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TOLERANCE DISTRIBUTIVE AND TOLERANCE BOOLEAN
VARIETIES OF SEMIGROUPS

BeDRICH PONDELICEK, Praha

(Received July 23, 1985)

The aim of this paper consists in a characterization of varieties of semigroups
whose tolerance lattices are distributive or boolean. The present result generalizes
some results from [1] to arbitrary semigroups.

Recall that a tolerance on a semigroup S is a reflexive and symmetric subsemigroup
of the direct product S x S. By LT(S) we denote the lattice of all tolerances on S
with respect to set inclusion (see [2] and [3]). A semigroup S is said to be rolerance
distributive (boolean) if the lattice LT(S) is distributive (boolean). A variety V
of semigroups is called tolerance distributive (boolean) if each S from V is tolerance
distributive (boolean) (see [4]).

Terminology and notation not defined here may be found in [5] and [6].

Denote by v or A the join or meet in LT(S), respectively. The meet evidently
coincides with set intersection. For M = S x S, we denote by T(M) the least
tolerance on S containing M. It is easy to show the following:

(1) (x,y)e T(M)if and only if X = x,X, ... X,, and y = yy, ... y,,, wWhere either
(xppy)eMor (y,x)eMorx; = y;eSfori=12,...,m;
(2) Av B=T(AuB) forany A,BeLT(S).
By W(i, = i,) we denote the variety of all semigroups satisfying the identity
il = i2-
Theorem 1. A variety V of semigroups is tolerance distributive if and only if V
is a subvariety of W(xyz = xz).

First, we shall prove the following lemmas.

Lemma 1. The variety W(xyz = xz) is tolerance distributive.

Proof. Suppose that S is a semigroup from W(xyz = xz), which is not tolerance
distributive. Then there exist A, B, Ce LT(S) such that (A A C) v (B A C)
(A Vv B)AC. Since (AAC)v (BAC)c(AvV B)AC, there exists (u,v)e
€(4 v B) A C such that (u,v)¢(4 A C) v (B A C). By (1) and (2) we have
U = uyu,...u, and v = vyv,...v,, where (u;,v)e AU B and m = 2. We have
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S e W(xyz = xz) and so we can suppose (without loss of generality) that u = u,u,,
and v = v,v,,, where (uy,v,) € A and (u,, v,) € B. Then we obtain (u,u,, v;u,) =
= (u, 0) (U, ) €A A C and (uqu,, u;v,) = (uy, u;)(u,v)e B A C. It follows
from (2) that (u,v) = (uu,, vu,) (uu,, u;v,)e(A A C) v (B A C), which is
a contradiction.

Lemma 2. Let {a, b, ¢, p, q, 0} be a semigroup with the multiplication table

I a b ¢
a 0 poO
b 0 0 g¢g
c 0 0 0

and xy = 0 = yx for xe P and ye{p, q, 0}. Then the lattice LT(P) is not modular.

Proof. Clearly we have (xy) z = x(yz) for all x, y z € P. It is easy to show that
D = {(p,0), (0, p), (¢,0), (0, q)} uidpe LT(P), A = {(a, b), (b, a)} u De LT(P),
B = {(b,¢), (¢, b))} u De LT(P), and C = {(p, q), (¢, p)} v Ae LT(P). 1t follows
from (2) that (p, q) = (a, b)(b,c)e(A v B) A C. We have (p,q)¢ A=A v D =
= A v (B A C) and so the lattice LT(P) is not modular.

Lemma 3. Let Q = {a, e, f, g} be a semigroup with the multiplication table

‘aefg
a e e f g
e e e f g
Sl g9 efyg
g | e e fyg

Then the lattice LT(Q x Q x Q) is not modular.

Proof. It is easy to show that
(3) Qe W(xyz = yz).

