Czechoslovak Mathematical Journal

Eduard Feireisl

On the existence of infinitely many periodic solutions for an equation of a rectangular thin plate

Czechoslovak Mathematical Journal, Vol. 37 (1987), No. 2, 334-341

Persistent URL: http://dml.cz/dmlcz/102161

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON THE EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS FOR AN EQUATION OF A RECTANGULAR THIN PLATE

Eduard Feireisl, Praha

(Received December 2, 1985)

In this paper, our aim is to demonstrate the existence of infinitely many time periodic solutions to the problem

$$
\begin{gather*}
u_{t t}+\Delta^{2} u+f(x, y, t, u)=0, \quad(x, y) \in Q, \quad t \in R, \tag{Pl}\\
u=\Delta u=0, \quad(x, y) \in \partial Q, \quad t \in R, \tag{P2}\\
u(x, y, t+T)=u(x, y, t), \quad(x, y) \in Q, \quad t \in R
\end{gather*}
$$

where $Q=(0, a) \times(0, b)$ is a rectangle and Δ denotes the Laplacian.
To be more precise, the weak solution of $\{\mathrm{P}\}$ can be found the norm of which in a certain space of periodic functions exceeds an arbitrarily chosen positive value. The crucial condition we assume in the sequel is that both a / b and $a^{2} / T \pi$ are rational numbers. It is an interesting task to find out how to treat the above problem if this is not the case. Moreover, the function f is supposed to satisfy some "reasonable" requirements specified in Section 2, (F1)-(F3).

In [3], an analogous problem is investigated in the case of a wave equation. The technique which is used in this work, however, does not seem to be of any help to us here. It is mainly its dependence on the d'Alembert operator that prevents us from applying it to our equation.

In order to cope with the given problem, we have employed the approximation method of Rayleigh-Ritz. In this way, we get a sequence of variational problems solvable with the aid of some topological methods (see Section 3). The approximate solutions we have obtained should converge to a weak solution of $\{\mathrm{P}\}$. To accomplish it in a general situation, we have no alternative but to require the function f to be monotone with respect to u (the assumption (F1)). Nonetheless, this assumption can be avoided if f depends on the variable u only. It should be pointed out that the method we have just sketched works in this case as well. This is what made us abandon the dual action approach here (for this method see e.g. [4]).

1. PRELIMINARIES

We use the standard notation. In particular, the symbol \mathbb{R} will denote the set of real numbers, \mathbb{N} the set of positive integers, \mathbb{Z} the set of all integers. Throughout the paper, the symbols $c_{i}, i \in \mathbb{N}$ are used to denote positive constants.

For definiteness we set $T=2 \pi, a=b=\pi$. The general case can be treated in a similar way. Appropriate spaces in which the solution of $\{\mathrm{P}\}$ is to be looked for are the spaces L_{p} of periodic functions which are defined as the closure of all real functions smooth on $Q \times R$ and satisfying (P2), (P3) with respect to the norm

$$
\|v\|_{p}=\left[\int_{Q} \int_{0}^{2 \pi}|v|^{p} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t\right]^{1 / p}, \quad 1 \leqq p<+\infty .
$$

A suitable basis to the space L_{2} is formed by the eigenfunctions of the linear part of the equation (P1)-(P3), i.e. by the functions

$$
\begin{aligned}
& e_{k, l, j}(x, y, t)= \sin (k x) \sin (l y) \sin (j t), \\
& j>0, \\
& \sin (k x) \sin (l y) \cos (j t), \\
& j \leqq 0
\end{aligned}
$$

where $(k, l, j) \in I, I=\mathbb{N} \times \mathbb{N} \times \mathbb{Z}$.
The Fourier coefficients are determined by the formula

$$
a_{q}(v)=\int_{Q} \int_{0}^{2 \pi} v e_{q} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t, \quad q \in I .
$$

Note that our definition makes sense even for functions belonging to L_{1}.
Let us now pay attention to the system of the corresponding eigenvalues

$$
\lambda_{k, l, j}=\left(k^{2}+l^{2}\right)^{2}-j^{2}, \quad \Lambda=\left\{\lambda_{q}\right\}_{q \in I}
$$

