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ON THE EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS 
FOR AN EQUATION OF A RECTANGULAR THIN PLATE 

EDUARD FEIREISL, Praha 
(Received December 2, 1985) 

In this paper, our aim is to demonstrate the existence of infinitely many time 
periodic solutions to the problem 

{p} 

(PI) Utt-^ A^u + f{x,y,t,u) = 0, (x, j ) e ß , teR, 

(P2) и = Au = 0, {x,y)edQ, teR, 

(P3) w(x, y,t + T) = w(x, y,t), {x,y)eQ, teR 

where Q — (0, a) x (0, b) is a rectangle and A denotes the Laplacian. 
To be more precise, the weak solution of {P} can be found the norm of which in 

a certain space of periodic functions exceeds an arbitrarily chosen positive value. 
The crucial condition we assume in the sequel is that both ajb and a^jTn are rational 
numbers. It is an interesting task to find out how to treat the above problem if this 
is not the case. Moreover, the function / is supposed to satisfy some "reasonable" 
requirements specified in Section 2, (Fl) —(F3). 

In [3], an analogous problem is investigated in the case of a wave equation. The 
technique which is used in this work, however, does not seem to be of any help to us 
here. It is mainly its dependence on the d'Alembert operator that prevents us from 
applying it to our equation. 

In order to cope with the given problem, we have employed the approximation 
method of Rayleigh-Ritz. In this way, we get a sequence of variational problems 
solvable with the aid of some topological methods (see Section 3). The approximate 
solutions we have obtained should converge to a weak solution of {P}. To accomplish 
it in a general situation, we have no alternative but to require the function / to be 
monotone with respect to и (the assumption (Fl)). Nonetheless, this assumption can 
be avoided if / depends on the variable и only. It should be pointed out that the 
method we have just sketched works in this case as well. This is what made us abandon 
the dual action approach here (for this method see e.g. [4]). 
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1. PRELIMINARIES 

We use the standard notation. In particular, the symbol й will denote the set of 
real numbers, /V the set of positive integers, Z the set of all integers. Throughout the 
paper, the symbols ĉ -, î E N are used to denote positive constants. 

For definiteness we set T = 27Г, a = Ь = тс. The general case can be treated in 
a similar way. Appropriate spaces in which the solution of {P} is to be looked for 
are the spaces Lp of periodic functions which are defined as the closure of all real 
functions smooth on Q x R and satisfying (P2), (P3) with respect to the norm 

1 й P < +00 
Г Л Г2п nl/p 

\v\P dx dydtl , 

J Q JO 

A suitable basis to the space L2 is formed by the eigenfunctions of the linear part 
of the equation (Pl) —(P3), i.e. by the functions 

ek,ij{^^ y^ 0 = si^ (^^) sin (ly) sin (jt) , ; > 0 , 
sin (kx) sin [ly) cos (jt) , j S 0 

where {k, lj)el, I = N x N x I. 
The Fourier coefficients are determined by the formula 

vCq dx dy dt, q el, 

Note that our definition makes sense even for functions belonging to Lj . 
Let us now pay attention to the system of the corresponding eigenvalues 

For later purposes, it seems to be convenient to introduce the sets 

{Л ^ z} = span {e^lÀquz}, zelR. 

We emphasize that the symbol span is used for all finite linear combinations (over R). 
Finally, we shall deal with the functionals (quasinorms) 

At the end of this section, we are going to state some technical results. First of all, 
we claim that 

X КГ°'< +<» 
ЯдФО 

whenever a > 1. For the proof, see [2]. 
Using the above estimate and the Holder inequality, we get after an easy com

putation 
IblU ^ ^illHIk f«^^" VE{Ä + 0 } , a > 1. 

This yields (via the complex interpolation theory) that for fixed p, p > 2, я number 
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ß < 1 can be found such that 

(1) hi ^ Ф\1 
holds for every function v e {Л Ф 0}, ß = a(p — 2)1 p. 

2. FORMULATION OF THE MAIN THEOREM 

Definition 1. The function и is said to be a weak solution of {P} if ueLi,f(', u)eLi 
and 

(2) u{(ptt + ^^<p) + f{',u)(pdxdydt = 0 
JQ Jo 

for all functions <p sufficiently smooth and satisfying (P2), (P3). 
It is possible to show that (2) is equivalent to 

(3) Â  а^{и) + aq{f{-, w)) = 0 for all qel. 

We proceed to the formulation of the main theorem we intend to prove. 

Theorem 1. Let us suppose that the function fe C(Q x R^") is In-periodic in t 
and satisfies 
(Fl) f{x, у, t,u) is nondecreasing in и and there is UQ such that / ( % u)u ^ 0 

whenever \u\ ^ UQI 
(F2) setting F{x, y, t, u) = jlf{x, y, t, s) ds, the estimate 

iuf{x, y, t, u) - F{x, y, t, u) ^ Сз(|/(х, у, t, u)\^' + \u\P) - C4. 

holds for all x, y, t, w, where p > 1 and ijp + ijp' = 1; 
(F3) at least one of the following conditions is fulfilled: either 
(a) / does not depend on t 
or 
(b) / /5 an odd function in и {f{', —u) = —/(•, w)). 

