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0. Let (M, ds®> = g;; dx’ dx’) be a Riemannian manifold, V the associated linear
connection. For a g-times covariant tensor T;_; on M, define the Laplace operator 4,
by
(0.1) (AOT)i...j =gV iT,

J

For g = 0, 4, coincides with the classical Laplacian 4 on functions; for g > 0
and T skew-symmetric, 4, does not differ too much from the classical Laplacian
4 = —(dé + &d) on g-forms on M. Using 4,, we are able to define Spec,M) as
the set of all A’s, 1 € R, such that the equation

(0.2) (4o + W) T, ;=0

admits a non-trivial solution. Because of the existence of the metric, we may study
contravariant tensors as well.

The classical spectrum of the unit hypersphere S"< E"*!is well known, see [1]; the
eigen-functions are the restrictions of polynomials harmonicin E"*!. In the following,
I study the behavior of restrictions of arbitrary polynomials. Using the same method,
I am going to study Spec,,(S") and, more generally, Spec;;/M). Instead of 1-forms,
[ am using, dually, vector fields; this enables me to consider the Lie brackets.

As mentioned above, Specy;,(S") does not differ substantially from the classical
Spec’(S"). This comparison will be treated elsewhere, and it will show some dis-
crepancies with the already published results, see, e.g., [4].

1. Let (M, ds?) be a Riemannian manifold, dim M = n. In a coordinate neigh-
borhood U =« M we may write

(1.1) ds? = (0')? + ... + (0",

o', ..., »" being linearly independent 1-forms on U. It is well known that there
exists a unique set of 1-forms w{ on U satisfying

(1.2) ol + i =0, do'=0w A ol;
here (and in the following)
(1.3) i,j,...=1,..,n,

and we use the usual summation convention. The curvature tensor of (M, ds?) is
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defined by ‘

(1.4) do} = of A o] — IR} 0" A ©', Ri, + Rl =0;

it satisfies

(1.5) Rj,+ Ry =0, Rj;=Ri,;, Ry +R; +Rj; =0.
The Ricci tensor and the scalar curvature are defined by

(1.6) R;; =R},, R=4'R;

respectively; 67, 8;; and &/ are Kronecker’s deltas (= 1 for i = j, = 0 otherwise).
Let T’l J” be a tensor on M.Its covariant derivatives with respect to the chosen
coframes {a) } in U are defined by

iy..ir _ ienir J ifeig-1iig+1...ip l = Titeir i.
(17) dj;xl Js Z T.‘Il Jp lJJp-I-l szjp + Z 7}1 J: ! ‘1 ’11.11 Jssi >
p= q=

its second covariant derivatives are, by deﬁnition, the covariant derivatives

ig...ip ig...ir i ir
T;\ins = Tplor,; of the tensor T, ete.

Definition 1. The Laplacian of the tensor TJ‘; J’ is defined by

ieir — i1. l, ijrpite.ir

(1'8) (AOT)u Js =4 TJ: Js T =9 ’I;x Jrsid ot

We say that 1€ R belongs to the (r, s)-spectrum of (M, ds*), and we write A€
€ Spec, (M, ds?), if there is a non-trivial tensor field T;!:ir on M satisfying

(1.9) (do + ) Tt =0.

Ji.Js

For A € Spec, (M, ds?), the solutions of (1.9) are called eigen- tensors. They form
an R-module denoted by &, (M, ds?).

The main problem is to determine, for a given (M, ds?), the (r, s)-spectrum and,
for each A e Spec, (M, ds?), the corresponding R-module &, . Of course,
Spec(M, ds?) = Speco,)(M, ds?) is the classical spectrum of (M, ds?). In what
follows, we will be mainly interested in Spec; o) (M, ds?), (M, ds?) being the unit
hypersphere S”(1) with its natural metric.

2. Let E"*! be the (n + 1)-dimensional Euclidean space, V"*! its vector space,
{,) the scalar product and S"(1) = E"*' a unit hypersphere. With each point
me S"(1) of (a certain coordinate neighborhood of) S"(1), let us associate an
orthonormal frame {v,} with v;€ T,(S"(1)), the unit normal vector v,.; being
oriented in such a way that m + v, is the center of S"(1); here, and in what follows,

(2.1) oopy.o=1,...,n+ 1.
Then we may write

. W, . B
(2-2) dm = o'v;, dv; = Ojv; + O] Mo,y , AV = Oyiq0;
with

. s i . s
(2.3) ol + ol =0, o, =0, w;.-n =50 .
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The curvature tensor, the Ricci tensor and the scalar curvature of S"(1) are

(2.4) Rl = 048] — 646, Ry=(m-16;, R=(n—1)n.
Let F:V"*1 x ... x V"*!  p"*! be a p-linear mapping. At each point m e

e S"(1), F is given by

(2.5) Fv,, ..o 0,,) = Fb o vp.
Because of (2.2, ;) and (2.3, 5), we get
)4
(26) dFalz}l...ul, - Zngl...u,._1aa,+1...a,,w:r + F:;...apwg =0.

For a 0-linear mapping, i.e., for a fixed vector 4 = A%, (2.6) reduce to
(2.7) dd' + Ao} = A0, dAT = =540’
For a linear mapping B: V"*1 - V"*!, we get
(2.8) dB! + B'w] — Bio} = (8|Bi*" + 6B, ,) 0",
dB;*!' — B;.‘“w{ = (6,;By11 — 6uBf) o,
dB},, + B}, ,@; = (6;B;i1 — B)) ',
dB'*! = —(6;Bi. + B*!) 0.

