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0. INTRODUCTION

Let f: R" > R have compact support. The PU-integral (PU) [f(x)dx was
. k

introduced [1] as a limit (in a specific sense) of integral sums Y. f(¢) [9,(x) dx,
i=1

J

{94, 95, ..., 9} being a partition of unity (hence the PU-integral). The limiting process

involved in the definition of the PU-integral resulted in the following properties

of the PU-integral:

(0.1) (PU) [ f(x) dx € R for every PU-integrable f.

(0.2) The map f+> (PU) [ f(x) dx is linear (on the set of PU-integrable functions).

(0.3) If f: " — R has compact support and is Lebesgue integrable, then it is PU-
integrable and the two integrals coincide.

(0.4) The PU-integral is a true extension of the Lebesgue integral, since f is PU-
integrable and (PU) [ f(x) dx = 0 if there exists such a g: R" — R that g has
compact support, is differentiable at every x € R" and f = 6g/6x1. It is not
difficult to find such a g that [ |f(x)| dx = oo so that, in general, the PU-
integral is a nonabsolutely convergent integral.

(0.5) The usual transformation formula holds for diffeomorphisms and the PU-
integral. This property makes it possible to extend the PU-integration to dif-
ferentiable manifolds.

(0.6) Stokes’ theorem can be proved on differentiable manifolds for (n — 1)-forms
which are differentiable at every point (or in R" for vector fields which are
differentiable at every point).

However, the assumption in (0.4) that g is to be differentiable at every point is
essential; if it is dropped for a single point and replaced by the assumption of con-
tinuity of g at this particular point then (PU) { f(x) dx need not exist, and a similar
situation takes place with Stokes’ theorem in (0.6).

The aim of this paper is to relax the limiting process in the definition of the PU-
integral in such a way that weaker conditions on g in (0.4) be sufficient for the
existence of (PU) [ f(x) dx: It is sufficient to assume that g is differentiable at every
x € R"\ W provided one of the following conditions holds:
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(0.7) W is a hyperplane and g is continuous at every point of W(in fact, W may be
an (n — 1)-dimensional manifold);

(0.8) Wis a small set (in the sense of (5.4)) and g is bounded;

(0.9) Wis a one-point set, W = {w}, and lg(x)] = o(“x — w|'~") in a neighbourhood
of w.

Moreover, we prove that the product fy is PU-integrable provided f is PU-
integrable and y is of class C*.

Section 1 contains some auxiliary concepts and results, in Section 2 the definition
of the PU-integral is introduced, and in the subsequent sections transformation of
the PU-integral, multiplication of PU-integrable functions and Stokes’ theorem are
treated.

First version of this treatment was published as a preprint [2]. However, since
then the manuscript has undergone substantial changes concerning the fundamental
definitions as well as the organization of the proofs.

1. PU-PARTITIONS

If M = R", we denote by 0M, Int M and C1 M (or M) the boundary, interior and
closure of M, respectively. The Euclidean space R" is viewed as a Hilbert space,
that is, we set

Ix] = Gt + o+ )2,

B(y, o) = {xeR"; |x — yH <ol

and represent linear functionals as vectors: for example, go(x) =Y @x; with ¢ =
i=1

= ((pl, e (p,,) € R". If f: R" - R then supp f stands for the support of f, Df is its
of

differential,
2\ 1/2
0x > '

1.1. Definition (cf. [1]). Let M = R” be compact. A family
(1.1) A4={9);j=1..k
where k is a positive integer, ! € M, 9;: B" — [0, 1] are C'-functions with compact
supports satisfying

k
(1.2) 0= 9(!) = Z 9j(t) <1 forall teR",
i=1

(1.3) Int{teR"; 9(t) =1} o M,
is called a PU-partition of M. (The letters PU stand for “partition of unity”. For
technical reasons, a finite set different from {1, 2,..., k} is sometimes used as the
index set for a PU-partition.)

Any function 6: M — (0, + o) will be called a gauge on M.

os] = (z

i=1
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If § is a gauge on M, then the PU-partition (1.1) is said to be d-fine if
(1.4) supp 8; = B(t, 8(¥)), j=1,....k.
For 4 defined by (1.1) denote
0; =sup {||x — |; xesupp 9;} .
Then 4 is §-fine iff o; < 8(+), j = 1,..., k.

Let « > 0, K > 1 be constants. We introduce the following conditions concerning
the PU-partition (1.1):

(1.5) 9,(x) < (1 + ) 9,(t) for xeR";
(1.6) 9,(x) = 9,(¥) for xeB(¥,q]K);
(17 71D 8,0l dx < Klo, 5,09 dx
Notice that (1.5), (1.7) immediately imply

(1.7%) JID 9(x)]| dx < 2. K(1 + o) @} 7" 9,(¢),

where %; = [,y dx.

1.2. Remark. Notice that the integration in (1.7), (1.7*) is in fact over a compact
set. Throughout the paper, we will always omit the specification of the integration
domain provided it is the whole R".

1.3. Proposition. For every positive integer n there is a constant x = u(n) =2
such that for every compact set M <= R" and every gauge 6 on M there is a d-fine
PU-partition A defined by (1.1) satisfying

(1.5) 9(x) <1 for xeR",
(1.6%) 9,(x) =1 for xeB(t,q;/x(n)),
(1.7) 1D 8,(x)] dx < x(m)]e; § 9,(x) dx.

Proof. Since in the proof we deal mostly with intervals and their unions, it is
more convenient to make use of the maximum norm (parallelly with the Euclidean
one). We denote

I = max {|x,|; i = 1,2,...,n},

U(t,8) = X[t; = 6, t; + 8] (aclosed cube with center ¢ and edge 26) .
i=1
Following the idea of proof of Proposition 1.1 [1], we shall first find a system
(1.8) A={# D) j=1,..k

where D/ = R" and ¢/ € D/ satisfy the conditions

k
(1.9) Mcnt{ D';
j=1

(1.10) IntD'nIntD/ =Qfori=*j,i,j=1,....k

(1.11) each D, j = 1,..., k, is the union of a finite number of compact intervals;
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if §; = sup {Jx — t]; x € D}, then for j = 1, ..., k we have

(1.12) &; = 3o() ;
(1.13) U, ;) = D' = U(, &) ;
(1.14) my-1(0D7) < #(n) g7 ' (DY)

where #2, stands for the v-dimensional Lebesgue measure and ;"c(n) is a constant
depending only on the dimension n.
We shall describe an algorithm which results in such a partition. Choose a de-

creasing sequence ¥ > 5, >, > ...>n > ... >

Step 1: Find t! € M such that
5(1t) > "2 sup {6(t); te M}
1

and denote
W, = U(t', dn, 6(tY)), Uy = U(e', 0, 6(1Y))

