Czechoslovak Mathematical Journal

Ivan Chajda; Bohdan Zelinka
 A characterization of tolerance-distributive tree semilattices

Czechoslovak Mathematical Journal, Vol. 37 (1987), No. 2, 175-180

Persistent URL: http://dml.cz/dmlcz/102146

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CZECHOSLOVAK MATHEMATICAL JOURNAL

A CHARACTERIZATION OF TOLERANCE-DISTRIBUTIVE TREE SEMILATTICES

Ivan Chajda, Přerov, and Bohdan Zelinka, Liberec

(Reccived May 28, 1982)

A tolerance on an algebra $\mathfrak{H}=\langle A, \mathscr{F}\rangle$ is a reflexive and symmetric binary relation T on A which has the Substitution Property with respect to \mathscr{F}, i.e., $\left(a_{1}, b_{1}\right) \in$ $\in T, \ldots,\left(a_{n}, b_{n}\right) \in T$ implies $\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right) \in T$ for each n-ary operation $f \in \mathscr{F}$ and any elements $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ of A. The set of all tolerances on \mathfrak{A} forms an algebraic lattice $L T^{\prime}(\mathfrak{H})$ with respect to the set inclusion (see [4], [5]). Basic properties of this lattice were investigated in [4] and, especially for semilattices, in [5] and [6].

An algebra \mathfrak{A} is called congruence-distributive, if the congruence lattice Con (\mathfrak{X}) is distributive. It is well-known that lattices and semilattices are congruencedistributive. Although tolerances are a generalization of congruences, the situation with them is quite different. We shall call an algebra \mathfrak{A} tolerance-distributive (or tolerance-modular), if $L T(\mathfrak{H})$ is distributive (or modular, respectively). A class \mathscr{K} of algebras is tolerance-distributive (or tolerance-modular), if each $\mathfrak{H} \in \mathscr{K}$ has this property.

It was proved in [2] and [3] that the variety \mathscr{D} of all distributive lattices is the only non-trivial tolerance-distributive lattice variety. A variety of semilattices is tolerance-modular if and only if it is trivial, see [2]. The variety \mathscr{D} of distributive lattices is the only non-trivial tolerance-modular variety [1]. H.-J. Bandelt [1] has investigated a weaker condition: a lattice L with the least element O is O-modular, if it does not contain a minimal non-modular sublattice containing the least element O. He has proved that every lattice L is tolerance- O-modular (i.e., $L T(L)$ is O-modular).

Our first results for tolerance lattices of semilattices were presented in [5]:
(i) The class of all semilattices is not tolerance- O-modular.
(ii) The class of all tree semilattices is tolerance- O-modular.

Recall that a semilattice S is a tree semilattice, if each interval of S (in the induced ordering) is a chain. The result (ii) has motivated our effort to characterize tolerancemodular or tolerance-distributive semilattices among tree semilattices.

Let S be a semilattice. Its operation will be denoted by the symbol \vee and the induced ordering of S will be defined by: $x \leqq y$ if and only if $x \vee y=y$.

Let us introduce the relation $C(S)$ of comparability on S. We define $C(S)=$ $=\{(x, y) \mid x \vee y \in\{x, y\}\}$. Clearly, $C(S)$ is a reflexive and symmetric binary relation on S. It plays the key role in our investigation of tolerance-distributivity of S. First we ask whether $C(S)$ is a tolerance, i.e., whether $C(S) \in L T(S)$ and whether at least the intersection of $T \in L T(S)$ with $C(S)$ is in $L T(S)$.

Theorem 1. Let S be a semilattice. The following conditions are equivalent:
(1) S is a tree semilattice.
(2) $T \cap C(S) \in L T(S)$ for each $T \in L T(S)$.

Proof. (1) \Rightarrow (2) Clearly, $T \cap C(S)$ is a reflexive and symmetric binary relation on S, since both T and $C(S)$ have these properties. It remains to prove the Substitution Property of $T \cap C(S)$. Let $(a, b) \in T \cap C(S),(c, d) \in T \cap C(S)$. Then the Substitution Property of T implies $(a \vee c, b \vee d) \in T$. We only need to prove that also ($a \vee c$, $b \vee d) \in C(S)$. As $(a, b) \in C(S),(c, d) \in C(S)$, we have four possibilities:

$$
\begin{array}{ll}
a \leqq b, & c \leqq d ; \\
a \geqq b, & c \geqq d ; \\
a \leqq b, & c \geqq d ; \\
a \geqq b, & c \leqq d .
\end{array}
$$