Finally, for a bilinear mapping C: V"' x V"1 — V"*1, we have

n+1

y K _ k K k 1
(29) dC}; — Cljo; — Cho) + Clor = (04Cas1,j + 05Ciusr + OCI ) @,
i ; ' ; i _ i j jon+ 1 k
dCl, . — Cli i of + C§+,,iwi = (0uCrs1me1 — Cli + 31Ch11 ) @,
; ; % j i j jont1 k
dci, . — Ci . 0f + Ci‘,"+1w1{- = (04Ciy1me1 — Clh + 0CioL) &,

. n+1 n+ 1 1 k
dC?j+1 — CZ;'lw'i‘ — C:’k“a)jf = (5ikcn+1.j + 04Ci i1 — 5ktcij) ",

dC:Il,i - :I}le] = (51'er':’):11,"+1 - C;iﬂ - 5jkC:+1.i) o,
dciil, — C;f;}rlw{ = (5UC,',’111‘"+1 — Ci™ = 0,Ct i) o',
dCrl;+1,n+1 + Cr{-i—l,n-l-lw; = (5;C:I},,,+1 - Cji‘,nﬂ - Crin+1,j) o',
dertt = —(Crtl 4+ v+ 05Chi i) @

Definition 2. Let B: V"+! — p**? be a linear mapping; let the adjoint mapping
B pr+t , prt1 be defined by
(2.10) (Bu), vy = uy BOD foreach wve v,
For a bilinear mapping C: V"*! x V"“ = V"1, we define the mappings (VC, ®C:
Vn+1 % Vn+1 - Vn+1 by
211)  <Clusw), vy = COC(w,w) W+ <Clwa ). v = (DCw, v),w

+1
for each WV WE |
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respectively. Further, we define
n+1

n+1
(2.12) TrB =} (Be). &>, TrC =Y Clewes),
a=1 a=1
{e,} being any orthonormal frame in Pn+1,

Definition 3. Let F: V"*1x . x V"+1 _, pyn+1 be a p-linear mapping, S'(1) <
< E"*! a unit hypersphere and v, its field of unit normal vectors (With a chosen
orientation). Then the function vF: S"(1) - R is defined by

(2.13) VE(m) = CF(0,, 4, .oy Vyr1)s Ons 1)
and the tangent vector field nF: S"(1) - T S"(1) by
(2.14) nF(m) = pr. Flo, {, ..., Vus1) »

pr.: V"*1 — T, (S%(1)) being the orthogonal projection and v,1; = v,+1(m).
Of course, in our notation,
(215) VF = Fn:ll,...,n+1 H) T[F = F:iu+1 ..... n+1vi .

n

3. In this section, let us reestablish some trivial results on Spec{S"(1)).

Theorem 1. Let A € V"*! be a fixed vector. Then vA € &(y -

Proof. Because of v4 = A"*! and (2.7), we have A" = —5,4" Al\' =
= —§, A", AA™' = —p4""'. QED.

Theorem 2. Let B: V**! — V"*! be q linear mapping. Then we may write

(3.1) VB=—1 TeB+f, '
n+1
where
(32) TrBe &%, f=VB— TrBe b .
n+1
Proof. Let us write
(3.3) fO:=vB=B)i}, f?:=Bi.
Using (2.8) we find
(3.4) AfD = =2nfD + 2f D AfP = 2nfD) — 2D

Hence A(f™ + f») = ATr B =0 and

1
{4+ 2n + 1)) (vB - Tlﬁ Tc B) = {4 20 D} (0 — ) =0
QED.

Theorem 3. Let C: V"1 x V"*1 - V"*! be a bilinear mapping. Then we may
write

1
C = g+ h
(3'5) v n+3
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with

6 =vT e 4 @ .
(3.6) g =vTr(C + V¢ + C)S‘g(o,())’

1
= —_ (1)
h=vC 3 v Tr(C + C + (z)C) c év(30(:|04;2) )

n +
Proof. Consider the functions
BN V=Gl =0C, [P= G o
f®:= C:+1,k .

From (2.9) we get
(3.8) AfP = =3nfM 4 2fD 4 2f® | 2

AfP = 2nfD — (n +2)f* _ 2P — 2f@

Af(s) = 2nf(1) — 2f(2) — (n + 2)f(3) _ 2f(4) ,

Af® = 2D — 2f _ 2f) (n +2)f@
and, as a consequence,
(39) (A +n)(fP+f®) =4+ n)(fV+/D) = (4 1 n)(rO @) =0,

{4+ 3(n + 2)} (nfV = f@ — 5 —f®) =0,
We may write (3.5) with

(3.10) g =3 4 f@ 4 O 4 f& = ni\3(nf(l) — [@ — f&) _ ey

and we have
(3.11) g =087Cy; " + Copir + C2, .

From (2.11),
(3.12) “)C;y = 5,48C2, Tr WC = ¢, = 5“7C’y'/, L vTrC = Cffﬂ,,;.
Similarly,
(3.13) vTr @C = Cj,.1,
and (3.6,) is verified. Analogously, we verify (3.6,). QED.
4. Let us consider the tangent vector fields of the type nF on S"(1), with p =
=0,1,2.
Theorem 4. Let A € V**+1 be a fixed vector. Then n4 € &, ,,.
Proof. By definition, 74 = A'v;- From (2.7), ‘
(4.1) Al = Samt | Al = —0i0udl, AA" =64l = — 47,
ie., (4 + 1)(n4) = 0. QED.
Theorem 5. Let B: Vn+1 —» V**1! be a linear mapping. Then we may write

(4.2) 7B = VM + @
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with
(4.3) V& = (B + VB)e &y,
Proof. Consider the vector fields

(4.4) X := B = B}, v;,

7 = (B — “B)e£Ih .

X‘Z) =T (t)B = 6ijB;+lﬂi .

It is easy to check
(45) A XM = —(n + 1) XD — 2x@>

and the proof follows.

A,XD = —2XD — (n 4+ 1) X,

Theorem 6. Let C: V"1 x pn+1 _ yn+1 be a bilinear mapping and let e, ¢

be defined by (2.11). Then we may write
1

_ s Lwe e —— ™
(4.6) nC = S W+ W )
with .
@47y WP =zTr{n+2cCc-"c- ®)C}e b,

2n+1

n(2C — ¢ — ¢) — 2 Tr(2C = We -~ @c)esits,

Il

w@
W® = (n + 3)a(C + ©C + @C) —aTr (C+WC +@C)eet].

In particular: The conditions

(4.8) C=Wc=w¢c, TrCc=0
imply nCe &'t], the conditions
(4.9 C+Wc4+@®c=0, TrC=0

lead to nC € &%)
Proof. Consider the vector fields
(4'10) X = 2C = Cri|+1,n+lvi 5 X(Z) i=nTrC —aC < 5"‘C},J),- 4

X® = g ¢ = §iictttp,, ¥® = aTtOC - 2OC = 69Ch0;,
X3 D¢ = 51’an1% v, X(6) <2 Tr®c - ¢ = 5ijC;’iji-
: i1V

From (2.9) we find
(4.11) 4,XD = —(2n + 1) XD 4 2X@) = 2XB) _ 2X(9),
. 4, X® X — 3x@ + 2x® + 2x0)

£XP = —2X® — (2 4 1) X3 + 2X4) _ 2X()
4,X® = 2XW 4 2nx® — 3x* + 25,
A,X') = —2X D — 2% — (2n + 1) X9 4 2X00),
4,X©® = 2XWD 4 2XxG) 4 20y — 33O

and the rest of the proof is easy. QED,

It
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5. Let B: V"*! - V"*! be a linear mapping satisfying B + ’B = 0; for p,
see Definition 2. Then 7B = B, ,v; and, because of (2.8), Bi,,,; = —Bi- Thus,
see [2],

6ikB:+1;j + 5jkBp’:+I;i = _6ikB§ - 5jkBi( =0,
and 7B is a Killing vector field. Further, let 4 € V"*1 be a vector. Then n4 = A'v,,
and we have

SuAl; + 8, AN = 24"116,;, Al =nd"t,

i.e., mA is an infinitesimal conformal transformation.