Put A =T((e.f,¢), (f.e,€)), B=T((a,a,e), (a,a,f)), and C = T((e, g, ¢),
(9,e.f)) v A. Tt follows from (1) and (2) that (u,v) = ((e,g,¢), (4, e,f)) =
=((e.foe), (f.e.€) ((a,a,e), (a,a,f))e(4 v B) A C.

First we shall prove the following implication. Let s, te Q x Q x Q..

(4) If ue(Qx QxQ)s and ve(Q x Q x Q)¢,
then s & ¢.

Suppose that u,ve(Q x Q x Q)s. It is clear that se Q x Q x {w} for some
we Q. If w=a, then fe Qa, which is impossible. If w % a, then e = y = f,
a contradiction.

Now, we shall show that (u,v)¢ 4 v (B A C). On the contrary, suppose that
(u,v)e A v (B A C). Then by (1), (2) and (3) we have u = u? = u,u, and v =
= v> = v;v,, where (4, v)e AU (B A C) for i =1,2. We have (u;,v,)e C. It
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follows from (4) that u, # v,. Then u, = u3, v, = v} and according to (3), we have
(u,v) = (up,v,)e AU B.

Case 1. (u,v) € A. It follows from (1), (3) and (4) that (e, g, e) = u e {(e, f, e),
(f, e, €)}, a contradiction.

Case 2. (u, v) € B. According to (1), (3) and (4) we have (u, v) = (s, 1) ((a, a, e),
(a, a, f)), where either (s, 1) = ((a, a, ), (a, a, f)) or (s, t) = ((a, a, f), (a, a, e)) or
s=1teQ x Q x Q, a contradiction.

Therefore the lattice LT(Q X Q x Q) is not modular.

Proof of Theorem 1. Let ¥ be a tolerance distributive variety of semigroups.

By Lemma 1 it suffices to show that Vis a subvariety of W (xyz = xz).
It follows from Theorem 2 of [1] that

(5) every commutative semigroup from V is zero.

Let S be an arbitrary semigroup from V. Let u € S. By X we denote the subsemi-
group of S generated by u. Clearly X is commutative and belongs to V. It follows
from (5) that u* = u® We have

(6) Ve W(x*=x?.
Let u,ve S. By Y we denote the subsemigroup of S generated by u?, u?vu?. It

follows from (6) that Y is commutative. Since Y e ¥, according to (5), Yis zero. There-
fore u?vu? = (u?vu®) u® = u?u® = u®. We have

(7 VS W(x*yx? = x?).
This implies (x?y)? = x?yx?y = x?y and so

(3) Ve W((x*y)* = x%y).

Dually we can get

©) Ve W((yx?)? = yx?).

For any semigroup S we denote by E(S) the set of all idempotents of S. According
to (8) and (9), we have the following:

(10) Let S be a semigroup from V. Then E(S) is an ideal of S.

Now, we shall show that
(11) Ve W((xy)* = xy).

Suppose that there exist elements u, v belonging to a semigroup S from V such
that uv % (uv)®. By U we denote the subsemigroup of S generated by u, v. Clearly
Ue V. If uv = vu, then U is commutative and so, by (5), U is zero, which is a contra-
diction. Thus we have uv = vu. Put I = {vu, uvu, vuv} U E(U). According to (6)
and (10), I is an ideal of U. By (6) and (10) it is easy to show that u = v #+ uv + u
and u, v, uv ¢ I. This implies that the Rees quotient R = U/I has exactly four elements
u, v, uv and 0.
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We shall define a mapping ¢: P - R x R, where P is the semigroup from Lemma
2. Let us put ¢(a) = (u,0), ¢(b) = (v,u), ¢(c) =(0,0), ¢(p) = (uv,0), ¢lq) =
= (0, uv), and @(0) = (0,0). It is easy to show that ¢ is an isomorphism. Since
R x R eV, we have P € V, which contradicts Lemma 2. Therefore (11) is true.

Further, we shall prove that
(12) VS W(x*yx = x?).

