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1. Introduction. This work was inspired by the recent papers of Beer [1, 2, 3].
Beer studied metric spaces whereas we work in uniform spaces. We make a detailed
study of the relationships among uniform convergence (U.C.), uniform convergence
on compacta (U.C.C.), pointwise convergence (P.C.) [Kelley [4]], Hasudorff con-
vergence (H.C.) [Beer, [1, 2, 3], Naimpally [6]], Leader convergence (L.C.) [Leader
[5], Njastad [8]], Topological convergence (T.C.) [Beer [1,2]] proximal con-
vergence (R.C.) [see below]. We provide examples to clarify these relationships
and also prove several results.

For General Topology see Kelley [4] and for Proximity Spaces see Naimpally-
Warrack [7].

In this paper (X, U) and (Y, V) denote Hausdorff uniform spaces with associated
(Efremovi¢) proximities §; = 6(U), 6, = 5(V) respectively. For the ease in writing
proofs, we’ll suppose that U, V contain only symmetric members i.e. U, V are bases.
D denotes a directed set and (f,: n € D) a net of functions on X to Y converging to
a function f: X — Y. C(X, Y) denotes the set of all continuous functions on X to Y.

1.1. Definition. (Hausdorff Convergence) f, »™C f iff for each Ue U, VeV,
there exists an m € D such that for all n = m, and for each x € X, there exist y, ze X
such that (x. y) and (x, z) are both in U and (f,(x), f(»)), (f(x), fu(z)) are both in V.
Intuitively H.C. can be looked upon as the convergence of f, to f in the hyperspace
(Hausdorff) uniformity of X x Y when all functions are viewed as subsets of X x Y,
as for example

f=1xf(x):xeX} =X x Y.

It is easy to show that U.C. implies H.C. and that the converse holds if f is uni-
formly continuous. In particular, if X is compact, then H.C. = U.C. (For the metric
case see Beer [1] and Naimpally [6]).

1.2. Definition. (Leader Convergence) f, —»“€ f iff for each 4 = X, E < Y if
f(4) non 6, E, then eventually f,(4) non §, E.
It is known that U.C. implies L.C. and the converse holds if D is linearly ordered
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or V is totally bounded. (Leader [5], Njastad [8]). We prove that L.C. implies
U.C.C.; in particular, if X is compact then L.C. = U.C.

1.3. Definition. (Proximal Convergence) f, »%¢ f iff for subsets 4, B of X,
if f(4) non &, f(B), then eventually f,(4) non &, f,(B).

It is implicit in Leader’s proof (see [7]) that L.C. implies R.C. and that R.C.
preserves continuity i.e. f, € C(X, Y) and f, »®¢ f implies fe C(X, Y). However,
R.C. need not imply P.C. even when X = Y = R (see (Example 2.4). Obviously,
P.C. does not imply R.C.

1.4. Definition. (Topological Convergence) f, -7 f iff
(a) for each x € X, there is a net (x,) such that x, - x and f,(x,) —» f(x); and
(b) for each subnet (xy, £, (%)) = (x, »), ¥ = f(x).

It is easy to show that H.C. implies T.C. and that T.C. and P.C. are independent.
If X x Yis compact, then T.C. = H.C. = U.C. (for this and further information
see Beer [1]). ’

It is known that if {f,} is eventually equicontinuous and f, »" f, then
fo =€ f (Kelley [4]).

2. Examples. In this section we present some examples to clarify the relationships
among the various convergences.

2.1. Example. We take X = Y = R and f(x) = x?. For each n € N, we set f,(x) =
= (x + n™")% Here f, converges to f in H.C. and U.C.C. (hence in T.C. and P.C.)
and R.C. but not in L.C. or U.C. To see H.C. we observe that the Hausdorff distance
between f and f, is n™* (for (x, f(x)) choose (x — n™ !, f,(x — n™%)) on £, and for
(x, £,(x)) choose (x + n™%, f(x + n™")) on f). However, |f,(n) — f(n)| > 2 for
each n e N and so f, does not converge to f uniformly.

2.2. Example. (Beer [3]). Here X = {n"':ne N} u {0}, Y= [0, 1],
fl)=1—k™' for x=4k ', k<n,

=0 otherwise .
f(k") =1-k1,
f(0) = 0.

Here f, »™C f but f is not continuous although each f, is so. Hence f, +*<

2.3. Example. Here we take X = Y= R. For each neN, f,(x) = nx (1 +
+ n?x?)71, f(x) = 0 for each x. Here f, -»®C: f but f, does not converge to f in
H.C. or T.C. If the limit function is constant, then the convergence is R.C. Since
(n~*, 27" ef, and - (0,27 1) ¢, f, does not converge to f topologically.

2.4. Example. Here we take X = Y = R. For each neN, f,(x) = x + n and
f(x) = x. Here f, > f but f, P £ Thus R.C. and P.C. are independent.

609



3. Results. As noted in Section 1, Leader showed that U.C. implies L.C. and
that the converse holds if V is totally bounded or f, is a sequence. Here we show
that if f,e C(X, Y) and f, > f, then {f,} is eventually equicontinuous. This
in turn implies that f, »Y¢-¢ f and f, -7 f. So if X is compact, L.C. = U.C.
We also show that if X is pseudocompact then on C(X ,R),L.C. = U.C.