Definition 4. Denote by .# or € or # the R-module of the tangent vector fields
on S"(1) of the form nB with B + B = 0 or of the form n4 or of the form =B
with B = (B, respectively.

Because of Theorems 4 and 5, we have
(5'1) g < ‘9@?1_,(1)) » €< ‘g(ll,O) , < ép?;,g) .

Each linear mapping B: V"*1 — p"*1 may be written, in a unique way, as B =
= BM 4+ B® with WB® = _ B (B2 = B je.. each vector field of the type
7B may be written as nB = V + Wwith Ve ., We #.

Theorem 7. The R-module # @ ¢ is a Lie algebra, and we have
(5.2) - [#B,nB] = n[B, B]

for two linear mappings B, B: V*+1 s y"*1 the linear mapping [B, E]: prEt
— V"*1 being defined by [B, B] (u) = B(B(u)) — B(Bw)) for each ue vn+1.

Proof.Let V= Vo, W= W', be two tangent vector fields on S"(1). Then

69 V. W] = (W~ W) or.
We have .
(54) nB = B;+Ivi ’ TC‘B‘ = Er’l+ lvi > T (t)B = 5ijB;+1Ui B

R OF — §UBry,
Consider the vector fields
(5'5) xXW = [nB, nB] = (Bri.+1§:ii - B,{+1§5' - E,i.nB:H + §i+133) v,
29 . ) PR nil ~n . i
X% = [n OB, n OB] = su(pr+ 1Bt} — BT UEL ~ BBt + Broigy,
By a direct calculation, 7
(5.6) 4oXD = —(n + 1) X 4 9x™ | 4 X = 2x® _ (n + 1) xo
and we may write X,
1) .
XB = XD — x@) 4 JxD + XP) with
1) _ y(2) n o
~ if XPegurs, ¥ 4 Xxegnt
Now, for B := [B, B], we have B~ B:B? ~ BB and

"B, B] = B,.10, = (B, B, — Bl i B) v, = XV

i
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similarly, z[ ~®B, ¥B] = X, Thus

(5.7) [xB, nB] = $Y + $Y®

with

(59) Y® = o{[B, B] - ["B, “Bl} e &3
Y®  {[B, B] + [B, VB]} e gn-1

(1,0) - QED .

Of course;.f itself is a Lie algebra. Indeed, let B, B: Vn+1 _, pn+1 satisfy (op _

= —B, WB = ——~B. Then the general foEmu]a OB, B] = [®B, ® B] yields
®[B, B] = —[B, B] and (5.3) implies [nB, nB] € # for nB, 7B ..

Theorem 8. Let A, A € V"*1 pe vectors. Then

(5.9) [r4,7d] = nBe S
with B: V**1 - V"*! defined by
(5.10) B(v) = (4, 0) 4 — (A, 0> A
and satisfying ) :
(5.11) B+®WB=0.
Proof. For nd = A%, nd = A'v,, we have
(5.12) [nA, nZ] = (Af/‘f;‘j — ,IfA:'j) v; = (Ai/T"H _ ziAnﬂ) v; .

Let the linear mapping B be defined by (5.10); then Bf = 8.(A7A* — A74%), and =B
is exactly equal to (5.12). It is easy to prove (5.11). QED.

Theorem 9. Let A€ V**1 be g vector and B: V"+1 _ pntt

a linear mapping
satisfying B + OB = 0. Then

*

(5.13) [n4,7nB] = —n B(4).
Proof. We have
(5.14) [n4,nB] = (4’B},,,; — B, 4})v, =

= (A'Byi} — A'B} — A"*'Bl, ) v, = — A*Biv, = —nu B(4)
because of BjT{ = 0. QED.

Thus S @ ¥ is a Lie algebra.

For the sake of completeness, let us study the behavior of [n4, nB] in the case
®B = B. For each linear mapping B: V"*! - V"*1 of the type B = b.id., be R,
we have 7B = 0. Thus, without loss of generality, we may restrict ourselves to
linear mappings B satisfying Tr B = 0.

Theorem 10. Let A € V**1 be a fixed vector and B: V"1 — V"*! g linear mapping
satisfying "B = B, Tr B = 0. Then we may write
1

ot

(5.15) [=4,nB] = (=3(n + 1) (n + 2) XD + 2(n + 3) X® + nX®)}
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With

(5.16) XD = 7 B(d) e &l o),
(5.17) X® = nCe &},
Where

Clv, w) = 4n{2¢v, B(w)y A — <A, w) B(v) — <A, vy B(w)} +
+ 3{2¢v, wy B(4) — (B(A), v> w — (B(d), wyv} for v,weV"*1!,
(5.18) X® =aCesls) ,
where
(v w) = (n + 3) (<o, BW)> 4 + (A, w) B(v) + <A, v B(w)} —
= 2{<v, wy B(4) + (B(A,v)>w + {B(4),wyv} for v,weV"*!.
We have
(5.19) TrC =0,
C(v, w) = C(w,v), {C(v, w), u) + (C(w, u), v> + {(C{u,v),w) =0,
(5.20) TrC =0, Cv,w)=C(w,v), <C(v,w),u) = <C(u,w),v)
Jor u,v,we Vntt,

Proof. We have, see (5.14), -

(5.21) [24,nB] = YD — Yy _ y®
with
(5.22) YO = 4Bty Y = 4By, YO = A"'BI, ;.

Using the conditions B} = Bj, B} = 0, we find

(5.23) 4, YD = —(2n + 3) YV — 4Y®,
AYD = 27D — 37D 4 2(n 4+ 1) Y,
A, Y = —2YD 4 2@ — (2n + 3) Y.