Vi.=U;.
Let us assume that after I steps we have points t/, j = 1, ...,  and sets Wi, U, Vi
1
j=1.,lm=j,j+1,..,LIfM~\Int{J U; = 0, the algorithm stops. Otherwise,
the algorithm is continued by j=1
Step (I + 1): Find

i

(1.15) #*le MNInt| U,
ji=1
such that
L
(1.16) 8(1+Y) > 12 qup (5(r); te MNInt U,
1+1 i=1

and set
(1.17) Wiy = UL, Iy, 8(144Y))

Upey = Uy 8(84Y)),

Viigr =V NInt Wi, Vigq e = Uy NInt U Vg
Jj=1

It is clear from the construction that each V; ,,, m = j,j + 1,..., 1 + 1 is the union
of a finite number of intervals and that the sets V;,,, Vaps - --» Vium are nonoverlapping.
Moreover, it is seen from (1.15), (1.16) that

(1.18) n 8(t') > 1, 6(1%) > ... >y, O(EHY).
By (1.15) we have " e M\IntU; for j < r < m, so that
(1.19) I — 4] = u; 8().

Further, it can be proved that the system of sets resulting by the algorithm has the
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following properties:

(1.20) W,nW,=0 for j<mgIl+1;

(1.21) WycV,,cU; for jsm<I1+1;

(1.22) UVim=UU; for m=1,... 1.
=1 j=1

(The proof is rather technical but not difficult.)

Now we will prove that the algorithm comes to an end after a finite number k
of steps because of

k
Mcnt{U,.
j=1

Suppose the contrary. Since M is compact and the sets W,, are pairwise disjoint
(cf. (1.20)), the sum Y n7, 5"(¢") converges and since 7,, > + > 0 we have
m=1 '
(1.23) lim (") = 0.

e} m moe
There is se () (M \Int U,) since the sets on the right hand side are nonempty
m=1 ji=1

and compact. However, (1.16) implies that (t™) > #,,+ 6(s)/, > 1 3(s) > 0
since ¥ > #,, > 1,,.1 > %. This contradicts (1.23) and consequently, the algorithm
stops after a finite number k of steps.
Set DV =V, j=1,... k.
Then the system (1.8) satisfies (1.9)—(1.14). Indeed, (1.9)—(1.11) follow from the
construction, (1.12) and (1.13) follow from (1.21), (1.17) and the inequality 2 < 5, <
1. The only point requiring a detailed discussion of its proof is (1.14).

Let us first introduce two lemmas.

Lemma 1. Let ae B, pe {1, ..., n!, and denote
={xeR"; x, = a}.
Let j < m < k, max {], t'"}<a U;nY,,+0+U,NY,. Then
|0 —t| =max{|t/ —F|; i+ p i=1,..,n}.
Proof. Since a — 1, 8(t') < t) < a, a — 1,,8(t") < 1y < a, n;5(¢) > n,, 8(") >
> 0, we have )
|ty — 6] <n;8(t) 5
but (1.19) implies that
|t — t]| = n,; 8(t) for at least one ie{l,...,n} .

Lemma 2. Define o(1) =4, o(r + 1) = 2(r + 1) w(r) + 2" for r = 1,2,.
Let 1< m = k qe R Q U(q’ Nm 6(tm))
L={1<mUnQ+0.
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Then, denoting by ‘L] the number of elements of L, we have
(1.24) L] £ o(n).
Proof proceeds by induction on n.
Let n = 1. Denote
Ly ={leL; g —n,0(") =t < q},
L, ={leL; < q+mn, (")},
Ly ={leL; ' <q—n,d")},
L,={leL; q+mn,06(") <1t}.
For i = 1,2, (1.18) and (1.19) imply that L; contains at most one element (recall

that I < m). The same holds for i = 3, 4. Indeed, suppose e.g. that j, re Ly, j < .
As in the proof of Lemma 1 we have

g — 1, 0(t") — n; 6(¢) £ ¥V < q — 1, 6(1")
and analogously with j replaced by r; hence
|t — 1| < max {n; 6()), n, 6(1")} = n; 6(t)
but this inequality contradicts (1.19). The proof for L, is analogous, hence |L| < 4 =
= o(1).
Now suppose that (1.24) holds forn < v. Letn = v + 1 and put
Ly, ={leL | — gl £n.0(")} ={leL, e @},
L;={leL;ti<q;—n,5(")},
L, ={leL; q; +n,o(t") < i},
i=1,...,v+ 1. Then

QR
IA 1

v+1
L= | L.
i=—(v+1)
First we estimate |L0]. By halving all edges of Q we obtain 2'*! cubes with edges

of length n,, 8(t™); since I < m for I € L, (1.18) and (1.19) imply that each of these
cubes contains at most one 1' with I € L, hence |L,| < 2"**.

For ie{1,...,v + 1} let P, denote the i-th projection, i.e.
Pox = (X1y ooy Xim s Xip 1 ovvs Xy 1) s
PM ={Px;xeM} for M < R*'.
If j, r e L;, j < r, then applying Lemma 1 we obtain (using again (1.19))
[P/ — P =} — | 2 n; 6(F).
At the same time, the definition of L obviously yields the inclusion
Lic{l;l1<m, PUNPQ+0}.

The dimension of P,U,, P;Q being v, we can apply Lemma 2 concluding that lLil <
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< o(v) and, quite analogously, |L_;| < w(v). Hence

L] < vf |L| 200 + No(v) + 2 = w(v + 1).

i=—(v+

Let us now proceed to the proof proper of (1.14). First we shall prove the inclusion
j k
(1.25) OV c.U16U,. v UlaWp , J=1,..,k.
P p=

Using induction on k, we notice that for k = 1,

ov,, = dU, = aU, L oW, .
If (1.25) holds for some k, then for j < k we have 0V ., = 0(Vy \Int W, ).
Using the elementary inclusion d(A\ B) = d4 L 0B and the induction hypothesis

we obtain
k+1

6Vk+1caVku6m+1cU8U uU@W uoWkH—Uc?U v aw,.

i=1 i= p=1

Finally, applying this inclusion with j < k we conclude

WVis 1441 —0(Uk+1\I“tU 1<+1)‘:‘7U/¢+1UUa jk+1 &

k+1 k+1 k+l
C6Uk+1uU6U vy oW, = U o, uuaW

Jj=1 p= Jj=
The proof of (1.25) is complete.
Denote Z(j) = {i;i <j, U;nU; + 0}; by Lemma 2 we have |Z(j)| < w(n).
Since V;, = U; for j = 1, ..., k and the sets U;, W, are compact intervals, we can
rewrite (1.25) as

(126) Vyp<e U (U;naU)u U (Ujnew)u U, UU(U N ow,).

