26c .

By V4 oo(x, u,(to, X)), ¥ - (X, u,(to, X)) € L*(I?) and by (2.10) we have that
(2.12) |pa(t, x)| < 268 on N;.

On the other hand, 3n, € N such that ¥(t, x) e N;” Vn > n,

(2.13) v,(t, x) 2 g >0;
this implies
(2.14) V(t, x) € Ny u,(t,x) > +o0 when n— .
From (2.9) one has that Vn > n,,
[at, ) = Yo, 10, X)) 01, x)| =

< |out, )| |15 “ut(tx) )u lto: X))

because v, are bounded in C,, and by (1.6).
In the same way we can prove that V(t, x) € Nj :
[Bat, x) = Y o, un(to, X)) v,(t, x)| < 266 when n - +o0.
Since & can be taken arbitrarily small we have proved that V(t, x) e I*:

(2.5)  |ht, x) = Vi ooX, u(to, X)) (1, X) X5 — W - (X, Us(tos X)) 0.t X) 20| = O

— Yo%, uy(to, x))| < 26
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when n — oo, uniformly with respect to (¢, x). On the other hand, /+,, and ¥ _,
being bounded we have

(2.16) Vi wlX, u,(t, X)) = hi(x) in LYI%),

Vo, u,(t, x)) = h_(x) in L*I%),
and by the previous remarks
(2.17) v(t,x) xg = v*(t,x) in L¥(I?),

v/t x) xo = v (t,x) in L¥I?).
Using (2.16)—(2.17) from (2.15) we obtain (2.8). g
Remark 2.3. From (2.16) and (1.8) one gets

(218)  m AN = hi(X) S fysr =1, AN = h(X) SV — 1

In fact, the order intervals [, + #, ey — 1] and [v, + 1, v,4; — 7] are closed
convex sets in L(I?) and therefore they are weakly closed.

From the definition of GPS and from Lemma 2.3, passing to the limit in the equa-
tion (2.6) we obtain

(0, —Bu, + uy —uy) =([chi(x) + (1 —)p]o" = [tho(x) + (1 = 1)v] v, u),
which is nothing else than
(2.20) v — Tlu(x)v" — v(x)v™ —ev) =0,
where
px)=th(x)+ (1 —t)p, vx)=th(x)+(1-1)v.
Let us remark that
e+ < p(x) < sy =1, Vk+’1<v(x)<"k+1 -1
for almost every x e L

To get a contradiction and prove our claim, we have to prove that v = 0. To this
aim, first we shall show

Lemma 2.4. The solution v of (2.20) does not depend on the variable t and #(x) =
= o(t, x) satisfies the ordinary differential equation of the second order
(2.21) —u" = p(x)ut — v(x)u"
almost everywhere in 1.

Finally, we shall prove

Lemma 2.5. The only periodic solution of the equation (2.21) is v = 0 in L.

The assertion of Lemma 2.5 contradicts the fact that |[v]|| = 1. Hence the degree

(2.4) is well defined for all 7 € [0, 1] with respect to sufficiently large R > 0. Using
the homotopy invariance property of the Leray-Schauder degree we obtain

(222) deg(u — T,(g — eu + Y(t, x, u(t, x), u(to, x))), Bg(0), 0) =
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= deg($(1, u), B(0), 0) = deg($H(0, u), Bx(0), 0) =

= deg(u — T,((n — e)u™ — (v — &) u™), Bx(0), 0)
and due to our hypothesis on u and v, for ¢ sufficiently small (u — ¢, v — &) stays
in the connected component which contains (4, 4), 4 = m?. Hence using again
the homotopy invariance property of the Leray-Schauder degree it is possible to
show (see for instance [2, Th. 3]) that

(2.23) deg(u — T((p — e)u* — (v — &) u™), BR(0), 0) =
= deg(u — T,(Au), Bg(0),0) = +1

because u — T,(Au) is a linear, completely continuous operator. From (2.22) —(2.23)
one has
deg(u — T,(g — eu + Y(t, x, u(t, x), u(t,, x)), Bg(0), 0) + 0

and therefore, for the basic Leray-Schauder degree property, we have that the
equation (2.2) has at least one solution; then there exists at least one GPS of (1.1).
To complete the proof of Theorem 1 we just need proofs of Lemmas 2.4 and 2.5.