Thus we may write (5.15) with

(5.24) X = Y@ 4 y®  x® = pyD 4+ YO — (n — 1) Y,

X® =(n+3)Y® —2YP + 2(n +2) Y,
and we see that

(525) (o + D)XV =0, o+2n+1)XP =0, (do+2n+7)XP=0.
The rest of the proof follows easily. QED. '

6. In this section, let us study the differential equation (4, + A) x = 0 for tangent
vector fields on a 2-dimensional Riemannian manifold.

Theorem 11. Let (M, ds?) be an orientable compact Riemannian manifold,
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dim M = 2, K its Gauss curvature and x a tangent vector field on M satisfying
(6.1) (4o + )x =0,
I: M — R being a function. If max,, | < miny K, then x = 0.
Proof. Let us write (locally)

(6.2) ds? = (0')* + (0?)?;
then there is a 1-form w? satisfying
(6.3) do' = —0? A 0?, do® =o' A 0}, do} = —-Ko' A @?,
K being the Gauss curvature. The first covariant derivatives of the vector field
x = x'v; are given by
(6.4) dx! — x?w? = xlo!' + xj0?, dx? + x'o! = 20! + x30?,
the second covariant derivatives by
(6.5) dx; — (x] + x3) 0] = x},;0' + x],0%,

dxj + (x] — x3) o} = x},0' + x3,07,

dxi + (x; — x3) 0} = x},0" + x},0?,

dx3 + (x + x3) @ = x3,0" + x3,0%;
we write simply x, instead of x, . Inserting (6.5) into the differential con-
sequences of (6.4), we get
(6.6) X3 — X1, = Kx?, x3, —x}, = —Kx'.

Introduce the 1-forms
(6.7) 0y 1= 8xixfor = (x'x! + x°x}) o' + (x'x} + x2x2) 07,
@, 1= 0;xxp0’ = (x'x] + x?x3) 0 + (x'x} + x%x3) 0?,
@3 1= §,x'xjo’ = (x'x] + x'x3) o' + (x2x] + x2x3) ©” .

Using (6.6) and (6.1), i.e.,

(6.8) xip + x5, FIxt=0, x* +x%, +Ix*=0,
we have
(6.9) d+(p; + ¢, — 03) =

= {(x; — x3)* + (x] + x3)* + (K = D) [(x")* + (x*)*]} dv,

+ being the Hodge operator and dv = @' A w? the area element. By the Stokes
theorem and the supposition

(6.10) K — I = (K — minyK) + (maxy I — I) + (miny K — maxy [) > 0,
we have x! = x2 = 0,i.e., x = 0. QED.

" Theorem 12. Let (M, ds?) be an orientable compact Riemannian manifold,
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dim M = 2, K its Gauss curvature, and let max,; K < 5 min,, K. Let x be a tangent
vector field on M satisfying (6.1) with
(6.11) max, K < miny I £ max, [ < 5miny K .
Then x = 0.
Proof. The third covariant derivatives of x’ (see the proof of the preceding
theorem) are given by
(6.12) dxj; — (x{, + x5 + x1;) ©f = x{ 0" + x};,0%,
dxi, + (x}1 — X3 — x122) F = X15,0" + x{5,0°,
dx;; + (xlx — X35 — x%l) f = X310 + x3;,07,
dx;, + (xi2 + X31 — x%z) o7 = x35,0" + x35,07,
dxi, + (xh - xi; — x§1) o = x1;0" + x{;,0%,
dxi, + (X}Z +xi; — x§2) of = x},0" + x5,0%,
dx3; + (xél + xi; — x§2) of = x31,0" + X3,0°,
dx3, + (%25 + x{, + x3;) 0f = x3,,0" + x3,,0%.

The differential consequences of (6.5) yield

(6.13) X121 — X112 = K(x] + x3), X351 — X33, = K(x3 — x}),
xfu - x%lz = K(x% - x}) P x%zx - x§12 = _K(Xf + x;)
From (6.6) we get
(6.14) X3y — xip; = K x> + Kx}, X3, — X122 = Kyx* + Kx},
x%u - xfz1 = —Kx' - Kx} > X312 — Xia2 = —Kpx' — Kx;_ >
from (6.8),

(6.15)  xiyq + X35 + Ixt +Ix} =0,  x}; + x5y +1Lx?+Ixi =0,
Xita + Xpoo + x4+ Ixy =0,  XxI, + X350 + x>+ Ix3=0;
here K; and [; are the covariant derivatives of K and [, respectively, defined by
(6.16) dK = K 0' + K,0?, dl =o'+ Lo*.
Using (6.6), (6.8), (6.13)—(6.15), we get
(6.17)  d#[d{(x] — x3)*> + (x] + x3)*} + (r — 2K + 2) (¢; + ¢, — @3)] =
= [(xh — Xyy — Xi, — x;l)z + (xfl — x5, + X1, + x;l)z +
+ (4K + 1) {(x} = X2 + (xF + x0)?) +
+ (1 =K)(K—=1-1){(x")?+(x*)*}]dv for reR.

Now, take
(6.18) r = —33 miny K + maxy [);
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then, using (6.11),
(6.19) 4K + r = 4K — miny K) + ¥(5miny K — maxy [) > 0,

I — K = (I — miny I) + (maxy K — K) + (miny [ — max, K) > 0,

K — 1 —r= (K — minyK) + (maxy | — ) + £{(5miny K — maxy /) >0,
and the integral formula based on (6.17) implies x' = x> = 0, i.e., x = 0. QED.

Using (6.9) and (6.17), we are in the position to describe the modules &(; 5, and
&% .0, on S*(1). First of all, let us introduce the following

Definition 5. On S?(1), let us choose an orientation; the mapping
(6.20) x: T,(SX(1)) > T,(s¥(1)), meS¥1),
associates with the vector ¢ € 7,,(S*(1)) the vector *t € T,,(S*(1)) such that <t, t) =
= (xt, *ty, {t, *t) = 0 and the couple (t, *t) is positively oriented.

Let the frames {v,, v,,v3} associated with the points of S*(1) be chosen in such
a way that
(6.21) *D, =Dy, *Uy = —0;.

Theorem 13. On S*(1), let x € &/, o). Then there are vectors A, A€ V? such that
(6.22) x=nAd+ =nd.
Conversely, each vector field of the type (6.22) belongs to &(; o,

Proof. In our case, we have K = [ = 1. From the integral formula based on (6.9)
we get

(6.23) xi—xt=x}+x,=0; '
from (6.5),

(6.24) Xi1 = X31 = Xip — X33 = X3; + Xi; = X3, + Xi, = 0.
If we write

(6.25) a:=x{ =x3, a:=x>=—x},

the equations (6.4) turn out to be
(6.26) dx! — x20} = aw' — d'w?, dx® + x'0? = do' + aw?.