ieZ(j) ieZ(j)

Taking into account the elementary inequality

max {2, ,(U; 0 0U)), ey y(U; 0 OW)} < sy (0U;), i <j
(recall that U, U;, W, are intervals) and the inequality
(1.27) m,,_l(Uj N ow,) < 2nm,,_1(6Uj NW,), p>j

(its proof is sketched in Remark 1.4 at the end of this section) we conclude from
(1.26), (1.20) and the inequality |Z(j)| < w(n) that

mn——l(ank) <2 a)(n) wz,‘_l(an) + 2/1//@,,__1(an) + //z,,_l(an) <
<[2 o(n) + 2n + 1] w2, 4(0U;) .
By virtue of (1.17) we have

W)

972, 1((3Uj) = 2n[217j 5(1‘]')]"*1 = 50]}
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and, since D/ = V, it follows from (1.21) and the definition of g; that

in1(0D) = L 2'm[2 o(n) + 20 + 1] (D).
gj

This completes the proof of (1.14) with the constant %(n) = 2"n[2 w(n) + 2n + 1].

Using the just constructed system (1.8), we can find the desired PU-partition (1.1)
analogously to [1], using smooth approximations of the characteristic functions
of the sets D as the functions 9. The properties of (1.8), in particular (1.12)—(1.14),
imply that (1.1) obtained in the suggested manner satisfies (1.2)—(1.4) and (1.5")—
—(1.7) with a constant x(n) > #(n), say »(n) = #(n) + 1.

The proof of Proposition is complete, which justifies the definition which we will
introduce in the next section.

1.4. Remark. Let us sketch the proof of the inequality (1.27). Since (1.27) evidently
holds if Int U; n Int W, = 0, we may assume without loss of generality that

(1.28) IntU;nIntW, 0.

Obviously U; N 0W, = d(U; " W,), so that w,_,(U; N 0W,) < we,—,(3(U; A W,))
and it is sufficient to prove

(1.29) wy—1(0(U; 0 W,)) £ 2n0m,_1(0U; \ W,).
We have (by the definitions of U}, W, p > j, (1.18) and (1.28))

U;n Wp =X [“i» ﬁi],
i=1

where for every i one of the following cases occurs:
() [0 B = [ = 31, 6(0), -+ 4, 5],
(”) [(xi’ pt] = [tf - %”p é(tp)’ t{ + '11' 5(”)]’ t{ < t:', - %”’p 5(tp)’
(iii) [o Bi] = [t — n; 6(8), 12 + 4n, 6(t7)], 17 + 4m, 8(1") < tl.
Moreover, f; — a; > 0 for every i, B; — o; < n, 8(t") in cases (ii) and (iii), and there
exists at least one i such that either case (ii) or (iii) occurs (cf. (1.19)). Put
Ff ={x; x; = P, x;€[o, p] for [+ i},
F7 = {x; x; = o, x,€[o, ;] for I=+i}.
F{ and F[ are all faces of U; n W,. Find such an s that
By — oy = min (B; — ;).
Then one of cases (ii), (iii) occurs for i = s; for instance, let it be case (i)

Then F] < ou;, 475,,_1(Fs+) = 7/2,,-1(F?), 4/2n~1(F?') = 2/1,,_1(F,~_), i=12,..,n
and (1.29) follows since F; = W, evidently holds.
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2. NEW DEFINITION OF THE PU-INTEGRAL

Proposition proved in the previous section justifies the following definition.

2.1. Definition. Let f: R" — R be a function with compact support. For a PU-
partition (1.1) of supp f, set

(2.1) S 4) =j§1f(tf) [9,(x) dx

Let g € R satisfy the following condition:
for every ¢ > 0 there is & > 0 such that for every K > 1 there is a gauge 6 on supp f
such that
la — S(f,4)| < e
for every d-fine PU-partition (1.1) of supp f which satisfies (1.5)—(1.7).
Then f is said to be PU-integrable, q is its .PU-integral and we write

g = (PU) [/ dx.

2.2. Remarks. 1. Definition 2.1 has good sense since Proposition 1.3 guarantees —
for any gauge & and every « > 0, K = x(n) — existence of §-fine PU-partitions
satisfying (1.5)—(1.7).

2. It is the small values of ¢ and «, and large values of K which are important, as
is immediately seen from Definition 2.1. Consequently, in our considerations we may
restrict ourselves, without affecting the definition, to values ¢ < g, & < oy, K > K,
where ¢y > 0, o, > 0, K, = 1 are arbitrary but fixed constants. In particular, it is
of no consequence that for K < %(n) there need not exist PU-partitions with the
desired properties.

The notion of PU-integral was introduced in [1] by an analogous definition
in which the conditions (1.5)—(1.7) were replaced by

22) 1l o] D) ex = k.

It is easy to verify that (1.7) implies (2.2) (with K enlarged if necessary), hence every
function PU-integrable in the sense of [1] is PU-integrable in the sense of the above
definition (and the two integrals coincide). Since the PU-integral from [1] is a true
extension of the Lebesgue integral, so is the PU-integral from Definition 2.1. From
now on, we shall stick to our Definition 2.1 when dealing with PU-integrability.

The PU-integral evidently has the following properties:

(i) the PU-integral of a nonnegative PU-integrable function is nonnegative;

(ii) if f is PU-integrable, c€ R, then c¢f is PU-integrable and (PU) f[cfdx =
= ¢(PU) [fdx.

However, to prove additivity we have to proceed analogously as in [ 1], introducing
a modified notion of the PUI-integral.
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2.3. Definition. Let .# be a compact interval in R, let f: R" — R, supp f < Int .#.
Let g € R satisfy the condition from Definition 2.1 with the only change that (1.1)
is a PU-partition of .# (instead of supp f). Then f is said to be PUl-integrable,
q is its PUl-integral and we write ¢ = (PUI) [ f dx.

A proof that f; + f, is PUl-integrable and (PUI) [(f, + f,) dx = (PUI) [f, dx +
+ (PUI) [f, dx provided f; are PUl-integrable, supp f; = Int# for i = 1,2, is
straightforward. In the next theorem we assert the equivalence of Definitions 2.1
and 2.3 (hence also the independence of the PUlI-integral of the choice of the inter-
val #). Thus, this theorem yields additivity in the above sense also for the PU-
integral.

2.4. Theorem. Let f: R* - R have compact support supp f < Int & < R",
Fa compact interval. Then f is PU-integrable if and only if it is PUl-integrable and

(PU) [ fdx = (PUI) [ fdx

holds provided one of the integrals exists.

Proof. The “only if” part is easy; we refer the reader to [1] for details. The main
step of the proof is the restriction of a é-fine PU-partition of the interval .# to a d-fine
PU-partition of supp f. Such a restriction is trivial if we assume (which we may) that
B(x, 8(x)) n supp f = 0 for x €.# \suppf.