Then, for each d > 0, there exists a weak solution и e Lp of the problem {P} 
with \\u\\p ̂  d. 

The remaining part of this paper will be devoted to the proof of Theorem 1. 

3. THE APPROXIMATE PROBLEM 

Let us start with reviewing some helpful results. Using (Fl) , (F2), it is a matter 
of routine to deduce the estimates 

(4) | / (x, y, t, w)|^' й Cs\u\P + Ce , 

(5) F(x, y, t, u) й C-JIUY + Cg , 

(6) F{X, y, t, u) ^ Cg\u\^ — Cio for all x, y,t,u. 

Now, we proceed to the statement of our approximate problem. The energy 
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functional corresponding to {P} is formally given as 

J{^) = i E .̂ <i^) + f Г (̂% )̂ d̂  ày dt. 
«e^ JQJO 

Consider a sequence {£„}„g^ of Hubert spaces, 

E„ = span {e^jj \ k, I S n, \j\ й n} , 

endowed with, say, the L2-norm. Obviously, the functional J becomes difFerentiable 
on the space E„ and consequently, the following definition makes sense: 

Definition 2. By an approximate solution u„ of {P} we mean any critical point 
of the functional J on E„, i.e. the solution of the Euler equation 

0) Z \ ^q{^n) ̂ q{^) + / ( % w„) w = 0 for all w e £„ . 

We are going to derive some auxiliary assertions. Keeping the estimate (6) in mind, 
it is not difficult to see that J is bounded from below on the space {Л ^ z} n E„ 
independently of ne N. Exactly speaking, for z e ^ there is a constant Q[z) such that 

(8) J{v) > Q{z) for all ve{Ä> z} . 

We intend to deduce some upper estimates of J. 

Lemma 1. Let z e R be an arbitrarily chosen number. Then there is co[z) < 0 
such that the estimate 

(9) / ( . ) й z 
holds for all functions v e {Л ^ со}, \\\v\\\ß = 1. 

Proof. According to (5), we get 

J{v) ^ - i i : |Я,| a'^iv) + c^vjl + cs . 

By the help of (1), we immediately have 

which implies (9) provided \œ\ is sufficiently large. Q.E.D. 

In order to establish the existence of critical points of J on E„, a variant of 
a standard result of the calculus of variations is needed. 

Lemma 2, Let us consider the restriction of J on E„. Assume that there are no 
critical values in the interval [s, r ] , i.e. grad j{v) Ф 0 whenever J{v) e [s, r ] . 

Then there exists a continuous mapping h: E„ -^ E„ such that 

(10) h{{v I J{v) й r}) с {v I J[v) й s] . 

Moreover, either h[v(% t + r)) = h(v)(% t + t) for all r e [0, 2л:], veE^ if we 
have the condition (F3) (a), or h is an odd mapping provided (F3) (b) is true. 

Proof. Observe that it suffices to show our assertion in the case 5 = z — г, 
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г = z 4- e where z e Risa, noncritical value and г is a suitably chosen positive number. 
In view of (6), the sets {v | J(v) S a}, a G R are compact in E„. Thus, taking into 
account this fact, the Taylor expansion of J yields 

(11) J{v) = J{w) + <grad J{w), V - w} + o{\\v - w\\2) 

for all v,we {v' \ J{v') й z + e j , г ^ > 0. 
As a consequence of the preceding hypotheses, there are positive numbers ô^, Ô2, £2 

satisfying the relations 

(12) fgrad J{v)l ^ Ô, 

whenever г? e (w | J(w) e [z — 82, z + 82]}, 

(13) | |gradV)||2^(52 

for all Ü e {w I J{w) ^ z + Si}. 
Consider now the mapping HQ defined by * 

hjv) = V ~ 0 grad J{v), v e E„. 
Using (11) we obtain 

Jih^h)) = J{v) ~ 6)||grad J{v)\\l + o{\\e grad J(i;)||2). 

Consequently, (12) and (13) together imply the existence of 0^ such that 

(14) J{he[v)) й J{v) - 83 , 83(0) > 0 
provided that 0 < 0 < б̂ ,̂ and Ü G {w | J{\v) E[^Z — s^, z + e j } . 

In view of (13), 
J{he^v)) ^ z - 84 , 0 < 84 < 81 

if 0 < 0 < ^2 and ve{w\ J{w) ^ z - e j . 
From these facts we deduce the existence of 0 > 0, 8 > 0 such that 

he{{v 1 J[v) ^ z + 8}) c= {v 1 J{v) S z - 8} , 

Clearly, the mapping hß possesses all properties mentioned in Lemma 2. Q.E.D. 