Applying the exterior differentiation and Cartan’s lemma, we get the existence of
functions b, b’, ..., f, f’ such that

(6.27) da = (b — Ix") o' — (b + $x%) @,
da’ = (b' - 1x*) o' + (b + ix") 0?,
(6.28) db + b'w} = (¢ — 1a) @' — (¢’ + 1a') 0?,

db’ — b} = (¢’ — 3a') @' + (¢ + }a) 0?,

de + 2dw? = ew! — 'w?,
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de’ — 2co? = e'w! + ew?,
de + 3¢w! = (f + ) o' — (f — ) w?,
de’ — 3ew] = (f' + ) o' + (f — ¢) @*.

Now,

(6.29) dxd(c® + ') =4(e® + &% + 2 + '?)dv;

applying the Stokes theorem to the 1-form *d(c? + ¢'?) on S*(1), we get
(6.30) e=e =c=c =0,

and the equations (6.28, ,) reduce to

(6.31) db + b} = —iaw' + d'w?), db’' — bo; = —}d'0' — av?).

The system (6.26) + (6.27) + (6.31) is completely integrable.
Consider the vectors

(6.32) A= (3x' = b)v, + (3x* + b')v, + avs,
A= (3x* = b)v, — (3x" + b)v, + a'vs;
it is easy to see that d4 = d4 = 0, i.e., 4 and 4 are fixed vectors of V3. Finally,

(6.22) is immediate.
Conversely, given two vectors

(6.33) A=A, + A%, + A3%;, A=A, + A%, + A%,

of V3, we have

(6.3¢) dA' — A’} = A3%0', dA%? + Alo] = A3%0*, d4® = —Ale' - A%0?,
and analogous equations for A% The vector field (6.22) then is

(6.35) x = x'o, + x%, = (41 — A0, + (42 + AY) 0, .
Inserting into (6.4) and using (6.34), we get
(6.36) xb =A%, x\=-4%, x}=22%, x}=4°%.

Thus we have (6.23); this and (6.6) for K = 1imply xj; + x3, + x' = x, + x5, +
+ x2=0. QED.

Theorem 14. On S*(1), let x € &, . Then there are linear mappings B, B: V3 —
— V3 satisfying

(6.37) B=®B, TrB=0; B=®B, TrB=0,
such that
(6.38) x =B + 1B .

Conversely, each vector field of the type (6.38) belongs to é”(s,,o).

Proof. In this case, we have K = 1, | = 5. Using (6.17) with r = —4, we get,
integrating over S*(1),

1 1 2 2 _ 2 2 1 t
(6-39) Xip — X33 — X12 — X3y =0, Xy — X3 + x5 +x, =0.
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Further we have, of course,

(6.40) x4 x, +5x1 =0, x} +x3, +5x2=0
and
(6.41) X3 = Xi2 = x> =0, x3; —xi; +x' =0

because of (6.6). From (6.29)—(6.31) we get the existence of functions A4, A" such
that (6.5) become

(6.42) dx; — (x] + x)) 0of = (4" = $xY) o' + (4 — Ix?) @?,
dxy + (xf = x3) 0l = (4 + Ix?) o' — (4" + $x!) 0?,
dx} + (xf — x3) 0f = —(4 + $x*) o' + (4" + x') &?,
dx + (x] + x3)0f = (4 = 2D o' + (4 — $x?) 0?.

The prolongation yields the existence of functions B, B', ..., E, E' such that
(643)  dA + A'w? = (B + 3(x} — x})} o' — (B + ¥(x! + xI)} 0?,
dA’ — Ao} = {B' — }{x] + x3)} o' + {B — }/x] — x})} 0*;
(6.44) dB + 2B'w} = (C — A) o' — (C' + A) &?,
dB’' — 2Bw} = (C' — A) o' + (C + A) 0?;
(6.45) dC + 3C'w} = Do' — D'w?, dC’' — 3Cw? = D'w' + Do?;
dD + 4D'w} = (E + 3C) o' — (E' — 3C) 0?,
dD' — 4Dw} = (E' + 3C’) o' + (E — 3C) *.
Further,
(6.46) d*d(C* + C'?) = 2[2(D* + D) + 3(C* + C?)]dv;
integrating over S%(1) we get C = C’ = D = D' = 0, and (6.44) reduce to
(6.47) dB + 2B'w} = —Aw' — A'w*, dB’ — 2Bw; = —A'o' + Aw?®.
The system (6.4) + (6.42) + (6.43) + (6.47) is completely integrable.
For a linear mapping B: V* — V3 given by B(v,) = Blv, we have
(6.48) dB} — 2Bjw} = 2Bjw', dB} + (B| — B}) o} = Bjo' + Biw?,
dB} — Bjw} = (B} — B}) o' — Biw?, dB} + 2Bjw] = 2Bj0?,
dB; + Bjw} = —Blo' + (B} — B}) »*, dB} = —2Bjo' — 2B;0*
provided
(6.49) B =B;, B +B;+B;=0,

i.e., (6.37).
Returning back, consider the fields of linear mappings B, B defined by

(6.50) Bl = (4B — 5x +x3), B} = —35(4B — xi + 5x%),

Bl = (xi +x3),
B} = B) ={(4B — 3x] — 3x3), B} = Bl = —}(24" — 3x"),
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B} = B = —1(24 - 3x?);
Bl = —5(4B + 5x] + xb), B = 5(4B + x? + 5x}),
Bl = i(xi - x),
= B} =5(4B +3x} —3x%), B} =B =104+ 3,
B} = B} =-324"+ 3.
By definition, they satisfy (6.37). It is just a matter of patience to verify the equations
(6.48) and the analogous equations for B?. Thus we get two fixed mappings B, B:
V3 — V3. To check (6.38) is easy.

Conversely, let two linear mappings B, B: V3 — V? satisfying (6.37), (6.48) and
the analogous equations for B be given. Then

Il

=
|

(6.51) x = x'v; + x%*v, = (B} — B})v, + (B} + B})v,.