However, the “if” part consists primarily in the converse process, that is, in
extending a §-fine PU-partition of supp f to that of .# without violating the require-
ments imposed on the “admissible”” PU-partitions, which is a much more complicated
matter. After preparatory Lemmas 2.5 and 2.6, the existence of such an extension is
established in Lemma 2.8.

First we introduce three auxiliary function V, u, v. Let  satisfy the following
conditions:

(i) ¥: R - [0, 1] is of class C*,

(i) suppy = [—1, 1], y(x) > 0 for xe(—1, 1),

(iii) ¥(x) = 1 for xe[—14, 4],
(iv) ¥(x) < 1 for } < |x| < L.

Further, let B be a real number, 0 < f < %, and let u satisfy the following con-
ditions.

(V) m: R —>[0,1 + 28] is of class C*,

(vi) supp p = [=1,1], u(x) > 0 for xe(—1, 1),
(vii) p(x) =1 + x for xe[—B, B],
(viii) p(x) < min {1 + x, 1 + 28} for f < |x| < L.

Finally, let v: R" — R be defined by '

v(uyg, g oouy) = p(uy) W3 + ud + ..+ u?)l?).
We introduce the following constants:
Ay = Mzn(B(O, 1))
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(the measure of the unit ball in R"),
%, = max {|H| det H™'; He M,, |H —I| £ 1},
%3 = max {det H; He M,, |H —I| £ 4},
u, = max{det H™*; HeM,, |H —I| £ 4},
where M, is the set of all (n x n)-matrices, I is the unit matrix;
xs = [v(x)dx,
vo = w0 § D (9] d.,
Hq = K¥3¥e
ng = ] ugxs .
2.5. Lemma. Let we R", ¢ > 0. Let ®: R" — R" be of class C' and satisfy the

conditions
dw)=0, Dow)=1I,
|Do(x) —I| <4 for |x—w|=o0.
Then
(2.3) ®(B(w, 0)) <= B(0, o) = &(B(w, ¢)) = B(0, 30)
(the inclusions hold also with open balls instead of the closed ones).
Proof. By assumption we have 1 < |D &(x)| <3 provided |x — w| < 0.
Using the identity
®(x) = [ DO(w + Ax — w)) dA(x — w)
(recall that &(w) = 0), we immediately obtain
le(al < 3]x — wl »
which yields the first and last inclusion in (2.3). To prove the middle inclusion, let
z € B(0, }0), that is, |z]| < %o. Set
Xo=W, Xy =x;—®(x)+z, i=12..;
then .
Xit2 = Xjp1 = Xjpg — X3 — ((p(xi+l) - ‘p(xi))-
Substituting for @(x;,,) — ®(x;) from the integral identity analogous to that
introduced above and proceeding in a standard manner we prove |x;,, — X;14| S

< %|xi+1 — x| and, by induction, |x; — w| < 0, i = 0,1, 2, .... Hence there is x,
x = lim x,;, |x — w| < 0. Since evidently ®(x) = z, the inclusion is proved.
i—

2.6. Lemma. Let K; > 1,0 < 0 < %, we R". Let ¢o: R" — [0, 1] be of class C!
with a compact support satisfying

Po(W) # 0 % D po(w),
and denote

wo = sup {||x — w||; x € supp ¢,} .

.18



Further, let

(2.4)
(2.5)

(2.6)
2.7)

— Wo
B{w,— ) csu ;
( X ) PP @0

1

1D ¢o(x) = D oo(w)| < 3» for xeB (W’ %),

1

where y = ||D ¢o(w)| ;
Po(x) = (1 + 0) @o(w), xeR";

FID @o(x)] dx = Iwi: J @o(x) dx .

Then for every constants B,K, with 0 < B <%, K, > max {9, (xg0)"/"*"}
there are functions E@,, Fpo: R" — [0, 1] of class C* such that

(2.8)
(2.9)

(2.10)

(2.11)

(2.12)

Denote

Epo + Foo = @0 ;
E ¢o(x) > 0 provided ¢o(x) >0, E @o(w)> 1 po(w);

E ¢o(x) = E @o(w) for xeB <w, ;(ﬁa;g > R
K>

Ego(x) < (1 + 6) (1 - I%z) ' E ¢o(w) ;
JIPE @o(x)] dx < (1 — 0gK5 ") 1 (K + 0x4%5K,K;") .

.05 [ E @o(x) dx .

w; = sup {|x — w||; x esupp Fo,} .

Then, moreover,

(2.13)

(2.14)

(2.15)
(2.16)

(2.17)

23/2 3/2
£ @o w, < Do .

KK, . T KK,

B(w, l—g%) < supp Foo ;

| DF 04(x) = DF po(w)]| < 47 for xeB (‘”’ 3215322);
F o(x) < (1 + 2B) F 0o(w) 5

[ |DF oo(x)] dx < 4;— [ F pofx) dx.

Remarks. 1. Let us mention some simple consequences of (2.8)—(2.17). Since
both Eq,, Fo, are nonnegative, (2.8) together with (2.9) implies

(2.18)

supp E@o = supp ¢, -
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By (2.13) we have $fo, < 2"/?Bwo/(3K K,) and thus (2.10) together with (2.8) yields
E ¢o(x) = E go(w) and DF ¢o(x) = D ¢o(x) for x e B(w, $fw,); hence y =
= |D @o(w)|| = | DF ¢o(w)| and (2.15) may be modified to

(2.19) |DF @o(x) — DF @o(w)|| < 47 for xe B(w, tfw,).

2. Notice that E, F are not uniquely determined by the conditions (2.8)—(2.17).
However, in the course of proof of Lemma 2.6 formulas for E¢,, Fo, will be given.
This will enable us to view E, F as operators.

