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By a tolerance on a semigroup S we mean a reflexive and symmetric subsemigroup
of the direct product S x S. The set L T(S) of all tolerances on S forms a complete
algebraic lattice with respect to set inclusion (see [1] and [2]). A variety V of semi-
groups is called tolerance distributive (modular) if each S from V has distributive
(modular) LT(S) (see [3]).

In this paper we shall describe all varieties of commutative semigroups which are
tolerance distributive or tolerance modular. Non defined terminology and notation
can be found in [4] and [5].

Let S be a commutative semigroup. The notation S* stands for S if S has an
identity, otherwise for S with an identity adjoined. By v and A we denote the
join and the meet in the lattice L T(S) respectively.

Let A, Be LT(S). Clearly we have A A B = A n B. It is easy to show that

(1) (x,y)eA v B if and only if

either (x, y)e AU Bor(x,y) = (xq, y;) (X2, y,), where (xy, y,) € A and (x,, y,) € B.

For a, b e S we denote by T(a, b) the least tolerance on S containing (a, b), i.e.
T(a, b) is the principal tolerance on S generated by (a, b). If a % b, then for x, y € S,
x *+ y, we have

(2) (x, )€ T(a, b) if and only if
there exist ze S' and a positive integer m such that either (x, y) = (a, b)"(z, z)
or (x,y) = (b, a)"(z, 2).

By W(i; = i,) we denote the variety of all commutative semigroups satisfying
the identity i, = i,.

Theorem 1. A variety V of commutative semigroups is tolerance modular if and
only if Vis a subvariety of W(xy = xyz") for a positive integer n.

First, we shall prove the following lemmas:

Lemma 1. For any positive integer n the variety W(xy = xyz") is tolerance
modular.
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Proof. Suppose that S is a semigroup from W(xy = xyz") which is not tolerance
modular. Then there exist A, B, Ce LT(S) such that A = C and (A v B) A C
+ Av (BAC) Since Av (BAC)<=(A4v B)AC, there exists (u,v)e
€(A v B) A C such that (u,v) ¢ A v (B A C). By (1) we have (u, v) = (p, q) (r, ),
where (p, q)€ A and (r,s)e B. We have Se W(xy = xyz") and so S is periodic
having exactly one idempotent (say e) in which S? is a maximal subgroup. Hence
we obtain w?" = e for every we S. Using (2) we have (er, es) = (p*"r, ¢*"s) =
= (p* 'u, ¢ ') = (p, 9)>" ' (u,v) € C and (er, es) = (e, e) (r, s) € B. It follows
from (1) that (u, v) = (p, q) (er, es)e A v (B A C), which is a contradiction.

Lemma 2. Let P = {a, b,c,p,q, 1, 0} be a semigroup with the multiplication
table

Q
o
o

|
|
|

N N O

a P p.

b | p q

c 0 r
and xy = 0 = yx for xeP and ye{p,q,r,0}. Then the lattice LT(P) is not

modular.

Proof. Clearly we have xy = yx and (xy)z = x(yz) for all x,y,zeP. Put
A = T(a,b), B= T(b,c) and C = A v T(p, r). We have 4 = C and so, by (1),
(p,r) = (a,b)(b,c)e(4 v B) A C. According to (1) and (2), it can be shown that
(p,r)¢ A v (B A C). Therefore LT(P) is not modular.

Lemma 3. Let Q = {a, b,c,p, 1, 0} be a semigroup with the multiplication table

o o Q

o O
S O o
S N O‘n

and xy = 0 = yx for xe Q and y € {p, r, 0}. Then the lattice LT, Q) is not modular.

Proof. This can be proved by an argument analogous to that in the proof of
Lemma 2.

Lemma 4. Let V be a tolerance modular variety of commutative semigroups.
If S is a semilattice from V, then S is trivial.

Proof. This follows from Example 4 of [3].

Proof of Theorem 1. Let V be a tolerance modular variety of commutative
semigroups. According to Lemma 1 it suffices to show that V' is a subvariety of
W(xy = xyz") for a positive integer n.

1. Every semigroup from V is periodic.

Suppose that there exists a non-periodic element u in a semigroup S from V.
By U we denote the subsemigroup of S generated by u. Clearly U € V and so the

&
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lattice LT(U) is modular. Since U is cancellative, we have by Corollary 3 of [6]
that U is a group, which is a contradiction.