Inserting into (6.4) and using (6.48), we get

(6.52) xi = B}—-B; +B!, «xl=-B+B!-B:,
x}=-Bf - B} +B, x}= B}-B-B,;

from (6.5),

(6.53) xi, = —4B} + B}, x), = —B} +4B;, x}, = —B; — 4B7,

_4Bg - Ef s

I

2
X322
and we have (6.40). QED.
In the case dim M = 2, let us prove just one result.

Theorem 15. Let (M, ds?) be an orientable compact Riemannian manifold. If the
quadratic form

(6.54)  {R;; — (n — 1) A8;;} &€ = Ric(&) — (n — 1) A&, >, LeR,
is positive definite at each point m € M, then A ¢ Spec; o,(M, ds?).
‘Proof. Let x = x'v; be a tangent vector field on M. The first covariant derivatives
x;; are given by
(6.55) dx' + o} = x|;0
with the differential consequences
(6.56) (dx}; — xhol + x50p) A 0 = —1xR}, 0" A @'

The second covariant derivatives being given by

(6.57) dxi; — xLoh + xf0} = x;0",
we have

: ; D
(6.58) Xk = Xu; = Riyx'.

Consider the 1-forms, compare with (6.7),

(6.59) ;= 6;x'xhao*, 0, = 8 x x50, w; =5, ;x'xjol.
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Then it is easy to see that, under the supposition

(6.60) §Uxt; + Ak =0,
(6.61) dx{(n—1) oy — o, + o3} = { ¥ (x}; — x)* + ¥ (x]; + x})* +
i<j i<j
+(n =2 Y (x;)* + [Ry — (n = 1) 26,] x'x'} dv,
i*j

where dv = @' A ... A " is the volume element. Using the Stokes theorem, we
complete the proof. QED.

Theorem 16. For n > 2, we have é”(ll,o)(S"(l)) =9%.

Proof. For M = S"(1), (6.61) reduces to, see (2.4,),
(6.62) dx{(n —1)w; —w, + w3} = {Z(x', —x)? + Y (x+ X))+

i<j i<j

+(n— 2)i§j(xfi)2 +(n — l)v(l — 2)d;x'x7} dv.

Integrating over S"(1) for 2 = 1, we get
(6.63) xi; =0 for i=*j; x!;=x/, (nosummation!) for i<j.
Define
(6.64) Ali=x", AMi=xl ==X,
Then we we have (2.7,). Further, for i = j, (6.58) reduces to (no summation!)
(6.65) xjij = xfij — xfﬁ = ZRfijx’ = 2(5,,-(5; — 5,1-5::) x' = —Z(Sljx',
1 1 1
i.e., we get (2.7,). Thus 4 = A%, is a fixed vector and x = n4. QED.

7. Concerning the whole spectrum of tangent vector fields on the unit hyper-
sphere, I am able to prove just the following

Theorem 17. Let S*(1) be a unit hypersphere. Then the numbers
(7.1) do=1; A, =pn+p*—p—1 for p=1,2,...;

14
Ay =pn+p+p+1 for p=1,2, ..
belong to Spec(; gy of S"(1). Obviously, 4,y — 4, =n —220.
Proof. Let A € Vn+1 be a fixed vector; we have (2.7). Further, let Q: V"*!' - R
be a 1-form; let Q, :— Q(v,). From dQ, — Q0! = 0, we get

(7.2) dQ, — Q0] = 86,0410, 40, = —Q0",
ie.,

(1.3) Q= 01> Qeri= -2,
Further, let (VQ € Pn+1 be the vector defined by

(7.4) Qu) = (VQ,uy for uep"*;

222



we have VQ = 6"Quv,. Let us write
(7.5) VQ = Qv,41) = iy s

v, being the unit normal vector field of S"(1).
Introduce, on S"(1), the tangent vector fields

(7.6) X = (vQ)P A = (Q,,,)" A'v, for p=0,1,...,
Y, = vA. (vQP 1 aWQ = 694" Q)P Qu; for p=1,2,...,
Z(p) = (VQ)F n(t)Q = 6ij(gn+ I)P iji for p= 0, 1, cee s

We see that X(,) = nF, where the p-linear mapping F is given by

(7.7)  Flugys -y ugpy) = Queyy) ... Quy) A for ugyy, ... ugy e V'L,
Further, let
(7.8) k= (0Q,00) = §70,0,, c¢:= Q(4) = Q,4*.
By direct calculation we find, for p = 2,
(79)  doXy = (p—p* —np — 1) Xy — 2pY) + P(p — 1) kX2
40¥p) = =2Xy + (L= p = p* = np) Y + (P = 1) (P = 2) kY3, +
+ 2(p - 1) 'CZ(p—Z) s
AOZ(p) = ___(pZ + np + P + 1) Z(p) + p(p - 1) kZ(p_z) .
Also by a direct calculation,
(7.10) A Xq)y = —(n+ 1) Xy = 2¥), do¥uy = =2X(y — (n + 1) Yy,
AZy = —(n + 3) X1y, 4oXoy = —X0y> 40Zoy = —Zq) -
Now, let ¥, ..., ¥y, be tangent vector fields on S*(1), and let us have
(7.11) AoVigy = 15V; A B,...=1,..,N; rieR.

To exhibit vector fields V = sV, s* € R, satisfying (4o + 4) V' = 0, 1€ R, we have
to solve the well known characteristic equation

(7.12) D := det ||r§ + 265 = 0,

and to proceed as usual.
Introduce the notation

(7.13) Dpy=@A—-pn—p*+p+1)(A—pn—p*—p—1),
dp=4—p>*—pn—p—1.
Let p be odd. Writing, by means of (7.9) and (7.10),
40X (), A0 Yy 40X (p-2)> A0 ¥p-2)> 40Zp-2ys -+ 40X (1)» Ao Y1y, 40Z1y
in the form of (7.11), we get, see (7.12),
(7.14) D = DyDiyp-2y -+ Denydip-2ydp-ay -+ Ay -
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For p even, write
40X 0y A0 Yy 40X (p-2)> A0V (p-2)» A0Z(p-2ys -
o> 40X 23> 40 Y(2), 40Z2), 40X (0)> 40Z 0y
in the form of (7.11); we get
(7.15) D = DyD,— 2y s Diaydip—2)dip-ay --- diay(A — 1)2.
Hence our result follows. QED.
8. We have proved in Theorem 7 that # @ £ is a Lie algebra of vector fields

on S"(1). Of fourse, we are interested in the Lie group of transformations of S*(1)
into itself generating £ @ #. The aswer is given by the following

Theorem 18. Consider S"(1) = E"*'. In E"*', choose an orthonormal system
of coordinates (%) with the origin at the center of S*(1). Let a® € R, and let f,: S*(1) -
- S"(l) be a 1-parametric group of transformations given by

n+1
(8.1) A&, . &) = (Y exp (2a%) (&))" 1/2.
a=1
n+1
Aexpalt. &, .. ,expatit. Y, V(&P =1
a=1
Then the associated tangent vector field

» _ 4f/E)
(82) V(&) = Ta

belongs to . Conversely, each vector field of # may be generated in this way.