For later purposes, it seems to be convenient to introduce the sets

$$
\{\Lambda \leqq z\}=\operatorname{span}\left\{e_{q} \mid \lambda_{q} \leqq z\right\}, \quad z \in \mathbb{R}
$$

We emphasize that the symbol span is used for all finite linear combinations (over \mathbb{R}).
Finally, we shall deal with the functionals (quasinorms)

$$
\|v\|_{\alpha}=\left[\sum_{q \in I}\left|\lambda_{q}\right|^{\alpha} a_{q}^{2}(v)\right]^{1 / 2}, \quad \alpha \geqq 0 .
$$

At the end of this section, we are going to state some technical results. First of all, we claim that

$$
\sum_{\lambda_{q} \neq 0}\left|\lambda_{q}\right|^{-\alpha}<+\infty
$$

whenever $\alpha>1$. For the proof, see [2].
Using the above estimate and the Hölder inequality, we get after an easy computation

$$
\|v\|_{\infty} \leqq c_{1}\|v\|_{\alpha} \text { for all } v \in\{\Lambda \neq 0\}, \quad \alpha>1
$$

This yields (via the complex interpolation theory) that for fixed $p, p>2$, a number
$\beta<1$ can be found such that

$$
\begin{equation*}
\|v\|_{p} \leqq c_{2}\|v\|_{\beta} \tag{1}
\end{equation*}
$$

holds for every function $v \in\{\Lambda \neq 0\}, \beta=\alpha(p-2) / p$.

2. FORMULATION OF THE MAIN THEOREM

Definition 1. The function u is said to be a weak solution of $\{\mathrm{P}\}$ if $u \in L_{1}, f(\cdot, u) \in L_{1}$ and

$$
\begin{equation*}
\int_{Q} \int_{0}^{2 \pi} u\left(\varphi_{t t}+\Delta^{2} \varphi\right)+f(\cdot, u) \varphi \mathrm{d} x \mathrm{~d} y \mathrm{~d} t=0 \tag{2}
\end{equation*}
$$

for all functions φ sufficiently smooth and satisfying (P2), (P3).
It is possible to show that (2) is equivalent to

$$
\begin{equation*}
\lambda_{q} a_{q}(u)+a_{q}(f(\cdot, u))=0 . \text { for all } \quad q \in I . \tag{3}
\end{equation*}
$$

We proceed to the formulation of the main theorem we intend to prove.
Theorem 1. Let us suppose that the function $f \in C\left(\bar{Q} \times \mathbb{R}^{2}\right)$ is 2π-periodic in t and satisfies
(F1) $f(x, y, t, u)$ is nondecreasing in u and there is u_{0} such that $f(\cdot, u) u \geqq 0$ whenever $|u| \geqq u_{0}$;
(F2) setting $F(x, y, t, u)=\int_{0}^{u} f(x, y, t, s) \mathrm{d} s$, the estimate

$$
\frac{1}{2} u f(x, y, t, u)-F(x, y, t, u) \geqq c_{3}\left(|f(x, y, t, u)|^{p^{\prime}}+|u|^{p}\right)-c_{4}
$$

holds for all x, y, t, u, where $p>2$ and $1 / p+1 / p^{\prime}=1$;
(F3) at least one of the following conditions is fulfilled: either
(a) f does not depend on t
or
(b) f is an odd function in $u(f(\cdot,-u)=-f(\cdot, u))$.

Then, for each $d>0$, there exists a weak solution $u \in L_{p}$ of the problem $\{\mathrm{P}\}$ with $\|u\|_{p} \geqq d$.

The remaining part of this paper will be devoted to the proof of Theorem 1.