The first two of them imply trivially the comparability of $a \vee c$ and $b \vee d$, and the fourth is analogous to the third. Without loss of generality it suffices to study the third case. Then

$$
a \leqq a \vee c \leqq b \vee c \quad \text { and } \quad a \leqq b \leqq b \vee d \leqq b \vee c,
$$

thus both $a \vee c, b \vee d$ lie in the interval $[a, b \vee c]$. Since S is a tree semilattice, the interval is a chain and hence $a \vee c$ and $b \vee d$ are comparable, which proves (2).
$(2) \Rightarrow(1)$. If S is not a tree semilattice, then it contains a subsemilattice $\{x, y, z$, $x \vee y\}$ with the diagram in Fig. 1. Then $(x, z) \in C(S),(z, y) \in C(S)$. Let T be the least tolerance of $L T(S)$ containing the pairs (x, z) and (z, y). Then $(x, z) \in T \cap C(S)$, $(z, y) \in T \cap C(S)$ and $(x \vee z, z \vee y)=(x, y) \in T$. But x and y are not comparable, i.e. $(x, y) \notin C(S)$ thus $T \cap C(S)$ has not the Substitution Property and $T \cap C(S) \notin L T(S)$.

Corollary 1. If S is a tree semilattice, then $C(S) \in L T(S)$.
Proof. The assertion follows directly from (2) of Theorem 1 by putting $T=S \times S$. First we shall study those tolerances T of $L T(S)$ for which $T \subseteq C(S)$.

Theorem 2. Let S be a tree semilattice. Let $T_{1} \in L T(S), T_{2} \in L T(S), T_{1} \subseteq C(S)$, $T_{2} \subseteq C(S)$. Then $T_{1} \vee T_{2}=T_{1} \cup T_{2}$.

Proof. Let $T=T_{1} \cup T_{2}$. Let $(a, b) \in T,(c, d) \in T$; then each of the pairs (a, b), (c, d) belongs to T_{1} or to T_{2}. If $(a, b) \in T_{1},(c, d) \in T_{1}$, then $(a \vee c, b \vee d) \in T_{1} \subseteq T$. If $(a, b) \in T_{2},(c, d) \in T_{2}$, then $(a \vee c, b \vee d) \in T_{2} \subseteq T$. Suppose that $(a, b) \in T_{1}$,
$(c, d) \in T_{2}$. As $T_{1} \in C(S), T_{2} \in C(S)$, the elements a, b are comparable and so are c, d. Let $a \leqq b, c \leqq d$. We have $a \leqq a \vee c \leqq b \vee d$, $a \leqq b \leqq b \vee d$. As S is a tree semilattice, the interval $[a, b \vee d]$ is a chain and thus $a \vee c$ and b are comparable. Analogously $c \leqq a \vee c \leqq b \vee d, c \leqq d \leqq b \vee d$, and $a \vee c$ and d are comparable as well. If $a \vee c \leqq b, a \vee c \leqq d$, then both b, d are in the interval $[a \vee c, b \vee d]$ and they are comparable. If $b \leqq d$, then $b \vee d=d$ and $(a \vee c$, $b \vee d)=(a \vee c, d)=(c \vee a, d \vee a) \in T_{2} \subseteq T$, because $(c, d) \in T_{2},(a, a) \in T_{2}$. If $b \geqq d$, then analogously $(a \vee c, b \vee d) \in T_{1} \subseteq T$. If $a \vee c \geqq b, a \vee c \geqq d$, then $a \vee c \geqq b \vee d$; as $a \leqq b, c \leqq d$, we have also $a \vee c \leqq b \vee d$ and thus $a \vee c=b \vee d$. This implies $(a \vee c, b \vee d) \in \Delta \subseteq T$. If $b \leqq a \vee c \leqq d$, then $b \vee d=d$ and $(a \vee c, b \vee d)=(a \vee c, d)=(c \vee a, d \vee a) \in T_{2} \subseteq T$. If $d \leqq$ $\leqq a \vee c \leqq b$, then $b \vee d=b$ and $(a \vee c, b \vee d)=(a \vee c, b)=(a \vee c, b \vee c) \in$ $\in T_{1} \subseteq T$. Now let $a \leqq b, c \geqq d$. We have $a \leqq a \vee c \leqq b \vee c, a \leqq b \leqq b \vee d \leqq$ $\leqq b \vee c$, thus $a \vee c$ and $b \vee d$ are comparable. If $a \vee c \leqq b \vee d$, then $b \leqq b \vee d$ and $a \leqq b$ imply $b \vee c=(b \vee a) \vee c=b \vee(a \vee c) \leqq b \vee(b \vee d)=b \vee d$. As $c \geqq d$ gives $b \vee c \geqq b \vee d$, we have $b \vee c=b \vee d$, thus $(a \vee c, b \vee d)=$ $=(a \vee c, b \vee c) \in T_{1} \subseteq T$. If $a \vee c \geqq b \vee d$, then $b \leqq a \vee c, c \leqq a \vee c$ and $b \vee c \leqq a \vee c$; since also $a \vee c \leqq b \vee c$, we have $a \vee c=b \vee c$ and $(a \vee c$, $b \vee d)=(c \vee b, d \vee b) \in T_{2} \subseteq T$. The cases $a \geqq b, c \geqq d$ and $a \geqq b, c \leqq d$ are analogous. We have proved that $T \in L T(S)$ and thus $T=T_{1} \cup T_{2}=T_{1} \vee T_{2}$.