Proof. By a direct calculation,

(8.3) (L:i(f) ("i exp (2aP1)(£P)*)~3/2 (exp a*. ﬁzl(a“ — af) exp 2a°.(EF)* &) .

Further, consider the linear mapping B: V"*! — y"*1 gjven by
(8.4) B/x%) = (ax%).

Tke unit normal vector at the point (x*) € S"*! being (x*), we have

n+1

(8.5) nB = (ﬁzﬂ(a“ — af) (xP)?.x%) ;

indeed, it is easy to see that {nB, (x*)) = 0, and we have

n+1
(8.6) B(x*) = nB + ) af(x#)?.(x%) .
B=1
Inserting
n+1
(8.7) x* = (Y exp 2a’t.(E#)2) 712 exp a*t.&*
, =
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into (8.5), we get

(8.8) (xB) (x*) = %f) . QED.

9. Finally, let us see what happens if we replace the hypersphere by the Veronese
surface.

Let (x, y, z) be orthonormal coordinates in E* and (uy, ..., us) orthonormal co-
ordinates in E°. Let the mapping S*(,/3) — S*(1) be given by

(9.1) up=%33.yz, uy=%3.xz, uy=%3.xy,
uy, =%3.(x* = »?), us =¥x*+ y* —22%;
the image of S?(,/3) under this mapping is exactly the Veronese surface ¥". Intro-
ducing the usual parameters («, f) on S*/3), i.e., writing S*(,/3) as
9.2) = /3.cosacos B, y=./3.cosasinf, z=./3.sina,
and considering the orthonormal frames {m; v,, ..., vs} in E° with
(9.3) vy = (sin a cos B, —sin asin B, cos a cos 2, —cos a sin 2, 0),
v, = (cos 20 sin B, cos 20 cos B, —% sin 2o sin 28, —% sin 2a cos 26,
—1./3.sin20),
v3 = (cos acos B, —cos o sin B, —sin o cos 2, sin a sin 2, 0) ,
v, = ¥(sin 20 sin B, sin 2x cos B, (cos® a — 2) sin 2B,
(cos? o — 2) cos 2B, \/3 . cos? a),
—m = vs = —%./3.(sin 2asin B, sin 2a cos B, cos® o sin 28,
cos® o cos 28, —1 /3 .(2sin® & — cos® a)),

we get the fundamental equations of ¥~ in the form

(94) dm = o'v + 0®,,
dv, = i, + 3/3.(0%03 + 0'v,) + 0'vs,
dv, = —ofv; + 1./3 . (0'v; — 0’v,) + 0®vs,
dvy = —1 /3. (0%, + 0'v,) — 20iv,,
dv, = —1./3.(0'v; — 0?v,) + 20]vs,
dvs = —o'v, — 0’v,
with .
(9.5) ol = /3.cosadf, o= 3.de, o] =sinzdp.
The Gauss curvature of ¥ is, of course,
(9-6) K, =1%.

Ateach point m € ¥~ we have the tangent plane T,,/ ") spanned by vy, v,, the normal
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plane N,,(¥") spanned by v;, v, and the unit normal vector vs. Obviously, T,(¥") @
@ N,(¥") = T,,(S*(1)); the set of planes N,,(¥") will be called the normal bundle of 7.

We have to study the sections of the normal bundle N(¥") of ¥". Let us start with
general considerations. Let a Riemannian manifold (M, ds?) be given; over M, let
a Euclidean bundle (%, {, ») be given, i.e., a vector bundle each fiber of which
carries a positive definite symmetric scalar product {, »: %4,, X %,, » R. On 4, let
a linear connection D* be given; using local coordinates, let us assume that £
restricted to a suitable neighborhood U = M is trivial over U. Suppose dim # =

=dimM + m. In & (restricted to U) choose orthonormal sections (wy, ..., w,,),
i.e., sections satisfying <w,, wg) = 04p; @, B, ... = 1, ..., m. The connection D* gives
rise to 1-forms 5 on U such that

(9.7) D*w, = thw,.

If s: U - 4, s = s"w,, is a section, define the covariant derivatives s7; by

(9.8) ds® + 515 = sho';

for a tangent vector field ¥ = V', on U, the covariant derivative of s with respect

to Vthen is Djs = s7;V'w,. The connection D* is said to be Euclidean with respect
to (, Yif

(9.9) V{s,§) = (Dys, 5> + s, Dy3>

for each tangent vector field ¥ and any two sections s, §: U — 4. It is easy to see
that D* is Euclidean with respect to <, ) if and only if

(9.10) ™ +1=0.
The components of the curvature tensor of D* are defined by +
(9.11) dif =) A — 1850 A0/, SE,+ 8L, =0.

The curvature of D* at me U is the mapping S: T,(M) x T,(M) x &, - %,
given by
(9-12) SV, W)s = S, .ViWistw, .

For the section s = s*w,, the differential consequences of (9.8) being
(9.13) (dsf; — sho! + shtp) A o' = 1S5, sP0' A o,
there are functions s%;; (the second covariant derivatives of s¥) such that

(9-14) dsf; — sl + sty = sf;07,

(9.15) s — S5 = Spist.
The Laplacian of the section s = s*w, is then defined by
(9.16) A*s = 6ifsf,.jwa.

It is obvious how to define the spectrum of a Euclidean bundle (4, {, >) over M
with a given Euclidean connection D*.

In the case of the normal bundle N{¥") over the Veronese surface ¥, the con-
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nection D* is given by, see (9.4),
9.17) D*vy = —2w’v,, D*v, = 2wiv,.
Theorem 19. Let ¥~ < E° be the Veronese surface, let A€ V® be a fixed vector.
At each point m € ¥, consider its decomposition
(9.18) A = 1A + nyd + vAvs; nAeT (¥), nyAeN (¥), vAeR.
Then, with K, = % as in (9.6),
(919) (4 +6K,)vA =0, (4o + 5Ky)mAd =0, (4% +2K,)nyd =0.