Proof of Lemma 2.6. Recall that we assume y = || D @o(w)| > 0. Choose an
orthonormal system in R"

(2.20) e, e’ ..., e" with e' =y 1D gy(w).
Introducing in R" new coordinates corresponding to this orthonormal system we have
x = (X1, X2, ...y X,) < X = Xse' + x0% + ... + X,
Define a mapping ¢: R” — R" by .
(2.21) ®: x> (77 (@o(x) — @o(W)), (x — w, €3), ..., (x — w, ") .
Assume x € B(w, wo/K), ¥ € R". Then
D &(x)y = y7'y1D @o(x) + (0,72, - a) s
[D &(x) = D &(w)] y = 7~ 'v:(D ¢o(x) = D @o(w))
and consequently,
[ @(x) = D o) < 37D go(x) = D 9oW)] = 3
by (2.5). Hence & satisfies the assumptions of Lemma 2.5 With o = wo/K.
Lemma 2.5 implies that ®: B(w, w,/K,) — R" is an injection, and thus (2.3) yields

(2.22) B(O, g) < ®(B(w, o)) < B (0, %")

o(o3)- oo ) 2o

for any g, 0 < ¢ < wo/K;. Further, if x € B(w, wo/Kl), u = P(x), then we may
write u; = 37 (o(x) — @o(W)), hence

(2.23) @o(%) = @o(w) + yu,

and, since u € ®(B(w, wo/K1)) we may also write

e ot =i - (5] (2
) 20 = [%(x) o (’iwﬁ q><x))] e (’Swﬁ ¢(x)) .
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Recalling the definition of v, we notice that

(225) Io] = (3 0?)2 = 212 implies y() = 0,
i=1
1/2
v (55—2 u) >0 implies Ju] <220,
(00} KIKZ

Setting o = 23/20o/(KK,) we have 0 < ¢ < wo/K; (since K, > 9). Hence the last
inclusion in (2.22) reads

1/2 _ 3/2
o1 (B(o, 2 “’0)) - B(w, 2 “’0)
KK, KK,

and from the second implication in (2.25) we conclude

3/2
(2.26) y (KK @(x)) =0 provided P < Jx —w| = 2.
o KK, K,

Let us define
Yo (Kle cD(x)) for |x —w| = Do
KK, o K,

(227) F ¢o(x) = .

0 for |x —w| >
1

E ¢o(x) = ¢o(x) = F o(x) .

It is easily seen that Foo, E@y: R* — R are of class C'. Using (2.20) and (2.5) we
obtain

D ¢o(x) e' = D @o(w) e! + [D @o(x) — D po(w)] e =
27 — [|D gy(x) — D oo(w)]| = 37-
Consequently, the identity

[;0 1 wo/K1 (EO 1 1
— w——e | = Do + (A ——)e"}) e di
(po(W) o ( K, ) jo ° (w ( K ) )

1

implies
Y@o
2.28 w) = 2.
(2.28) ®o(w) 2K,
hence
YD < 9,
2K,

Taking into account points (i), (v) in the definition of the functions ¥, p we find
that (2.16) holds, that is,

F @o(x) < (1 + 28) X%,
° )Kle
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This togehter with (2.28) and the conditions imposed on B, K, in Lemma 2.6 yields
(recall that K, > 9)

(2.29) F go(x) < 2wy 4 Po(W) < 30o(w) < 1,

KK, ~ K,
hence Fg,: R" — [0,1] as required. Moreover, the above inequality implies in
particular F @o(w) < % ¢o(w), and since (2.8) holds by definition (cf. (2.27)), the
second inequality in (2.9), that is, E ¢o(w) > % ¢,(w), holds.

To prove the first inequality in (2.9), notice that (2.27) and (2.26) imply F ¢4(x) =
=0, and thus E ¢o(x) = @o(x), for x satisfying ||x — w| = 2*%w,/(KK,). If
[x = w| < 2%2wo/(KK,) holds and u = ¥(x), then (cf. (2.23), (2.27))

(2.30) E @o(x) = @o(x) — F @o(x) = @o(w) + yuy — Iza;z v (K—‘—Kz u) =

1852 @
ywo - (KK,

= w) + yu; — —— — Uy ),

= </’o( ) Yuq Kleﬂ( oo 1)
and at the same time |u,| < 3.2"20,[(K,K,) (cf. (2.22)). If w,/(K,K,) < [uy] <
< 3.2Y20,/(KK,) then u((K (K, [w,) uy) = 0 and, since K, > 9, we have by (2.28)

3.2120y _ yo, (1 3.21/2
Eo(x) = @o(w) — 9 o Po x> ¥ (1 227
o) 2 o) =7 E (2 K, )

If Juy| S o/(K(K,), then p((K,K,[wo) uy) < 1+ (K Kj|wo) uy (see (vii) in the
definition of u) and consequently,

Y@ KK,
E ¢o(x) = @o(w) + yu; — 1+ u, | =
#o(2) 2 9olw) + s KK< 1)

12 Do
= golw) = 220 > 2% (1 1)
KK, K;\2 K,

The proof of (2.9) is complete. Moreover, since @o(x) = 0 evidently implies
E ¢o(x) = 0, we have proved that Ep,: R" — [0, 1] as required.

To prove (2.10), assume [[u]] < Bwo/(KK,), x = & (). Then v((KK,/wo) u) =
= 1 + (KK, [wo) u; and similarly as in (2.30) we obtain

Y, KK,
2.31 E x) = X)) — ——v[—=u)| =
(231 9o(x) = ¢olx) KK, ( o )

YWo KK, Yo
= @o(W) + yuy — 14+ —=u;| = @ow) — ——.
o0) + 7y Kle( [N 1) o) KK,

If ||x — w| £ 2Bws/(3K,K,), then by (2.22) [#(x)] = Bwo/(K,K,) and (2.31)
implies (2.10).
The inequality (2.11) follows by (2.29). Indeed, we have (cf. (2.6))

E 9o(x) £ @o(x) < (1 + 0) 9o(w)

" 22



and, by (2.29),
; 4
E ¢o(w) = @o(w) — F @o(w) 2 (1 - k——) @o(w) ,
2
which combined gives (2.11).
The first implication in (2.25) yields
> 20y
B KIKZ
On the other hand, it follows from (2.22) that if ||x — w| = 2*2w,/(KK,) then
[#(x)] = 2"%wo/(KK,) and consequently, F ¢o(x) = 0. Recalling the definition
of w;, we conclude that m; < 232w,/(KK>).
Put v = (wo/(KK,)) (1, 1,0, ...,0). Then by points (ii), (vi) in the definitions of

¥, u we have
v(Kl—Kglv> >0 for |/I| <1,
@o

Epo(®*(u)) =0 for [ul

that is,
Foo(®™1(Mw)) >0 for || <1.

Using the inclusions (2.22) (with open balls instead of closed ones — see the note
in Lemma 2.5) we find that ||&~'(Av) — w| = |4| 2*2w,/(3K,K,); hence w; =
= 2%20)/(3K;K,) and (2.13) is proved.

To prove (2.14), notice that for |u]| < we/K,K, we have v((K,K,[w,) #) > 0 and
hence F,(®~*(u)) > 0. The inclusions (2.22) yield

E(w, i“f’_) c ot (E <o, o ))

3K,K, KK,
which implies B(w, 20,/(3K,K)) = supp F¢,. Combining this result with (2.13) and
the inequality 0 < B < } we obtain (2.14).

The inequality (2.15) is a direct consequence of (2.8), (2.10) and (2.5).