3.1. Theorem. Suppose f,e C(X,Y) and f, »%C f; then {f,} is eventually
equicontinuous.

Proof. By Leader’s theorem, f is continuous. Let V € V; then there is a We V
such that W* < V. Since f is continuous at x € X, there is a U € U such that f(U(x)) =
< W[f(x)]. Hence f(U(x))nond,(Y— W?[f(x)]). Since f, »“f, eventually
f(U(x)) non 8,(Y — W?[f(x)]). So eventually, £,(U(x)) = W?[f(x)]. This in turn
implies that eventually, f,(U(x)) = W*[f,(x)] = V[f.(x)]-

3.2. Corollary. (Kelley [4]). If f,e C(X,Y) and f, >"Cf, then f, >UCC f.

3.3. Remark. Theorem 3.1 shows that if f, -1 f then f, converges to f locally
uniformly (or simply uniformly as it is called). Weierstrass proved that if X is compact
and f, converges to f locally uniformly, then f, =Y f.

3.4. Corollary. If X is compact, then on C(X, Y), U.C. = L.C. = H.C.

3.5. Theorem. If X is pseudocompact, then on C(X, R) U.C. = L.C.

Proof. Suppose f,eC(X,R), and f, > f. Then fe C(X,R)and f(X)<[—-p,p]
for some p € R. So for & > 0 there exists a finite set {r;: 1 < i < g} = R such that

f(X) = QIS(r,., gf2) .
Then X = U A; where A; = f~Y(S(r;, £2)).

Since f(A) = S(r;, ¢/2), eventually f,(4;) = S(r;, ¢) as in the proof of 3.1.
So eventually, for each x € X,

f(x) € S(f(x), 2¢) .

3.6. Remark. If V is totally bounded, then the above proof can be modified to
show that L.C. = U.C. This proof is different from the ones given by Leader [5]
or Njéstad [8].

3.7. Theorem. If f, =% f and {f,} is eventually equicontinuous, then f, -7 f.

Proof. P. C. implies 1.4(a). To prove 1.4(b), suppose a subnet (x, £, (x,)) = (x, y).
Suppose Ve V; then there is a W such that W3 < V. Since {f,} is eventually equi-
continuous, thereis an m € D and U € Ussuch that for alln = m, f,(U(x)) = W[f,(x)]
and f(U(x)) < W[f(x)]

Since f, %€ f, we may suppose that for n = m, f,(x) € W[f(x)]. So eventually,

x,€ U(x) and f,(x) e Wyl fu ()€ W2[f(x)]. So ye w2[f( ()] < VLS (x)]. Since
V is arbitrary, y = f(x).
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3.8. Corollary. On C(X, Y), L.C. implies T.C.

3.9. Corollary. If X is locally compact, f,e C(X,Y) and f, -V f, then
f,. —')T'C'f.

Proof. Follows from the known fact that eventually { f,} is equicontinuous.

3.10. Theorem. If X is discrete, then P.C. = T.C. Conversely, if on C(X, [0, 1])
(or C(X, Y), where Y contains an arc) P.C. = T.C., then X is discrete.

Proof. If X is discrete and f, »F f, then {f,} is eventually equicontinuous.
So by Theorem 3.4, f, -»TC: f. If X is not discrete, there is a net x, = X, X, + x,.
For VeV if x,eV?(x,) — V(x,), then there are functions h,y, g,y € C(X, Y)
(Y = [0, 1]) such that

hn,V(xO) =0 and f, (X — V(x) =1,
Iav(V(x0) U {x,}) =0, g, (X — V3(x0)) = 1.
fav = Puy — guy »7C f where f(x) =0 for each x. But f,,(x,) =1, X, > x,
and f(x,) = 0. So f, , T f.
We conclude with a generalization of Beer’s result [2].

3.11. Theorem. If X is locally connected, Y rim compact and f, »™ fin C(X, Y),
then f, > f and {f,} is eventually equicontinuous.

Proof. Suppose f,(x) +>"< f; then there exists a Ve V such that f,(x) ¢ V[f(x)]
where f,, is a subnet of f,. Since Li f = f, there is a net (w, f,, (W) = (%, f(x)).
Eventually w, € U,(x) which, we may take to be connected and {x} = Uy(x).
Choose We V such that W < Vand E = dW[f(x)] is compact. Eventually, £, (w,) €
e W[f(x)]; so £, (Ux(x)) intersects W(f(x)) and Y — W(f(x)). Since f, (Ui(x)) is
connected, eventually Ls (f,,(U(x)) n E % 0. Choose y, from the set. Then (x, y,) €
e Ls f,, — f, a contradiction.

The above proof is patterned after Beer’s; the second part is proved similarly.

3.12. Corollary. If X is locally connected, Y is rim compact and f, >™ f in
C(X,Y), then f, »V-CC f.

3.13. Corollary. If X is a locally connected compact space and Y rim compact,
then on C(X,Y) T.C. = U.C.
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