Proof of Lemma 2.4. To get this result we first need some estimates. Let v e C,,
be a solution of the equation (2.20), where by the definition u/x)e L*(I) and v(x) €
e L*(I); by Lemma 2.1 one has v e H"}(I*) n C,, and known results (Kinderleher-
Stampacchia [9]) imply v*, v~ e H"!(I?). We choose two sequences ji,(x), v,(x) €
€ C*(I), equibounded and such that

(224) R = ), 73) = o)
in L(X).
Since v € C,,, we have
(2.25) (X)) v > p(x) v
and
(2.26) vi(x)v = v(x)v

in the space H. Using Lemma 2.1 we obtain that v, —» v in H"}(I?) and also v, €
€ H?-*(I?). We now have noughe regularity to assert that v, is a GPS of

(2.27) Bou, + Uy, — On, — €0, = p(x) v — v(x) 07,

where pu,(x) = ,(x) — & v,(x) = ,/x) — ¢, and (2.27) holds almost every where
in I*. We multiply (2.27) by v,, and integrate over I*:

(2.28) ﬂJ. (v,,)* dx dt +f Up, Uy, dx dt —J‘ Uy, U, dx dt — BJ U,U,, dx df =
12 12 12 12

=J~ (%) v*0,, dx dt — '[ vi(x) vy, dx dt.
© 2

We recall that v is 2n-periodic, therefore

(2:29) J‘ (%) 00, dt dx =J v{x)v v, dtdx = 0.
2 o
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So from (2.28) we have by integrating by parts and using (2.29)

2rn 2n 2 2n
ﬁj (v,,,)zdtdx-i-% f dxj di(umydwf ar J 0y (0,.)r dx —
r t

0 0 0 0

P 2n an
-2 dx| —vidt= W(x) vt (v, — v),dx dt —
2.[0 j‘o dt .[12#() ( ) .f

vi(x) v~ (v, — v), dx dt,
12
that is

2n
ﬁj (vp)* dt dx + —IZ—J. [v2(x, 2n) — v2(x,0)] dx +
12 0

2n 2n d e 2n
+ - dx| — (v )2dt—_| [vi(x,2m) — vi(x,0)] dx =
2 dx 2Jo

V] 0

= [ w(x) v*(v, — v),dx dt — j
Jiz

vy(x) v (v, — v),dx dt.
12

Hence, recalling that v, are 2n-periodic in x and t, we get

(2.30) ﬁ,[,z(v"‘ 2dxdt = J

12

o x) 0¥ (v, — v), dx dr — J. v(x) v (v, — v), dx dt.

12
It is easily seen that the right-hand side of (2.30) converges to zero since it is bounded
by (Ju(x)|L= + [V(*)||lL=) |v]l2 [|on = v]lg1.1; therefore v,, — 0. But we have already
seen that v, — v in H"1(?), that is v, = 0, and so (¢, x) = 9(x).
We know that v solves
(v, —Bue + up — uy) = (u(x) v* — v(x)v",u) YueC3?,

that is, ¥ is a weak solution of
2n

(2.31) J w'(x) ¥'(x) dx = J
0

by standard regularity results for ordinary differential equations there exists 7"(x)

almost everywhere in I, so we can integrate (2.31) by parts and, recalling that ¥ is
Zn-periodic, we conclude that

(2.32) — J

0

2n 2n

p(x) 5% u dx — J W(x) 3 udx, YueCiI);

0 0

2n

u(x) 9"(x) dx = [2" u(x) 5 (x) u(x) dx — Jj" v(x) 57(x) u(x) dx,

Vue C3(I),
from which one has that # is a 2n-periodic solution of
(2.33) —"(x) = u(x) 5 (x) — v(x) 57 (x)

almost everywhere in 1. g

Before proving Lemma 2.5 we point out some properties of 2n-solutions of the
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equation
(2.34) —w'(x) = pw(x) —vw(x), w0)=w2r), w(0)=w(2n),
where u, v do not depend on x.