Now, we are in a position to prove the existence of suitable approximate solutions 
to {P}. The following lemma contains a desirable result. 

Lemma 3. For an arbitrarily chosen z e R there exist a number y[z) and a se
quence {ŵ }„e/v ^f approximate solutions to {P} satisfying 

(15) J{u^ e [y(z), z] for all neN 

(exactly speaking, for all n ^ «o, «0 being a certain positive integer). 

Proof. Without loss of generality, assume z < 0. Let us denote 

S„ = E„n {v\\\\v\\\ß = 1} n {Л S œ{z)} , 

where co[z) is the number the existence of which is ensured by Lemma L Moreover, 
consider n sufficiently large in order to have 5„ ф 0. 
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Choose Zj in such a way that {Л ^ z^} g {Л ^ ^(^} î̂ d̂ set 7(z) = 0(zi), 
ß appearing in (8). 

We claim that there is at least one critical value of / in the interval [^(z), z]. 
Assume the contrary. Thus we have the mapping h which has been constructed 

in Lemma 2. Taking an orthogonal projection P onto the space E^n {Л S ^i} 
in E„, we are able to define a new mapping rj.rj: S„ -^ S^n {Л ^ z j , 

" \\\PK41 
In view of (8), (9), (10), this step is fully justified. 

From the topological point of view, t] maps the sphere S„ into its proper sub-
sphere. If (F3) (b) holds, we get a contradiction with the well known Borsuk-Ulam 
theorem since ?; is an odd mapping. 

If the condition (F3) (a) is fulfilled, we consider an orthogonal action of the 
group S^ on E„ defined by the formula 

Г, i>(% t) = v{-,t + r), те [0, 27ü]/{0, 2n} - S^ . 

The mapping rj is S^-equivariant in accordance with [1]. We close up analogously 
as in the situation above by employing the S^-version of the theorem of Borsuk-Ulam 
presented e.g. in [ l] . In comparison with the general case investigated in [1], things 
are much simpler here because there are no fixed points of this action on S„ (see [1] 
for details). Q.E.D. 

4. PASSING TO THE LIMIT 

Our eventual goal is to carry out the Hmit process in the sequence {wĵ g/y which 
appears in Lemma 3. 

To accomplish it, we set w = u„ in (7). Using (15), we easily deduce 

Р{% u„) - !-/(•, u„) u, dx dy dt G [7(z), z] . 
JQ Jo 

Taking into account (F2), we get in turn 

(16) . {w„}„6/y is bounded in Lp , 

{/(% w„)}„e/v is bounded in L^., 
Moreover, the condition (F2) now implies 

(17) c,J { V(% t/„) u„ dx dydt^ -{z-h c,,) . 
JQ Jo 

Let us insert w = ^ sgn (Â ) a/u„) e^ in (7), qo > 0. Keeping the estimate (1) 
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in mind, we obtain as a consequence of (16) 

Since ß < 1, we have obtained the following lemma. 

Lemma 4. For arbitrary e > 0 there exists q^ such that 

X! I'̂ l̂ ^li^f) < ^ for all ne N . 

Passing to a subsequence (denoted {u„}„^p^ again), we get according to (16) 

(18) u„-^ и weakly in L ,̂, 
f{%u„)-^g weakly in L^.. 

Moreover, using Lemma 4 we can deduce 

(19) lim E ^ , <(«„) = I A, a » . 
и-*оо qel qel 

For fixed w G £„, we can pass to the limit in (7): 

(20) Y. К Ф) ^/v^) + Г [ " ^w dx dy dr = 0 . 
«e^ J Q J 0 

The only thing we have to prove is the equality g = f(',u). To overcome this 
inherent difficulty of nonlinear problems, arguments of monotonicity are used. 
Setting w = t/„ in (7) and letting n -» oo, we conclude 

(21) lim Г [ / ( • , «„) «„ dxdydt^ -Y. К «,(«) • ' 

Let us now insert w = w„ in (20). We have 

(22) Y. К Ki^) = - Ï l^udxdydt. 
«̂ ^ ' Jo Jo 

Combining (21), (22), we obtain a desirable relation : 

(23) lim Г f V(% w«) u„ dxdyat=ï I 
»-"°°JQJO J Ö J 

2я 
ö̂w dx dj d^. 

0 

The standard argument of Minty immediately gives g — f{',u) since the function/ 
can be understood as a continuous monotone operator from Lp into Lp, via (Fl), (4). 

We have proved that м is a weak solution of {P}. In order to ensure ||w||̂ , ^ d, 
it suffices to choose the number z appearing in (12) small enough (z < 0). 

Theorem 1 has been proved. 
Remark. If it is possible to restrict our considerations to the space of symmetric 

functions (see [5]), the estimate (19) enables us to carry out the limit process via 
compactness only. The assumption (Fl) can be dropped. 
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