3. THE APPROXIMATE PROBLEM

Let us start with reviewing some helpful results. Using (F1), (F2), it is a matter of routine to deduce the estimates

$$
\begin{gather*}
|f(x, y, t, u)|^{p^{\prime}} \leqq c_{5}|u|^{p}+c_{6} \tag{4}\\
F(x, y, t, u) \leqq c_{7}|u|^{p}+c_{8} \tag{5}\\
F(x, y, t, u) \geqq c_{9}|u|^{p}-c_{10} \text { for all } x, y, t, u . \tag{6}
\end{gather*}
$$

Now, we proceed to the statement of our approximate problem. The energy
functional corresponding to $\{P\}$ is formally given as

$$
J(v)=\frac{1}{2} \sum_{q \in I} \lambda_{q} a_{q}^{2}(v)+\int_{Q} \int_{0}^{2 \pi} F(\cdot, v) \mathrm{d} x \mathrm{~d} y \mathrm{~d} t .
$$

Consider a sequence $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ of Hilbert spaces,

$$
E_{n}=\operatorname{span}\left\{e_{k, l, j}|k, l \leqq n,|j| \leqq n\},\right.
$$

endowed with, say, the L_{2}-norm. Obviously, the functional J becomes differentiable on the space E_{n} and consequently, the following definition makes sense:

Definition 2. By an approximate solution u_{n} of $\{\mathrm{P}\}$ we mean any critical point of the functional J on E_{n}, i.e. the solution of the Euler equation

$$
\begin{equation*}
\sum_{q \in I} \lambda_{q} a_{q}\left(u_{n}\right) a_{q}(w)+\int_{Q} \int_{0}^{2 \pi} f\left(\cdot, u_{n}\right) w=0 \quad \text { for all } w \in E_{n} . \tag{7}
\end{equation*}
$$

We are going to derive some auxiliary assertions. Keeping the estimate (6) in mind, it is not difficult to see that J is bounded from below on the space $\{\Lambda \geqq z\} \cap E_{n}$ independently of $n \in \mathbb{N}$. Exactly speaking, for $z \in \mathbb{R}$ there is a constant $\Omega(z)$ such that

$$
\begin{equation*}
J(v)>\Omega(z) \text { for all } v \in\{\Lambda>z\} . \tag{8}
\end{equation*}
$$

We intend to deduce some upper estimates of J.
Lemma 1. Let $z \in \mathbb{R}$ be an arbitrarily chosen number. Then there is $\omega(z)<0$ such that the estimate

$$
\begin{equation*}
J(v) \leqq z \tag{9}
\end{equation*}
$$

holds for all functions $v \in\{\Lambda \leqq \omega\},\|v\|_{\beta}=1$.
Proof. According to (5), we get

$$
J(v) \leqq-\frac{1}{2} \sum_{\lambda_{q} \leqq \omega}\left|\lambda_{q}\right| a_{q}^{2}(v)+c_{7}\|v\|_{p}^{p}+c_{8} .
$$

By the help of (1), we immediately have

$$
J(v) \leqq-\frac{1}{2}|\omega|^{1-\beta}+c_{2}^{p} c_{7}+c_{8}
$$

which implies (9) provided $|\omega|$ is sufficiently large.
Q.E.D.

In order to establish the existence of critical points of J on E_{n}, a variant of a standard result of the calculus of variations is needed.

Lemma 2. Let us consider the restriction of J on E_{n}. Assume that there are no critical values in the interval $[s, r]$, i.e. $\operatorname{grad} J(v) \neq 0$ whenever $J(v) \in[s, r]$.

Then there exists a continuous mapping $h: E_{n} \rightarrow E_{n}$ such that

$$
\begin{equation*}
h(\{v \mid J(v) \leqq r\}) \subset\left\{v \mid J^{\prime}(v) \leqq s\right\} \tag{10}
\end{equation*}
$$

Moreover, either $h(v(\cdot, t+\tau))=h(v)(\cdot, t+\tau)$ for all $\tau \in[0,2 \pi], v \in E_{n}$ if we have the condition (F3) (a), or h is an odd mapping provided (F3) (b) is true.