Remark 2.6. Solutions of (2.34) are invariant under translations.

Remark 2.7. Let Ja, b[ be an interval where the solution u of (2.34) is a positive
solution of the Dirichlet problem
(2.35) —w'(x) = pw(x), wla)=wb)=0.

Let X > b(X < b) be fixed. We can modify the equation (2.35) in such a way that u
is a positive solution of

(2.36) —w(y) = iwly), w(a) = w(®) = 0

with
. b — a\? . b — a\?
f=(——)n<np (A== p>p.
X—a X—a

Remark 2.8. The solution of (2.34) is such that, when denoting by xi, ..., X5, its

zeroes in [0, 2n[, we have
A X1e1) = <C1 = Cy(u) constant Vz: such that w(x) > 0 f'n Txo xi4[ ,
B C, = C,(v) constant Vi such that w(x) < 0in ]x; X;4 [

with, possibly, C; = C, if u = v (see [11]).

Remark 2.9. The number of zeros (in [0, 2n[) of solutions of (2.34) is constant when
(1, v) € C;, and this number increases by two when going from C, to ;4 (see [11]).

Proof of Lemma 2.5. Consider now a solution v of (2.21), where the following
inequalities hold:

e < (%) < therr> Ve <V(X) < vy, k21

with (4, %) € Gy (e + 1> Vir 1) € Cer 1. The solutions of (2.34) with coefficients on C;
have 2k zeros in [0, 2n[ and those with coefficients on C,,, have (2k + 2) zeros

in [0, 2x[) (see [11]).

Let ]x;, x;.4[ be an interval where v is a positive solution of

(2.37) —v"(x) = p(x) v{x), v(x;) =v(x;4,) =0.
Using well-known results about eigenvalue problems with weight (see Manes-
Micheletti | 10]) one gets X1

[10D & f (v'(x))? dx

(2.3) O
et =1 f u(x) v*(x) dx

Xi

On the other hand, by Remark 2.6 we know that it is possible to translate the equatibp
(2.34) in such a way that x; becomes a zero of the solution w of (2.34) from which the
solution starts to be positive.
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Let ]x;, by[ be an interval in which w(x) > 0 is a solution of (2.35) with x; = a,
b =b, and u = . We prove that b, > x;,,. Suppose, by contradiction, that
b, £ x;,,; by Remark 2.7 w is a positive solution of

—w'(x) = pw(x), wx)=w(x,)=0
with i < u, < p(x) Vxel.
By (2.37) we get '[ (v)? dx
(239), L= inf “2— > (ux) =1,

llieli=1 J’ 0 dx

which is a contradiction. Therefore necessarily b, > x;,,. In a similar way we can
prove that x; 1 > by, where as before, |x;, by +4[ is an interval in which w(x) > 0
is a solution of (2.35) with x; = a,b = b;,; and g = gy, ,. In fact in this case we can
use reverse inequalities, that is (2.39) with i = p4; > p(x) (see Remark 2.7).

Similar arguments hold in those intervals where v is negative. From these remarks
it turns out that v cannot be 2rn-periodic. In fact, as the distance between its con-
secutive zeros is always larger than the distance between the zeros of solutions of
(2.34) with p = g, v = v, v cannot have 2k zeros; in the same way it cannot have
(2k + 2) zeros because the distance of its nodes is always less than that between the
zeros of the solution of (2.34) when p = g4y, v = V1. Obviously it cannot have
(2k + 1) zeros and be 2n-periodic.

To complete the proof we only have to consider the cases u(x) < —n, v(x) £ —p
and k = 0.