Theorem 3. Let S be a tree semilattice. Then $C(S)$ is a distributive element in the lattice $L T(S)$, i.e.

$$
\left.C(S) \wedge\left(T_{1} \vee T_{2}\right)=\left(C(S) \wedge T_{1}\right) \vee(C S) \wedge T_{2}\right)
$$

for any $T_{1} \in L T(S), T_{2} \in L T(S)$.
Proof. We have $\left.C(S) \wedge T_{1} \subseteq C(S), C S\right) \wedge T_{2} \subseteq C(S)$ and thus, according to Theorem $2,\left(C(S) \wedge T_{1}\right) \vee\left(C(S) \wedge T_{2}\right)=\left(C(S) \cap T_{1}\right) \cup\left(C(S) \cap T_{2}\right)=C(S) \cap$ $\cap\left(T_{1} \cup T_{2}\right)$. On the other hand, suppose that there exist elements x, y of S such that $(x, y) \in C(S) \wedge\left(T_{1} \vee T_{2}\right)$, but $(x, y) \notin C(S) \cap\left(T_{1} \cup T_{2}\right)$. Then (as the operation \vee on S is commutative and associative) there exist elements $x_{1}, x_{2}, y_{1}, y_{2}$ of S such that $x=x_{1} \vee x_{2}, y=y_{1} \vee y_{2},\left(x_{1}, y_{1}\right) \in T_{1},\left(x_{2}, y_{2}\right) \in T_{2}$. As $(x, y) \in C(S)$, without loss of generality we may suppose that $x \geqq y$. Consider the elements $x_{1} \vee y$, $x_{2} \vee y$. As they are both greater than or equal to y, they are comparable. As $\left(x_{1} \vee y\right) \vee\left(x_{2} \vee y\right)=x_{1} \vee x_{2} \vee y=x \vee y=x$, we have either $x_{1} \vee y=x$, or $x_{2} \vee y=x$. Suppose that $x_{1} \vee y=x$. Then $\left(x_{1}, y_{1}\right) \in T_{1},(y, y) \in T_{1}$ imply $\left(x_{1} \vee y, y_{1} \vee y\right)=(x, y) \in T_{1}$. Analogously $x_{2} \vee y=x$ implies $(x, y) \in T_{2}$. In both cases we have a contradiction with the assumption that $\left.(x, y) \in C_{\mathrm{S}}^{\prime} S\right) \cap\left(T_{1} \cup T_{2}\right)$. Hence $C(S) \wedge\left(T_{1} \vee T_{2}\right)=C(S) \cap\left(T_{1} \cup T_{2}\right)=\left(C(S) \wedge T_{1}\right) \vee\left(C(S) \wedge T_{2}\right)$, which was to proved.

Theorem 4. Let S be a tree semilattice. The tolerances from $L T(S)$ which are
contained in C © S) form a sublattice $\left.L_{0}{ }^{\prime} S\right)$ of $L T(S)$. The mapping $\varphi: T \mapsto T \cap C(S)$ is a homomorphism of $\left.L T_{(}^{\prime} S\right)$ onto $L_{0}(S)$.