It remains to prove (2.17) and (2.12). Recall that

Foo(®~(u)) = —V‘-"LZ v (K_—‘K—Z u> for ued (E (w, %)) :

KK @ 1/)

1/2
B(0,22) c & (B(w 22)), v KK, u)=0 provided [u] = 27w
2K, K, @0 KK,

(cf. (2.27), (2.22), (2.25), respectively). Differentiation of the first formula leads to

(DFoo) (@~*()) D 8™(u) = 5(Dv) (’Z—K ) ,

(Y

_ DFgy(x) = 3(Dv) (K;)Kz

qs(x)) D(x).

0
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Consequently,

§|pF Po(x)] dx < 7 |

Dy '_I_<1_I<_2_u
(2

oo (25| du = 2§ iG] o

(KiK,)

2 9(3))| [ #(3)] ax =

Dy K,K
W

1)) |det D&~ du

=y

IIA

<7”2jl

Swjv(v)dv=yu2x(,_[v<K-;—Kzu)du=
0

B (KIKZ)
J‘zxstKz-‘- Y00 K1K2 u)du =
Wy K Kz W
_ %K

K | F @o(x) |det D &(x)| dx <
0

< MﬁjF(po(x)dx < ﬁj'F(po(x)dx,
o @y
hence (2.17) holds. (The last inequality follows from (2.13).)
To prove (2.12) we estimate the integral on the left-hand side of the inequality
using (2.8), (2.7) and the result just obtained when proving (2.17):

(232)  JIDE¢o(x)] dx = []D ¢o(x)] dx + [ | DF ¢o(x)] dx <

K %, KK
= Kb () dx + K2 [ gy ax.

o (200
Now we will treat the two terms on the right-hand side separately. From (2.5) we
easily obtain that | D @o(x)| = 4y for x € B(w, w,/K,); hence

waq QD ?o(w) \ _ W @
Po ( + X, ———‘][Dq)o(w)") Po(w) = 3y K,

Combining this inequality with (2.6) we have

(L +0) 9o(w) — 9o(w) 2 37 %,

1

(Po( ) = 20K1

On the other hand, (2.5) also yields || D ¢o(x)| < 37 for x € B(w, wo/K,) and thus

> _ 3., % > Y% Y00 1 — > Yo
(Do(x) = ‘Po(w) %V 20K, ( ) = —40va

24



(recall that 0 < 6 < 3) holds for x € B(w, @o/K;), which implies

n n+1
[ golx) dx = 120, (_“’/°> o (99) ,

40K K, 40 \K,
Further,

VDo KK,
Foo(x)dx = | — v ——= P(x) |dx =
j 0( ) jKIKZ ( @, ( ))

= 1% g, (5_15_2 u) |det D ¢~ *(u)| du <
K1K2 @o

. n+1
§x4lwijv l(—lISzu du = 3,25y @o .
KK, (2 KK,

Combined with the previous inequality, this yields

(2.33) [ F go(x) dx < ¥4 gooen (40 dx,
X

1
from which we conclude

(2:34) | E @o(x) dx = [ @o(x) dx — [ F @o(x) dx = [ o(x) dx[1 — xg0K; "+ 1] .
Returning to (2.32) and making use of (2.33), (2.34) we conclude
JIDE @o(x)]| dx = (K + #,%50K,K5™) 05 ' [ @p(x) dx <
S (1 — %g0K5; " D)1 (K, + #9%56K K5 ") @ " [ E @o(x) dx ;
thus, (2.12) is established, the proof of Lemma 2.6 being now complete.

Put ¢, = F@,. Then w, plays the same role with respect to ¢, as w, did with
respect to @,. Let us find conditions under which we can repeat the process from
Lemma 2.6, that is, under which we can start with the pair ¢,, w, instead of ¢, w,,
and construct E¢,, Fo,. To this end we have to guarantee that conditions (2.4)—(2.7)
are satisfied with ¢,, o, instead of ¢, w,. That this is the case follows from (2.13)—
—(2.17) provided the constants K, 0, B satisfy some additional conditions ensuring
that after passing to ¢,, ®; we have the same constants in (2.4)—(2.7) as before.
Let us now find these conditions.

The inclusion

(2.4)) B (w, &> < supp ¢,
K,
will be satisfied, in virtue of (2.14), if
(2.35) £ 2 L
3K,
By (2.15)
(2.5,) ID 04(x) = D o,W)] < 4v
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will hold for x € B(w, w,/K,) provided

(2.36) | o, < %

3K,
(Notice that | D ¢,(w)]| = |DF @o(w)| = |D go(#)| = 7.) Further,
(2.61) gol(x) < (1 + 0) (pl(w) for xeR"
follows from (2.16) provided
(2.37) : 2820,
and finally, (2.17) implies that
2.7) [1D o) dx < K1 ] gi(x) dx

@y

holds provided
(2.38) K, = 4%, .

Taking into account (2.13), we see that (2.36) holds if 2%?/K; < 28/3; so both
(2.35), (2.36) will certainly hold if we assume
(2.39) . BK, = 6.
In what follows, let us assume that (2.37) —(2.39) hold. Let N be a positive integer,
and put
@is1 = Fo;, w;.q =sup {Hx - W”Q X € supp (Pi+1} s
: i=0,1,2...,N—1:

It follows from (2.8), (2.9), (2.13) and (2.16) that

(2.40) @o(x) = E @o(x) + E @4(x) + --- + E oy_1(x) + ox(x),
(2.41) pix) < (1 + 20277,
. N 23/2 i
(2.42) o < (———’) w,
. K,K,
for x e R". o
Rewriting (2.8)—(2.12) for the functions E¢i, i = 0, 1,...,N — 1, we obtain
(2.43) Ep; + Fo; = @5
(2.44) E@{x) >0 provided ¢(x)>0, E o) > 3o w);
(2.45) Efx) = Egw) for xeB(, 2Po).
3K K,

4\ -1
(2.46) Eofx) < (1 +6) (1 - 1?2) E pi(w);
(247 FIDE ¢(3)] dx < [1 = Oy rs 1],

o —1
(K + 07K K3") O [ E g (x) dx .

" 26



Let us now introduce a system

m={(z"¢,); m=12,..,p},
where z,, e R", {,: R" - [0, 1] are of class C' with nonempty compact support;
denote {(x) = ilf,,,(x), 0, = sup {||x — z"||; x esupp {,}. Assume that there are

constants 6, > 0, K5 > 1 such that

(2.48) () <1, xeR';

(2.49) Lu(%) < (1 + 0,) Lu(z™), xeR";
(2.50) Cn(x) = Lu(z™), x€B (z’", }%";) ;
(2:51) JIp tu(x)] dx < fﬁ [ Cal(x) dx

for m = 1,2,..., p. (Note that (2.49) implies (,(z™) > 0, hence z™ € Int supp ¢,,.)
We are now ready to introduce a definition which will be needed in the sequel.