Proof. Observe that it suffices to show our assertion in the case $s=z-\varepsilon$,
$r=z+\varepsilon$ where $z \in \mathbb{R}$ is a noncritical value and ε is a suitably chosen positive number. In view of (6), the sets $\{v \mid J(v) \leqq a\}, a \in \mathbb{R}$ are compact in E_{n}. Thus, taking into account this fact, the Taylor expansion of J yields

$$
\begin{equation*}
J(v)=J(w)+\langle\operatorname{grad} J(w), v-w\rangle+o\left(\|v-w\|_{2}\right) \tag{11}
\end{equation*}
$$

for all $v, w \in\left\{v^{\prime} \mid J\left(v^{\prime}\right) \leqq z+\varepsilon_{1}\right\}, \varepsilon_{1}>0$.
As a consequence of the preceding hypotheses, there are positive numbers $\delta_{1}, \delta_{2}, \varepsilon_{2}$ satisfying the relations

$$
\begin{equation*}
\|\operatorname{grad} J(v)\|_{2} \geqq \delta_{1} \tag{12}
\end{equation*}
$$

whenever $v \in\left\{w \mid J(w) \in\left[z-\varepsilon_{2}, z+\varepsilon_{2}\right]\right\}$,

$$
\begin{equation*}
\left.\| \operatorname{grad} J^{\prime} v\right) \|_{2} \leqq \delta_{2} \tag{13}
\end{equation*}
$$

for all $v \in\left\{w \mid J(w) \leqq z+\varepsilon_{1}\right\}$.
Consider now the mapping h_{θ} defined by

$$
h_{\Theta}(v)=v-\Theta \operatorname{grad} J(v), \quad v \in E_{n} .
$$

Using (11) we obtain

$$
J\left(h_{\Theta}^{(}(v)\right)=J(v)-\Theta\|\operatorname{grad} J(v)\|_{2}^{2}+o\left(\|\Theta \operatorname{grad} J(v)\|_{2}\right)
$$

Consequently, (12) and (13) together imply the existence of Θ_{1} such that

$$
\begin{equation*}
\left.J\left(h_{\Theta}{ }^{\prime} v\right)\right) \leqq J(v)-\varepsilon_{3}, \quad \varepsilon_{3}(\Theta)>0 \tag{14}
\end{equation*}
$$

provided that $0<\Theta<\Theta_{1}$, and $v \in\left\{w \mid J(w) \in\left[z-\varepsilon_{1}, z+\varepsilon_{1}\right]\right\}$.
In view of (13),

$$
\left.J\left(h_{\Theta}{ }^{\prime} v\right)\right) \leqq z-\varepsilon_{4}, \quad 0<\varepsilon_{4}<\varepsilon_{1}
$$

if $0<\Theta<\Theta_{2}$ and $v \in\left\{w \mid J(w) \leqq z-\varepsilon_{1}\right\}$.
From these facts we deduce the existence of $\Theta>0, \varepsilon>0$ such that

$$
h_{\boldsymbol{\Theta}}(\{v \mid J(v) \leqq z+\varepsilon\}) \subset\{v \mid J(v) \leqq z-\varepsilon\} .
$$

Clearly, the mapping h_{Θ} possesses all properties mentioned in Lemma 2. Q.E.D.
Now, we are in a position to prove the existence of suitable approximate solutions to $\{\mathrm{P}\}$. The following lemma contains a desirable result.

Lemma 3. For an arbitrarily chosen $z \in \mathbb{R}$ there exist a number $\gamma(z)$ and a sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ of approximate solutions to $\{\mathrm{P}\}$ satisfying

$$
\begin{equation*}
J\left(u_{n}\right) \in[\gamma(z), z] \text { for all } n \in \mathbb{N} \tag{15}
\end{equation*}
$$

(exactly speaking, for all $n \geqq n_{0}, n_{0}$ being a certain positive integer).
Proof. Without loss of generality, assume $z<0$. Let us denote

$$
S_{n}=E_{n} \cap\left\{v \mid\|v v\|_{\beta}=1\right\} \cap\{\Lambda \leqq \omega(z)\}
$$

where $\omega^{(}(z)$ is the number the existence of which is ensured by Lemma 1 . Moreover, consider n sufficiently large in order to have $S_{n} \neq \emptyset$.