Proof. We have $C^{\prime}(S) \in L T(S)$ according to Corollary 1. The lattice $L_{0}(S)$ is the ideal of $L T^{\prime}(S)$ with the greatest element $C(S)$. If T_{1}, T_{2} are in $L T(S)$, then obviously $\left.\varphi\left(T_{1}\right) \wedge \varphi\left(T_{2}\right)=\left(T_{1} \cap C^{\prime} S\right)\right) \cap\left(T_{2} \cap C(S)\right)=\left(T_{1} \cap T_{2}\right) \cap C(S)=\varphi_{(}\left(T_{1} \wedge T_{2}\right)$. Now consider $T_{1} \vee T_{2}$. According to Theorems 2 and 3 we have $\left.\varphi\left(T_{1}\right) \vee \varphi^{\prime} T_{2}\right)=$ $\left.=\varphi\left(T_{1}\right) \cup \varphi\left(T_{2}\right)=\left(T_{1} \cap C(S)\right) \cup\left(T_{2} \cap C^{\prime} S\right)\right)=\left(T_{1} \cup T_{2}\right) \cap C(S)=\left(T_{1} \wedge T_{2}\right) \vee$ $\vee C(S)=\varphi^{\prime}\left(T_{1} \vee T_{2}\right)$. Thus $\left.\left.\left.\varphi^{\prime} T_{1} \vee T_{2}\right)=\varphi^{\prime} T_{1}\right) \vee \varphi^{\prime} T_{2}\right)$, and φ is a homomorphism. Finally, for each $T \in L_{0}(S)$ we have $\varphi(T)=T$, thus φ is a mapping of $L T(S)$ onto $L_{0}(S)$.

Corollary 2. For a tree semilattice S the lattice $\left.L_{0}{ }^{\prime} S\right)$ is a sublattice of the lattice of all subsets of $S \times S$ and hence it is distributive.

Let S be a tree semilattice, let $T_{0} \in L_{0}(S)$. By $L^{*}\left(T_{0}\right)$ we denote the set of all tolerances $T \in L T(S)$ such that $T \cap C(S)=T_{0}$.

Theorem 5. Let S be a tree semilattice, let $\left.T_{0} \in L_{0}{ }^{\prime} S\right)$. The set $L^{*}{ }^{\prime}\left(T_{0}\right)$ is a sublattice of $L T(S)$; its least element is T_{0}, its greatest element is $\widetilde{T}_{0}=\{(x, y) \mid(x, x \vee y) \in$ $\left.\in T_{0} \&(y, x \vee y) \in T_{0}\right\}$.

Proof. Let $T_{1} \in L^{*}\left(T_{0}\right), T_{2} \in L^{*}\left(T_{0}\right)$. Consider the homomorphism φ from Theorem 3. We have $\left.\varphi\left(T_{1} \vee T_{2}\right)=\varphi\left(T_{1}\right) \vee \varphi\left(T_{2}\right)=T_{0} \vee T_{0}=T_{0}, \varphi_{(}^{\prime} T_{1} \wedge T_{2}\right)=$ $\left.=\varphi\left(T_{1}\right) \wedge \varphi_{(}^{(} T_{2}\right)=T_{0} \wedge T_{0}=T_{0}$ and thus $T_{1} \vee T_{2} \in L^{*}\left(T_{0}\right), T_{1} \wedge T_{2} \in L^{*}\left(T_{0}\right)$ and $L^{*}\left(T_{0}\right)$ is a sublattice of $L T(S)$. Obviously $T_{0} \in L^{*}\left(T_{0}\right)$ and $T_{0} \subseteq T$ for each $T \in L^{*}\left(T_{0}\right)$, hence T_{0} is the least element of $L^{*}\left(T_{0}\right)$. Now consider \widetilde{T}_{0}. Let $(a, b) \in$ $\in \widetilde{T}_{0} \cap C(S)$. Then a, b are comparable; without loss of generality' let $a \leqq b$. As $(a, b) \in \widetilde{T}_{0}$, we have $(a, b)=(a, a \vee b) \in T_{0}$; thus $\widetilde{T}_{0} \cap C(S)=T_{0}$ and $\widetilde{T}_{0} \in L^{*}\left(T_{0}\right)$. Let $T \in L^{*}\left(T_{0}\right)$ and let $(c, d) \in T$. As T has the Substitution Property, we have $(c, c \vee d) \in T,(d, c \vee d) \in T$. As $c \leqq c \vee d, d \leqq c \vee d$, we have $(c, c \vee d) \in C S)$, $(d, c \vee d) \in C(S)$, hence $(c, c \vee d) \in T \cap C(S)$, and so $(d, c \vee d)$. Hence $(c, d) \in \widetilde{T}_{0}$. As T and (c, d) were chosen arbitrarily, we have $T \subseteq \widetilde{T}_{0}$ for each $T \in L^{*}\left(T_{0}\right)$ and \widetilde{T}_{0} is the greatest element of $L^{*}\left(T_{0}\right)$.