2.7. Definition. Let ¢, > 0. A system
m={z"¢); m=12,..p},

where {,: R" — [0, 1] are of class C', is called an &,-modification of the system I if,
denoting

0 = 30,

o, = sup {|x — z"|; xesupp (.},

we have

(2.52) 0 S50, (%) = Gu(x), xeR;
(2.53) I(x) <1, xeR";

(2.54) ' Gx) < (1 +0,) ("), xeR";

(2.55) G(x) = Lu(z™), x€B (z"’, ;—Ié:) ;

(2:56) 1D Gl ax < 22 () dx

m

(2.57) [ [Gu(x) = Cu(x)] dx < & .

2.8. Lemma. Let 0 <¢, < 1,0< 0, <1,K; > 1, and let M = R" be compact.
Let IT be the system introduced above (and satisfying (2.48)—(2.51)). Further, let
"eM,m = 1,2, ..., p, and let 5, be a gauge on M.

Let B, 0,K,, K, be constants satisfying the assumptions of Lemma 2.6, the con-

/
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ditions (2.37)—(2.39),

(2.58) 1+ e)/(1 - 1%) <1406,
and
(2.59) K, > x(n)" (3x(n) + 1)

with %(n) from Proposition 1.3.
Then, for any K, satisfying

(2.60) K, > max {x(n), 3K K, /B, (K; + 0x,sK,K;")[(1 — 0xsK5;"* )},

there exists an g,-modification IT' of the system IT and such a system
A={("A);l=12.,L

that the following conditions are fulfilled:

(2.61) AUIl' isa PU-partition of M ;

(2.62) supp 4, = B(s", 8,(sY)) ;

(2.63) Mx) (1 +0) A", xeR";

(2.64) M(x) = 2,(s"), xeB(s 7lKy,)

where 7, = sup {||x — s'|; x e supp 4,};

(2.65) [ 1D )] dx < ’%  24(x) dx .
1

Proof. Let us choose a bounded open set G; M =« G = R", and denote u =
= max {,(G), 1},

Z={xeR"; ((x)=1},

T={xeR'; D{x)=0}.
Then

M=MnIntT)u(MNT)u(MnZndT)u(Mn IT\Z),

the union on the right-hand side being disjoint. For every u e (M T)u (M n 0T)
there exists an integer q(u), 1 < g(u) < p, such that

D) =0 if ueM\T,
ueCl{xeR"; Dy, (x) 0} if ueMnIT.
Let 8, be a gauge on M satisfying the following conditions:

(2.66) 8,(x) < min {1, 6,(x)}, xeM,
(2.67) B(u,d,(u)) = G, ueM,

(2.68) B(u,6,(u)) cInt T, ueMnIntT;
if ue M\T, m = q(u), x € B(u, 5,(u)), then

(2.69) B(u, 5,(u)) = R"\ T,
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(2.70) 1D ¢(x) -

(2m) {x) < (1 + 4e,) L(u),

(272) B(u’ 52(14)) < B(zm’ O'm) N\ E(Zm’ G,n/K3) >
(273) 1D )] 6,(u) < 36001 — L(u));

if ueZn 0T, m = q(u), x € B(u, 5,(u)), then

(2.74) 85(u) < 5‘% ,

(2.75) D) < 2—()"7

if uedTN\Z, m = q(u), x € B(u, 5,(u)), then

(2.76) 8(u) < ;’?'"3 ,

() 2l <0 - st ;B

in (2.75) and (2.77), ¢, is a constant,

0 < &f < min {(1 +0) 6u(2") = sup {L(x); xe R},
K teu)dx — (DG dx, &, 2w(a)y ﬂ}‘
m u

It is easy to verify that it is indeed possible to satisfy the conditions (2.66)—(2.77).
Notice that {(u) # 0 in (2.71) since otherwise we should have D {(u) = O but u ¢ T,
Further, the set on thé right-hand side of the inclusion (2.72) is open and contains
the point u (u¢ T and m = g(u), hence D {,(u) % 0 and (2.50) yields the result).
Finally, in (2.73) and (2.77) we have {(u) < 1 since u ¢ Z, while (2.49), (2.51) make
it possible to choose &, a positive constant.

Let

A={t29);j=12..,k}
be a §,-fine PU-partition of M from Proposition 1.3, that is, 4 fulfils (1.5")—(1.7").

The modification IT’ and the system A are constructed as follows:

(i) If ¥ € M n Int T, we include the pair (¢, (1 — () 9;) into the system A (if, at
the same time, #/ € Z, then (2.70) implies {(x) = 1 for x e B(#, 5,(+)) and the cor-
responding pair will be omitted).

(i) If ¥ € M\ T then we put @5 = (1 — () 9;, w = ¢/ in Lemma 2.6 and use it
repeatedly N -times (N; an integer to be fixed later). The pairs (¢, Eg,), (t/, Ep,), ...

(¢, Epy,_,) are put in the system A while the function ¢y, = FY((1 = ) 9))
is added to {4

(iii) If # € M n Z N 8T then we add the function (1 — ) 9; to {y(,s).
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(iv) If / € (M 0T)\ Z then the pair (¢, (1 — (egy0;/(2 #(n)"** p)) (1 = {(t))) 9))
is included into the system A, while the function [(ejs,0;/(2 #(n)*** p)) (1 — () +
+ {¥) — ] 9; is added to {ys).

Following the notation introduced in Lemma 2.6, let us denote the pairs that form
the system A4 by (s%, 4,), I = 1,2,..., L.

On the other hand, taking into account the above described procedure, we may
write

(2.78) bn=lnt Y FU((1-08)+
tieM\T
a(t)=m
*
+ Y (1-=-99+ l:% I—C(tf)+c(t')—c]
z!zz(t{;;i:\nar tJe(Itl?)aT)\Z 2 %(n)

Our task now is to prove (2.52) —(2.57) and (2.61)—(2.65). Let us start with the latter
set of conditions.

Taking into account (2.40) we find from (i)—(iv) that

L P k
(2.79) Izlz,(x) + Zl Enl(x) =_21 9(x) (1 = ¢(x)) + U(x), xeR";
< me= j=
the right-hand side of the identity is always less than or equal to one, the equality

holding if and only if Z 9,(x) = 1 or {(x) = 1. Thus, (2.61) is proved.

Since 4 is J,-fine, (2 62) follows from (2.66) and (i), (i), (iv).
Now, let (s', ;) € 4, s'€ M n Int T. Then there exists such j that

(s"a)=0{,01-09), teMnIntT

(cf. (). By (2.68) we have {(x) = {(+) for x € B(t/, §,(1')) (recall the definition of T,
hence (1 — {(x)) 8,(x) = (1 — ¢{(¥)) 9(x) and (2.63)—(2.65) evidently hold as
a consequence of (1.5’)——(1.7’), since we have K, > x(n) by (2.60).