Let us first consider the case k = 0. As before we prove that the distance between
the zeros of v must be less than the distance between the zeros of (2.34) with pu = y;,
v = v, which is a contradiction with v being 2n-periodic. Let us now suppose u(x) =<
< —n, v(x) £ —n. Then there are no nontrivial 2n-periodic solutions of (2.21)

because of the maximum principle. o

3. PROOF OF THEOREM 2

First we shall formulate some useful properties of the linear beam equation
(3.1 Bu, + uy + g, — Au = h(t, x).
Lemma 3.1. Let f > 0 and A be real constants. Then (3.1) has for an arbitrary
h e H a unique GPS if and only if A + m*, m e N U {0}. The mapping
T, H-H, h—u,

where u is the unique GPS of (3.1) with the right-hand side h € H, is linear and
compact. Moreover, Im T, = C,, and the mappings

Tl: H- Cz,‘ ’ Tglcgf : C21r - CZn



are compact. If p, re N U {0} then
T,(HP?) < HP*F1r+2

Remark 3.1. For the proof of Lemma 3.1 sce [2]. u

The idea of the proof of Theorem 2 is the same as that of the proof of Theorem 1.
Let us choose again a sufficiently small 0 < ¢ < 1. Then u € C,, is a GPS of (1.2)
if and only if

(3.2) u = T(g + ¥(t, x, u(t, x), u(ty, x)) — eu).

According to Lemma 3.1 and the growth restrictions ( 1.3) the operator

wis Tfg 4+ Yt x, u(t, ), u(te, ) — )

is a completely continuous mapping from C,, into C,,. Choose (g, v) € R* such
that (1.9) or (1.9), holds with ¢, ,,, ¥ _ ., replaced by g, v, respectively. Let us define
the homotopy $ in the same way as in (2.3). To show that the Leray-Schauder
degree (2.4) is well defined we proceed again via contradiction and obtain the existence
of such ve C,, and t € ]0, 1] that o] = I and

(33) 0 = TL(ulx) — 9) 0" — (vx) — &) 07) = 0,
where p(x), v(x) are bounded measurable functions .such that either
19 K+ = px), vx) < (k+1)*—n

with some k € N U {0}, or

) | W) ) <

for x e 1. We want to prove that [[u]ll = 1 and (3.3) do not hold simultaneously.
First we prove the following lemma.

Lemma 3.2. The solution ve C,, of (3.3) is independent of t and the function
#(x) = v(t, x) is the solution in the sense of Carathéodory of the periodic problem
for the equation

(3.4) u®™ = px)ut — v(x)u"
on the interval 1.

Proof. The idea is quite similar to that of the proof of Lemma 2.2. Let us take
{(*)} 15 {va(x)};= 1, sequences of infinitely differentiable 2m-periodic functions
such that p, - g, v, — v in LX(I), and define {v,},>, by the relation

(35) v, = T((pa(x) — ) v — (m(x) — &) v7).

Then obviously (with respect to Lemma 3.1) v, - v in C,,, v,€ H"' and hence
[(1ix) — &) v* — (vi(x) — &) v~ ] e H"! for all ne N. Applying once more Lemma
3.1 we obtain that v, e H>3 for all n e N. Writting (3.5), using the definition of GPS
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and integrating by parts we obtain
(3.6) (B(vn): + (On)ees W) — ((0n)xxer W) — €(vss w) =
= ((lx) — &) v*, w) — ((n(x) —&)v™, w), weC3;.
Since the set C3;* is dense in H, the relation (3.6) remains valid also for w = v,.
We have

Bllowlf = L (t(x) — &) v*0,, dr dx ——f (va(x) — &) v7v,, dt dx.

From this equality, exactly as in the proof of Lemma 2.4, we first derive that [[ U..,“u -
— 0 for u — oo, and then |v,| = 0. If we write (3.3) using the definition of GPS,
we obtain that the function #i(x) = v(t, x) satisfies

L 5w, dx =£ (u(x) 5% — v(x) 5) w dx

for all we C3[0,2r]. Using the standard regularity argument for ordinary dif-
ferential equations we obtain that # is the solution in the sense of Carathéodory
of (3.4). This completes the proof of Lemma 3.2. -

Let us define linear operator L: W3:2(I) - W3:X(T), S: W3 2(I) > W3;3(I) by the
relations

2n 2n
(Lu, v)y2? —f u"v” (S(u), v)w22 —-J‘ uv dx,

0 0
for u,ve W3;%(I), where W3 X(I) is the Sobolev space of periodic functions the first
derivatives of which are completely continuous and the second ones are square
integrable over (I) *). It is easy to see that the operator S is completely continuous
and that the eigenvalues of the eigenvalue problem
Lu — 2S(u) =0
are 1, = n*, n e N U {0}. From the theory of linear completely continuous operators
(see e.g. [7]) we obtain that for an arbitrary 4 € R,