The tolerance $\left.T \in L T_{(}^{\prime} S\right)$ for which $\left.T \subseteq C_{(}^{\prime} S\right)$ is easily recognized.
Theorem 6. Let S be a tree semilattice, let T be a tolerance on S. Then the following two assertions are equivalent:
(i) $T \in L_{0}(S)$.
(ii) $T \subseteq C(S)$ and, if a, b, x are elements of S such that $a \leqq x \leqq b$ and $(a, b) \in T$, then $(x, b) \in T$.
Proof. (i) \Rightarrow (ii). Suppose that (i) holds. Obviously $T \in C(S)$. As $(a, b) \in T$, $(x, x) \in T$ and $T \in L_{0}(S) \subseteq L T(S)$, we have $(a \vee x, b \vee x)=(x, b) \in T$.
(ii) \Rightarrow (i). Suppose that (ii) holds. Let $(a, b) \in T,(c, d) \in T$. If b and d are incomparable, then $a \vee c=b \vee d$, because S is a tree semilattice, and thus $(a \vee c$,
$b \vee d) \in \Delta \subseteq T$. If $b \leqq d$, then $b \vee d=d$ and $c \leqq a \vee c \leqq b \vee d=d$. But then $(c, d) \in T$ implies $(a \vee c, b \vee d)=(a \vee c, d) \in T$ according to (ii). The case $d \leqq b$ is analogous. We have proved that $T \in L T(S)$. As $T \subseteq C(S)$, we have $T \in L_{0}(S)$.

Now we are ready to prove our main theorem characterizing tolerance-distributive and tolerance-modular tree semilattices.

Theorem 7. Let S be a tree semilattice. Then the following three assertions are equivalent:
(i) S is a chain or S contains a maximal chain S_{0} and an element $z \in S_{0}$ such that each element of $S-S_{0}$ is covered by z.
(ii) $L T(S)$ is distributive.
(iii) $L T(S)$ is modular.