Proof. Let A = A%,; ¢,0,... = 1,...,5. The vector A being fixed, we have
dA4® + A°w? =0, i.e.,
(9.20) dA' — A0 = (33.4* + ) o' +1/3. 432,

dA? + A'of = 1 /3. 4%" + (4° -1 /3.4 0?,
d43 + 24%7} = —1./3.(4%! + A'0?),
dA* — 24%7 = —1./3.(4'0" — A%0?),
d4’ = —Ale! — A%w?.
Now,
(9.21) VA = A5, 7dA = A'v, + A%,, nyA = A%, + A*v,.
Applying (9.20) and the appropriate definitions of 4, 4, and 4*, we complete the
proof. QED.
Let B: V° — V* be a linear mapping. Analogously to the case of S*(1), we define
(9.22) vB = {B(vs), vs) = B3,
B being given by B(v,) = Bjv,. The mapping B induces, for each m e ¥", linear
mappings vyB: T,(¥") = T,(¥"), vwB: N,(¥") = N,(?") defined as follows:
(9.23) (vyB) (v) = pry B(v) for ve T, (¥), prp:V°— ,,,("V)
an orthogonal projection .
(vwB) (s) = pry B(s) for seN,(¥"), pry: V> = N, (¥)
. an orthogonal projection .

Further, we have
(9.24) Trv;B = B} + B2, TrvwB =B} + B}.
Theorem 20. Let ¥ < E> be a Veronese surface, let B: V> - V5 be a linear
mapping. Then we may write .
(9.25) VB = 3fy + 3/ + 35/ »
where
f(l) =TrB 5 Af(l) =0 M
f(2) = 2vB + Tr VTB —-2Tr VNB ) (A + 6K1/-)f(2) = 0;
fizy=6vB — 4TrviB + TrvyB, (4 + 20K,)fs =0.
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Proof. From dB; — Bjw, + Byw; = 0 we get
(9.26) dB: = —(B] + B}) o' — (B + B3) 0?,

dBj — Biw? = (1/3. B + B} — B) o' + (1/3. B} — B}) o?,
dBy — Blo} = (3/3.B% + B — B)) o' + (}./3.B} — B)) 0?,
dB5 + Bjw} = (}/3.B} — B)) o' + (B — B} — 1./3.B;}) 0?,
dBZ + Blo? = (3/3. B3 — B}) o' + (B — B} — 1 /3. B}) 0,
d(B} + B}) = {3/3.(B; + Bf + B} + B}) + B, + Bj} o' +

+ {$/3.(B} + B} — B; — B}) + B + B3} 0?,
dB} + (2B} — B3) o} = {}./3.(B] — B}) + Bi} o' +

+ 3./3.(B3 — B}) 0?,
dB3 + (B} + 2Bj) w; = 1./3.(B3 = B)) o' +

+ {B3 — $/3. (B} + By} o?,
dB} — (B + 2B}) wi = {£./3.(Bf — B}) + B} o' +

+ %./3. (B + B}) 0?,
dB; + (Bf — 2B3) 0} = }./3.(B} — B)) o' +

+ {3./3.(B — B}) + B} .
Then

(9:27) 4B = —4B: + 2(B] + B3),
A(B} + B}) = 4B} — *X(B} + B}) + 4(B} + BS),
A(B3 + B3) = 4(B; + B3) — 4(B + By),

and (9.25) easily follows. QED.

In the end, let us prove a simple global result.

Theorem 21. Let (M, ds*) be an orientable compact Riemannian manifold,
(@, <, >) a Euclidean bundle over M, D* its Euclidean connection, and let dim M =
=2, dim B = 4. Let K, be the curvature of # (to be defined in the proof). If
there is a non-trivial section s: M — & satisfying

(9.28) (4%+2)s =0,
then
(9-29) ' A = max (miny Kg, —max, Ky) .

Proof. Let us restrict ourselves to a coordinate neighborhood U = M such

that 4 is trivial over U; let wy, w, be two orthonormal sections of # over U. Then D*
is given by

(9.30) D*w; = 13w, , D*w, = —7iw,;
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see (9.7) and (9.10). The curvature K4 of 4 is then defined by
(9.31) dt} = —Kzo' A 07

compare with (9.11).
Let s = s'w; + s?w, be our section. The covariant derivatives s; are defined by,

see (9.8),

(9.32) ds' — 5’17 = sho' + sho?, ds® + '] = sho! + she?.
The equations (9.14), (9.15) read
(9.33) dsl; — shol — st} = sl 0! + sl,0?,

1 1 2 2.2 1 1
ds, + s;07 — 55T = 50" + 55,07,
ds}y + shoi — shit} = s 0" + 57,07,

2 2 2 1.2 2 1 2 2
ds;, — s;107 + 5,71 = 510" + 55,07,

(9.34) Sty — Sip = Kgs?, shy — sh, = —Kgs'.
Consider the 1-forms (here ¢, = 0, &,; = —¢&p, = 1 for & > f)
(9.35) @y = #0,p5"P0" = —(s'sl, + s%sh) o' + (s's} + s%s%) 0?,

It

0 = eps"shio’ = (s's], — s%sly) o + (s'sh, — s7sh) 07 ;
we get
(036 doy = (57 + ()7 + () + (2 + 5'(shs + 5h) +
+ 557 + sh,)} 0! A 07,

do, = {2(s}ys% — sZsh) — Kg[(s))? + (s%)*]} @' A w?.
Using (9.28), i.e.,
(9.37) Shi + Sy + st =0, sk + 55, +4s>=0,
we get
(9.38) d(g; — @2) =

(6 = P+ (G + )+ (Ke = D[EY + (P ot A o,

d(e, + @,) =

— (s} + 2 (5 = Y — (Ko + AIE) + (T 0! A a2
If A < miny Kg, s = 0, then using the Stokes theorem applied to (9.38,), we get
from (9.38,) that s = 0 for 1 < —maxy K, QED.

Comparing (9.30) and (9.17), we see that t{ = —2w} for the normal bundle N(¥")

of the Veronese surface 7. Thus
(9.39) KN(‘V) = '—%‘ )
and for each non-trivial section s: %" — N(¥") satisfying (4% + 1)s = 0 we have
A = % = 2K, Sections with A = 2K, are realized by the sections of the type nyA4,
see Theorem 19. The Veronese surface is not orientable, but we may use the pull-
backs of the forms ¢;, ¢, under the mapping S(,/3) - ¥~ to be able to apply the
proof of the last theorem.
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