Suppose that there exist elements u, v belonging to a semigroup S from V such
that u?vou + u?. Define a mapping ¢: Q — S, where Q is the semigroup from Lemma
3. Put ¢(a) = u, ¢(e) = u?, o(f) = u®v and ¢(g) = u’vu. Using (6) and (7) it is
easy to show that ¢ is a homomorphism. We shall prove that ¢ is injective. If u = u?,
then by (7) we have u® = u?vu® = u?vu, a contradiction. If u = u?v, then u? = u?vu,
a contradiction. If u = u®vu, then by (6) we have u?> = uou = u’vu, a contradic-
tion. If u? = u®v, then by (6) we have u*> = u® = u?vu, a contradiction. If u?y =
= u®vu, then by (7) we have u’vu = u®vu® = u?, a contradiction. Since ¢ is an
isomorphism, we obtain that Q e ¥, which is a contradiction (see Lemma 3). Therefore
(12) is satisfied.

Dually we can get
(13) Ve W(xyx* = x?%).

Finally, we shall show that V < W(xyz = xz). Using (7), (11), (12) and (13) we
obtain xyz = (xyz)® = (xy) (zx) (yz) = (xy)* (zx) (yz)* = (xy)* (x*2) (y2)* (xy)* .
() (02 = (0)? (2% (52 = (x9) (5222) (32) = (x9a) (2292) = w22 =
= (xzx?) (22xz) = (xz) (x*2%) (xz) = (x2)* (x*2?) (xz)* = (x2)* = xz.

Theorem 2. A variety V of semigroups is tolerance boolean if and only if either
V = W(x,y, = x;¥,) or Vis a variety of rectangular bands.

Note that the variety of all rectangular bands is RB = W(x*> = x) n W(xyx = x).
It is well known (see [7]) that the only non-trivial and proper subvariety of RB
is either W(xy = x) or W(xy = y).

Before the proof we formulate three lemmas.

Lemma 4. The variety RB is tolerance boolean.

Proof. First we shall show
(14) RB = W(xyz = xz).
Indeed, we have xyz = xy(zxz) = x(yz) xz = xz.

Let S be a rectangular band. It follows from (14) and Lemma 1 that the lattice
LT(S) is distributive. We shall prove that it is boolean. Let A € LT(S). Choose e e S
and put B = T((Se x Seu eS x eS) \ A).

Let u, ve S. According to (14), we have (u, v) = (ue, ve) (eu, ev). Clearly (ue, ve),
(eu, ev) € A U B. It follows from (1) and (2) that (u, v) € A v B. Therefore A v B =

=S x S.
Suppose that A A B # idg. Then there exist u,ve S such that (u, v) eAnB
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and u + v. According to (1), (2) and (14), we have (u, v) = (uy, v,) (42, 0;), where
either u; = v; or (uy, v,) €(Se x Se U eS x eS)\ A and either u, = v, or (uy,0,) €
€(Se x SeveS x eS)NA. If (uy,v,)eSe x Sex A4, then by (14) we obtain
(ug, v;) = (use, vye) = (ug, v1) (uy, ;) (e, €) = (u, v) (e, e) € A, which is a contra-
diction. Thus we have (u, v;) ¢ Se x Se\ 4. Dually we obtain that (uy, v,) ¢ eS x
x eS\ A. Consequently we have the following possibilities:

Case 1. u; = v;. Then (u3,v,) € Se x Se\ A and so by (14) we have u = ue =
= vye = v, a contradiction.

Case 2. u, = v,. Then dually we obtain a contradiction.

Case 3. (uy,v,)€eS x eS and (u,, v,) € Se x Se. According to (14) we have
u = u,u, = e = 0,0, = v, a contradiction.

Therefore A A B = idg. Consequently, the lattice LT(S) is boolean.

Lemma 5. The variety ZS = W(x,y, = X,,) is tolerance boolean.