(3.7) [Lu — AS(u)||wz2 = min dist (2, n*) |u]wzz .
neNu{0}
Let us take 1 = ((k + 1)* — k*)/2 if u(x), v(x) satisfy (1.9). Then according to

Lemma 3.2,
™Y — J5 = (u/x) =2) 5" — (vix) = )5~

in the sense of Carathéodory. Hence

(38) J B di — r"au dr =f:n(y(x) — 7)5tu de —J':"(v(x) ~ X udt

0

*) Equxpped with the norm

2z 2n
Jullaz = (u, u)lyz = j w'u’ i+ j wu dt

0 0
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for all u € W3;%(0, 2r). But according to (3.7) we have

(3.9) sup Uz u’ dt — Zrﬂﬁu dt] e+ 1)4 S -k 5], -

flull2,2=1 0 0

On the other hand, since p(x), v(x) satisfy (1.9) we have

(3.10) sup U:"(u(x) _ D)etude - J:ﬂ(v(x) ~Dorudt] =

llull2,251

< max { sup |u(x) - 7|, su‘}22>ﬂ|v(x) =2} 9].2 =

xe[0,2n]

k+ 1)* .
R LT

where 5 > 0. Then (3.9) and (3.10) contradict (3.8) if ||5]|,,, + 0. This means that
|l =1 and (3.3) do not hold simultaneously. The same argument leads to

a contradiction if u(x), v(x) satisfy (1.9"). Hence the homotopy $ is well defined
and we have

(3.11) deg'u — T(g — eu + Y(1, x, u(t, x), u(ty, x)); Bg(0),0) =
= deg($(1, u); Bx(0),0) = deg(§/0, u); By(0),0) =
= deg(u —T((x — e)u™ — (v — &) u"); Bg(0),0).
But according to the choice of u, v and because ¢ was chosen sufficiently small we have
k*<p—e<(k+1)*, k*<v—e<(k+1)*.
Using the homotopy invariance property once again (see [2]) we obtain
deglu — T((n — e)u™ — (v — e)u~); BR(0),0) =
= deg(u — T,(Au); Bg(0),0) = +1 with k* <1 < (k + 1)*.

Then the existence of at least one GPS of (1.2) follows from the basic property of the
Leray-Schauder degree. g

4. FINAL REMARKS

Remark 4.1. In the proofs of our main results it was essential that the limit equation
(2.20) or (3.3) had a solution which was indendent of ¢ in order to justify the ap-
plication of the shooting method which is typical for ordinary differential equations.
That is why we were allowed to treat the class of nonlinearities which may oscillate
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only with respect to x. It would be interesting to check if the following assertions
are true.

Open problem 4.1. Let us suppose that ¥(t, x,s): I*> x R — R is a Carathéodory
Jfunction, satisfying the growth restriction (1.3) and such that
m? < C; < lim supM <C,<(m+1)7?,

s>t N

Y(t, x, 5)
s

m? < C; < lim inf <C,<(m+ 1)

s>t
for a.a. (t, x) e I> with some me N U {0}. Then (1.1) with ¥(t, x, u(t, x), u(t,, x))
replaced by (¢, x, u(t, x)) has at least one GPS for each right-hand side g € H.
Open problem 4.2. Let us suppose that a Carathéodory function Y(t, x, s): I* x

x R — R satisfies (1.3) and

Y(t, x, 5)

m* < C; < lim sup ="~ < C, < (m + 1)*,

s>+ N

m* < C, < lim inf v(t, x, 5)
S

s>t oo
for a.a. (1, x) e I?, with some m e N U {0}. Then (1.2) with ¥(t, x, u(t, x), u(t,, x))
replaced by ¥(t, x, u(t, x)) has at least one GPS for an arbitrary right-hand side
geH.

<Cy<(m+1)*

Remark 4.2. According to the authors’ knowledge, neither the affirmative nor the
negative answer to the above problems has yet been published.
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