Proof. (i) \Rightarrow (ii). If S is a chain, then $L T(S)=L_{0}(S)$ and (ii) holds according to Corollary 2. Suppose that there exists a maximal chain S_{0} in S and an element $z \in S_{0}$ such that each element of $S-S_{0}$ is covered by z. Let $T_{1} \in L T(S), T_{2} \in L T(S)$ and suppose that $T_{1} \vee T_{2} \neq T_{1} \cup T_{2}$. Let $(a, b) \in T_{1} \vee T_{2}-T_{1} \cup T_{2}$. If a and b are comparable, then $(a, b) \in \varphi\left(T_{1} \vee T_{2}\right)=\varphi\left(T_{1}\right) \cup \varphi\left(T_{2}\right) \subseteq T_{1} \cup T_{2}$ according to Theorem 3, which is a contradiction. Thus suppose that a, b are incomparable. All elements of S which are greater than or equal to z are comparable with all elements of S; therefore $a<z, b<z$ and at least one of the elements a, b belongs to $S-S_{0}$. Without loss of generality let $a \in S-S_{0}$; then a is a minimal element of S and all elements less than b (if any) form a chain. There exist pairs $(c, d) \in T_{1},(e, f) \in T_{2}$ such that $c \vee e=a, d \vee f=b$. As a is a minimal element of S, we have $c=e=a$. As all elements less than b form a chain, at least one of the elements d, f is equal to b. Hence at least one of the pairs $(c, d),(e, f)$ is equal to (a, b), and $(a, b) \in T_{1} \cup T_{2}$, which is a contradiction. As $T_{1}, T_{2},(a, b)$ were chosen arbitrarily, we have proved that $T_{1} \vee T_{2}=T_{1} \cup T_{2}$ for any two tolerances T_{1}, T_{2} from $L T(S)$. Since also $T_{1} \wedge T_{2}=T_{1} \cap T_{2}$, the lattice $L T(S)$ is a sublattice of the lattice of all subsets of $S \times S$, and it is distributive.
(ii) \Rightarrow (iii). This is obvious.
(iii) \Rightarrow (ii). Suppose that (i) does not hold. Let S_{0} be a maximal chain in S. Suppose that there exist elements $x, x^{\prime}, y, y^{\prime}$ such that $x \in S_{0}, y \in S_{0}, x \neq y, x^{\prime} \in$ $\in S-S_{0}, y^{\prime} \in S-S_{0}, x$ is the least element of S_{0} greater than x^{\prime} and y is the least element of S_{0} greater than y^{\prime}. As S_{0} is a maximal chain in S, the element y is not a minimal element of S and there exists an element $y^{\prime \prime} \in S_{0}$ such that $y^{\prime \prime}<y$. Let $T_{1}=C(S) \cup\left\{\left(x^{\prime}, y^{\prime}\right), \quad\left(y^{\prime}, x^{\prime}\right)\right\}, \quad T_{2}=C(S) \cup\left\{\left(x^{\prime}, y^{\prime \prime}\right), \quad\left(y^{\prime \prime}, x^{\prime}\right)\right\}, \quad T_{3}=C(S) \cup$ $\cup\left\{\left(x^{\prime}, y^{\prime \prime}\right),\left(y^{\prime \prime}, x^{\prime}\right),\left(x^{\prime}, y\right),\left(y, x^{\prime}\right)\right\}, T_{4}=C(S) \cup\left\{\left(x^{\prime}, y\right),\left(y, x^{\prime}\right),\left(x^{\prime}, y^{\prime}\right),\left(y^{\prime}, x^{\prime}\right)\right.$, $\left.\left(x^{\prime}, y^{\prime \prime}\right),\left(y^{\prime \prime}, x^{\prime}\right)\right\}$. Each of these tolerances is in $L T(S)$ (the proof is left to the reader) and together with $C(S)$ they form a sublattice of $L T(S)$ whose diagram is in Fig. 2. Hence $L T(S)$ is not modular. We have proved that if $L T(S)$ is modular, then at most one element of the maximal chain S_{0} of S may have the property that it is the least
element of S_{0} greater than an element of $S-S_{0}$. If this is fulfilled and (i) does not hold, then there are elements $x, x^{\prime}, y, y^{\prime}$ of S such that $x<x^{\prime}<z, y<y^{\prime}<z$, and each of the elements x, x^{\prime} is incomparable with each of the elements y, y^{\prime}. Let $T_{1}=C(S) \cup\left\{\left(x, y^{\prime}\right),\left(y^{\prime}, x\right)\right\}, T_{2}=C(S) \cup\left\{\left(x^{\prime}, y\right),\left(y, x^{\prime}\right)\right\}, T_{3}=C(S) \cup\left\{\left(x^{\prime}, y\right)\right.$, $\left.\left(y, x^{\prime}\right),\left(x^{\prime}, y^{\prime}\right),\left(y^{\prime}, x^{\prime}\right)\right\}, T_{4}=C(S) \cup\left\{\left(x, y^{\prime}\right),\left(y^{\prime}, x\right),\left(x^{\prime}, y\right),\left(y, x^{\prime}\right),\left(x^{\prime}, y^{\prime}\right),\left(y^{\prime}, x^{\prime \prime}\right)\right\}$. These tolerances are in $L T(S)$ and together with $C(S)$ they form a sublattice of $L T(S)$ whose diagram is in Fig. 2. Hence $L T(S)$ is not modular. The only possibility for S to be modular is to fulfill (i).

Fig. 1

Fig. 2

Remark. In the terminology of [5] we may say that a tree semilattice S is tol-erance-modular and tolerance-distributive if and only if it is either a chain, or a star semilattice, or the union of a chain and a star semilattice.

References

[1] Bandelt, H.-J.: Tolerance relations on lattices. Bull. Austral. Math. Soc. 23 (1981), 367-381.
[2] Chajda, I.: Distributivity and modularity of lattice of tolerance relations. Algebra Univ. 12 (1981), 247-255.
[3] Chajda, I.: A characterization of distributive lattices by tolerance relations. Arch. Math. Brno 15 (1979), 203-204.
[4] Chajda, I. - Zelinka, B.: Lattices of tolerances. Časop. pěst. mat. 102 (1977), 10-24.
[5] Chajda, I. - Zelinka, B.: Tolerance O-modular semilattices. Glasnik Mat. Zagreb (to appear).
[6] Zelinka, B.: Tolerance relations on semilattices. Comment. Math. Univ. Carol. 16 (1975), 333-338.

Authors' addıesses: I. Chajda, 75000 Přerov, tř. Lidových milicí 22, Czechoslovakia; B. Zelinka, 46001 Liberec 1, Studentská 1292, Czechoslovakia (katedra tváření a plastů VŠST).