2. There exists a positive integer n such that ¥V = W(x"x" = x").

Suppose that for any positive integer m there exists an element u,, in a semigroup S,,
from V such that u, is not idempotent for i = 1,2, ..., m. Then the direct product
S = X2, S,, is not periodic, but S € ¥, a contradiction.

3. We have V < W(x" = y").

Let S be a semigroup from V. By E{S) we denote the semilattice of all idempotents
of S. Clearly E(S) € V. Lemma 4 implies that card E(S) = 1.

4. We have V < W(x? = x*x").

Suppose that there exists an element u belonging to a semigroup S from V such
that u? #+ u?u". By U denote the subsemigroup of S generated by u and put I = u?U.
We shall show that the Rees quotient R = S|I has exactly three elements u, u®
and 0. Indeed, if u? €I, then u? = uu™ for a positive integer m and so u?> =
= u}(u"y" = u*(u")" = u*u", a contradiction. Therefore we have u”> ¢ I and u® +
Fu¢l

Now, we shall define a mapping ¢: P -> R x R, where P is the semigroup from
Lemma 2. Let us put o{a) = (u, u?), (b) = (u, u), ¢(c) = (u?, u), ¢!p) = (u?,0),
o(q) = (u?, u?), pr) = (0, u?) and @(0) = (0, 0). It is easy to show that ¢ is an iso-
morphism. Since R x R e ¥V, we have P € V, which is a contradiction (see Lemma 2).

5. We have V = W(xy = xyz").

Suppose that there exist elements u, v and w belonging to a semigroup S from V
such that uv + uow". By U we denote the subsemigroup of S generated by u and v.
Let us put I = eU, where e is an idempotent of S. It follows from 2, 3 and 4 that
eeU, u + v and u? v®> el. We shall show that the Rees quotient R = U/I has
exactly four elements u, v, uv and 0. Indeed, if uv €I, then uv = es for some s e U
and so uv = euv = uvw", a contradiction. Therefore we have uv ¢ I and u, v ¢l.
If u = uv, then u = w" = ue, a contradiction. Consequently, we have u =+ uv =+ v.

Let us define a mapping ¢: Q - R x R, where Q is the semigroup from Lemma 3.
We put ¢(a) = (u, u), ¢(b) = (v,v), ¢{c) = (u,0), ¢(p) = (uv, uv), ¢(r) = (uv, 0)
and ¢(0) = (0, 0). Evidently ¢ is an isomorphism. We have R x R e V. This implies
that Q € ¥, which contradicts Lemma 3.

Theorem 2. A non-trivial variety V of commutative semigroups is tolerance
distributive if and only if V is the variety of all zero-semigroups.

Proof. It is easy to show that the variety of all zero-semigroups is W(xy = xyz) =
= W(x1¥; = x,¥,). Evidently the lattice L T(S) is distributive, whenever S is a zero-
semigroup.

Let V be a non-trivial tolerance distributive variety of commutative semigroups.
Suppose that ¥ & W(xy = xyz). It is well known that the variety of all zero-semi-
groups is minimal and so ¥ is no subvariety of W(xy = xyz). This and Theorem 1
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imply

(3) V< W(xy = xyz")
for a positive integer n = 2. It is easy to show that
(4) VS WX =x")yn W(x"=y").

Since V& W(xy = xyz), there are elements u, v and w belonging to a semi-
group S from V such that a = uv & uvw = b. It follows from (4) that the semi-
group S has exactly one idempotent (say e). Therefore we have either a + eor b + e.
Suppose that a + e (without loss of generality). Let U denote the subsemigroup of S
generated by a. According to (3) and (4), we have a = g"*1. This means that U is
a cyclic non-trivial finite subgroup of S. Therefore S contains a cyclic subgroup R
of a primer order. Clearly R x Re V and so the lattice LT(R x R) is distributive.
It is well known (see [7]) that every tolerance on a commutative group is a con-
gruence and thus, by Ore’s Theorem [8], the group R x R is locally cyclic. Since
R x R is finite, we obtain that R x R is cylic, which is a contradiction.
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