Choose z_{1} in such a way that $\left\{\Lambda \leqq z_{1}\right\} \subseteq\left\{\Lambda \leqq \omega^{(}(z)\right\}$ and set $\gamma(z)=\Omega\left(z_{1}\right)$, Ω appearing in (8).

We claim that there is at least one critical value of J in the interval $[\gamma(z), z]$.
Assume the contrary. Thus we have the mapping h which has been constructed in Lemma 2. Taking an orthogonal projection P onto the space $E_{n} \cap\left\{\Lambda \leqq z_{1}\right\}$ in E_{n}, we are able to define a new mapping $\eta, \eta: S_{n} \rightarrow S_{n} \cap\left\{\Lambda \leqq z_{1}\right\}$,

$$
\eta(v)=\frac{P h(v)}{\|P h(v)\|_{\beta}} .
$$

In view of (8), (9), (10), this step is fully justified.
From the topological point of view, η maps the sphere S_{n} into its proper subsphere. If (F3) (b) holds, we get a contradiction with the well known Borsuk-Ulam theorem since η is an odd mapping.

If the condition (F3) (a) is fulfilled, we consider an orthogonal action of the group S^{1} on E_{n} defined by the formula

$$
T_{\tau} v(\cdot, t)=v(\cdot, t+\tau), \quad \tau \in[0,2 \pi] /\{0,2 \pi\} \sim S^{1} .
$$

The mapping η is S^{1}-equivariant in accordance with [1]. We close up analogously as in the situation above by employing the S^{1}-version of the theorem of Borsuk-Ulam presented e.g. in [1]. In comparison with the general case investigated in [1], things are much simpler here because there are no fixed points of this action on S_{n} (see [1] for details).
Q.E.D.

4. PASSING TO THE LIMIT

Our eventual goal is to carry out the limit process in the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ which appears in Lemma 3.

To accomplish it, we set $w=u_{n}$ in (7). Using (15), we easily deduce

$$
\int_{Q} \int_{0}^{2 \pi} F\left(\cdot, u_{n}\right)-\frac{1}{2} f\left(\cdot, u_{n}\right) u_{n} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t \in[\gamma(z), z] .
$$

Taking into account (F2), we get in turn

$$
\begin{gather*}
\left\{u_{n}\right\}_{n \in \mathbb{N}} \text { is bounded in } L_{p}, \tag{16}\\
\left\{f\left(\cdot, u_{n}\right)\right\}_{n \in \mathbb{N}} \text { is bounded in } L_{p^{\prime}} \cdot
\end{gather*}
$$

Moreover, the condition (F2) now implies

$$
\begin{equation*}
c_{11} \int_{Q} \int_{0}^{2 \pi} f\left(\cdot, u_{n}\right) u_{n} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t \geqq-\left(z+c_{12}\right) \tag{17}
\end{equation*}
$$

Let us insert $\left.w=\sum_{\left|\lambda_{q}\right| \geqq q_{0}} \operatorname{sgn}\left(\lambda_{q}\right) a_{q}{ }^{(} u_{n}\right) e_{q}$ in (7), $q_{0}>0$. Keeping the estimate (1)
in mind, we obtain as a consequence of (16)

$$
\sum_{\left|\lambda_{q}\right| \geqq q_{0}}\left|\lambda_{q}\right| a_{q}^{2}\left(u_{n}\right) \leqq c_{13}| ||w| \|_{\beta} \leqq c_{13} q_{0}^{(\beta-1) / 2}\left[\sum_{\left|\lambda_{q}\right| \geqq q_{0}}\left|\lambda_{q}\right| a_{q}^{2}\left(u_{n}\right)\right]^{1 / 2} .
$$