Proof. It follows from Theorem 1 that ZS is a tolerance distributive variety of
semigroups. Let S e ZS. Clearly S is a zero-semigroup. Let A e LT(S). Put B =
=TS x S\NA) = (S x S\NA)uids. We have A AB=idg and A v B =
= S x S. Therefore ZS is tolerance boolean.

Lemma 6. Let P = {a, e,f} be a semigroup with ﬂ1e multiplication table

] a e f
al|l e e e
e e e e
flrrrs

Then the lattice LT(P) is not boolean.

Proof. It is easy to show that P is a semigroup and A = {(a, e), (e, a), (e, f),
(f, )} uidp e LT(P). Suppose that there exists B e LT(P) such that
(15) AAB=idp and AvB=PxP.

If (a,f)eB, then (e, f) = (a,f)*e A A B, which is a contradiction. It follows
from (15) that B = idp and so A = P x P, a contradiction. Therefore the lattice
LT(P) is not bollean.

Proof of Theorem 2. Let ¥ be a tolerance boolean variety of semigroups. By
Lemma 4 and Lemma 5, it suffices to show that either V' = ZS or Vis a subvariety
of RB. According to Theorem 1, we have

(16) VS W(xyz = xz)
andsoV ¢ W(xy)2 =X y). Hence every semigroup from ¥V has idempotents.

Case 1. Every semigroup from V has exactly one idempotent. Then V <
SW(xy, = X,Y,) = ZS. It is well known that the variety ZS is minimal and so
either V = ZS or Vis trivial (which means that V < RB).
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Case 2. There is a semigroup S from ¥ having at least two idempotents (say j
and k). We shall show that

(17) Ve W(x*=x).

Subcase 2a. j = jk. Then by (16) kj = kjk = k and so J = {j, k} is a sub-
semigroup of S. Hence we have J e V. Suppose that there exists a semigroup X
from V having an element u = u®. It follows from (16) that u®> = u® and so U =
= {u, uz} is a subsemigroup of X. Therefore we have Ue V and so J x Ue V.
We shall define a mapping ¢: P — J x U, where P is the semigroup of Lemma 6.
Let us put ¢(a) = (j, u), ¢le) = (j, u®) and ¢(f) = (k, u?). It is easy to show that ¢
is an isomorphism. This implies that P € V, which contradicts Lemma 6. Therefore
we have (17).

Subcase 2b. j # jk. Put h = jk. It follows from (16) that h? = j(kj) k = jk = h
and j = jkj = hj. This implies that our subcase (j = hj) is dual to Subcase 2a.
Consequently, we obtain (17).

According to (16) and (17), we have V < RB.

Corollary. For a non-trivial variety V of commutative semigroups the following
conditions are equivalent:

1. Vs tolerance distributive,

2. Vs tolerance boolean,

3. Vs the variety of all zero-semigroups.

This follows from Theorem 2 and Theorem 2 of [1].

References

[ 11 Pondéli¢ek, B.: Tolerance distributive and tolerance modular varieties of commutative
semigroups. Czech. Math. J. 36 (111) 1986, 485—488.

[2] Chajda, I.: Lattices of compatible relations. Arch. Math. (Brno) 13 (1977), 89—96.

[3] Chajda, 1. and Zelinka, B.: Lattices of tolerances. Cas. pést. mat. 102 (1977), 10—24.

[4] Chajda,I.: Distributivity and modularity of lattices of tolerance relations. Algebra Universalis,
12 (1981), 247—255.

[5] Clifford, A. H. and Preston, G. B.: The Algebraic Theory of Semigroups. Vol. I. Am. Math.
Soc. (1961).

[6] Petrich, M.: Introduction to Semigroups. Mervill Books (1973).

[7] Fennemore, C. F.: All varieties of bands. I, II. Math. Nachr. 48 (1971), 237—252, 253 —262.

Author's address: 166 27 Praha 6, Suchbatarova 2, Czechoslovakia (fakulta elektrotechnicka
CvUT).

622



		webmaster@dml.cz
	2020-07-03T05:29:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