Since $\beta<1$, we have obtained the following lemma.
Lemma 4. For arbitrary $\varepsilon>0$ there exists q_{0} such that

$$
\sum_{\left|\lambda_{q}\right| \geqq q_{0}}\left|\lambda_{q}\right| a_{q}^{2}\left(u_{n}\right)<\varepsilon \text { for all } n \in \mathbb{N} .
$$

Passing to a subsequence (denoted $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ again), we get according to (16)

$$
\begin{gather*}
u_{n} \rightarrow u \quad \text { weakly in } L_{p}, \tag{18}\\
f\left(\cdot, u_{n}\right) \rightarrow g \quad \text { weakly in } \quad L_{p^{\prime}} .
\end{gather*}
$$

Moreover, using Lemma 4 we can deduce

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{q \in I} \lambda_{q} a_{q}^{2}\left(u_{n}\right)=\sum_{q \in I} \lambda_{q} a_{q}^{2}(u) . \tag{19}
\end{equation*}
$$

For fixed $w \in E_{n}$, we can pass to the limit in (7):

$$
\begin{equation*}
\sum_{q \in I} \lambda_{q} a_{f}(t) a_{q}(w)+\int_{Q} \int_{0}^{2 \pi} g w \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t=0 . \tag{20}
\end{equation*}
$$

The only thing we have to prove is the equality $g=f(\cdot, u)$. To overcome this inherent difficulty of nonlinear problems, arguments of monotonicity are used. Setting $w=u_{n}$ in (7) and letting $n \rightarrow \infty$, we conclude

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{Q} \int_{0}^{2 \pi} f\left(\cdot, u_{n}\right) u_{n} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t=-\sum_{q \in I} \lambda_{q} a_{q}^{2}(u) . \tag{21}
\end{equation*}
$$

Let us now insert $w=u_{n}$ in (20). We have

$$
\begin{equation*}
\sum_{q \in I} \lambda_{q} a_{q}^{2}(u)=-\int_{Q} \int_{0}^{2 \pi} g u \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t . \tag{22}
\end{equation*}
$$

Combining (21), (22), we obtain a desirable relation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{Q} \int_{0}^{2 \pi} f\left(\cdot, u_{n}\right) u_{n} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t=\int_{Q} \int_{0}^{2 \pi} g u \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t . \tag{23}
\end{equation*}
$$

The standard argument of Minty immediately gives $g=f(\cdot, u)$ since the function f can be understood as a continuous monotone operator from L_{p} into $L_{p^{\prime}}$ via (F1), (4).

We have proved that u is a weak solution of $\{\mathrm{P}\}$. In order to ensure $\|u\|_{p} \geqq d$, it suffices to choose the number z appearing in (12) small enough $(z<0)$.

Theorem 1 has been proved.
Remark. If it is possible to restrict our considerations to the space of symmetric functions (see [5]), the estimate (19) enables us to carry out the limit process via compactness only. The assumption (F1) can be dropped.
[1] Fadell, E. R., Husseini, S. Y., Rabinowitz, P. H.: Borsuk-Ulam theorems for arbitrary S^{1} actions and applications, Trans. A.M.S. 274 (1982), pp. 345-360.
[2] Feireisl, E.: Free vibrations for an equation of a rectangular thin plate, to appear in Aplikace matematiky.
[3] Rabinowitz, P. H.: Large amplitude time periodic solutions of a semilinear wave equation, Comm. Pure Appl. Math. 37 (1984), pp. 189-206.
[4] Chang, K. C., Sanchez, L.: Nontrivial periodic solutions of a nonlinear beam equation, Math. Meth. in the Appl. Sci. 4 (1982), pp. 194-205.
[5] Štědrý, M., Vejvoda, O.: Existence of classical periodic solutions of a wave equation: a connection of a number-theoretical character of the period with geometrical properties of solutions (in Russian), Differencialnye uravnenia 20 (1984), pp. 1733-1739.

Author's address: 11567 Praha 1, Žitná 25, Czechoslovakia (Matematický ústav ČSAV), present address: 12000 Praha 2, Karlovo nám. 13, Czechoslovakia (FSI ČVUT).