If (s, 4;) € 4 and s'e (M n 8T)\ Z, then we proceed quite similarly (notice that
by (iv), 4, = const. 9; in this case).

If (s%, 2;) € A4 and s' € M\ T, then there are such j, i that

(s 4) =, EF[(1 =0)9;]), YeM\T.

As mentioned in (ii), in this case we apply Lemma 2.6. To justify its application we
have to verify (2.4)—(2.7), where w = t/, 9o = (1 — () 9;.

If D {(x) # O then obviously 0 < {(x) < 1 and since ¢/ € M\ T, (2.69) implies
1 — {(x) > 0 for x € B(t, 8,(t')). Consequently, ¢o(x) + 0 if and only if 9,(x) + 0,
and hence w, = o;. Therefore, by (1.6”) from Proposition 1.3, (2.4) holds since

(2.59) guarantees K; > x(n). Further, ¢o(x) = 1 — {(x) for x € B(w, ®o/K), hence
y = ||D {(w)] and (2.5) follows from (2.70).
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By virtue of (2.70) and (2.73), for x € B(w, ) we have
(280) 1 —(x) =1 =W +[fo D(w + n(x — w)) dnlx — w)| <
<1 1) + 2] L] 00 = (1 + 0)(1 - L(w)

(notice that (2.70) implies || D {(x)] < 3||D {(w)]), and since 9,(x) < 9,(w), (2.6)
immediately follows.
Finally, (2.80) together with (1.7°), (2.70) and (2.73) yields

(281)  [[D @o(x)] dx < max {1 — {(x); x € B(w, wo)} [ | D 9/(x)] dx +
+ [pwon [P {(*)] dx <
< (L+0)(1 = {w) (dm)fe;) § 9,(x) dx + 3] D {(w)]| 4005 <
S (L4 0)(1 = g(w) x(n) %0~ + 3%, 30(1 — (W) 0p™" =
= [(1 + 8) %(n) + 0] 2,(1 — (W) 0§~ "
(by (2.66), we < 1). For x € B(w, w,), analogously as in (2.80), we obtain
L= ) 2 (- 0)(1 - t(w).

For x € B(w, w,[x(n)) we have 3;(x) = 1, hence
(=00~ (o) <, o) (1= £ 809 5 = f o) .
*x(n)
and combining this inequality with (2.81) we conclude that

J 1D @o(x)] dx < [(1 + 6) x(n) + 6] (;;(n) | @o(x) dx
and (2.7) holds by (2.59) (recall that < ).

Thus, we have shown that the assumptions of Lemma 2.8 guarantee that we may
use Lemma 2.6 repeatedly as described above. We choose N; so large that

28)  fon()dx s E [ dx, [[D o] §%fs,(x> ax.

*
(2.83) on (x) < b for xeR", oy, <
U u(n)
(again m = g(¢/)). Such a choice is possible in virtue of (2.41), (2.42) and (2.17)
since the pair (¢y,, wy,) satisfies (2.4)—(2.7) with @o, @, replaced by ¢y, @y,
Recall that we are now dealing with the case (s, 4;) € 4, s'e M \ T which cor-
responds to point (ii) of the construction of 4, so that 1, is actually some Eg,.
Consequently, (2.44)—(2.47) hold. In particular, (2.44) implies
w; = sup {||x — #/||; xesupp F[(1 = {)9,]} =
= sup {|x — #||; xesupp EF(1 = {) 9,1} = 7>
and (2.45)—(2.47) yield (2.63)—(2.65) by virtue of the assumptions (2.58), (2.60).
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Thus (2.63)—(2.65) hold for all (5%, 1,) € A. It remains to prove (2.52)—(2.57), i.e.,
that IT’ is an ¢,-modification of IT.

The second inequality in (2.52) is trivial, the inequality (2.53) follows from (2.79).
The rest of the proof will be based on the formula (2.78) for &,.

If e MN\T then supp 9; = B(t), 5,())) = B(z"*), 6,4, by (2.72); if ¢/ € 0T,
then o < dist (22*”, #/) + Jo,4s (cf. (2.74) or (2.76)), and it follows from the
properties of g(u) that the first summand on the right-hand side is not greater than
0,4ts)- Hence the first inequality in (2.52) holds in both cases.

Further, to prove (2.55) we notice that for # € M \ T, (2.72) implies
supp 8; N B(z"", 6,,1/K3) = 0, while for #/ € 0T, either (2.74) or (2.76) yields
supp 9 N B(z%", 36,,1/K3) = 0 since dist (297, ¥/) = 0,(,5/K5 (see (2. 50)). Hence
(2.55) a]ways holds.

Now we proceed to prove (2.54) and (2.57). Again we distinguish two cases.
If /e M\ T then supp ¢y, = B(#, wy,) and by (2.83) we have
supp ¢y, = B(t), o;[x(n)). Hence for xesupp gy, we have 9,(x) =1 by (L.5)
and (2.83) yields (we denote g(#) = m again)

(2.84) oy (%) £ : < e 9(x), xeRr

(recall that p > 1).
If ¥ € 0T N Z, then taking into account the definition of Z we have () =
hence (2.75) yields
1 —{(x) = {¥) = {(x) < Josem/n
for x € B(#, ¢;) and, since we have assumed ¢; < 1, u = 1, we have
(2.85) (1 = &x)) 9(x) < en 94(x) .
Finally, let #/ € T\ Z (and q(/) = m again). Then by (2.77) we have

() = CCal = o, (1 = £(+)
for x € B(#, ¢;), hence

(2:86) 0 g[ (m)f:l (1= () + 4+ - c@] 9,(x) <
< exo,(1 — 0(1) 9,(x) = &% 8,(%)

Inserting (2.84)—(2.86) into (2.78) and taking into account the definition of &,
(just after the formula (2.77)) as well as (2.49) and the evident inequality Y 9,(x) < 1
we conclude that (2.54) is valid.

Further, we obtain from (2.78) that
k
§T6n(®) = L] dx S eX [ Y 9(x) dx < 2 [ dx = ¢,
i=1 U

which proves (2.57).

( )n+l
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It remains to prove (2.56). Let / €e M\ T, q(¥) = m. Since ¢y, = F((1 - {) 9)),
we obtain from (2.82)

(287) FIDP( = £ 8] x5 () ax.
Let #/ € Z n OT. By (2.75) we have

max {1 — {(x); xe B(t, 0;)} < 0
2x(n)pu

(notice that {(¢/) = 1 since ¢/ € Z). Further, again by (2. 75) we have (cf. (1.7°))

(2.88) T, es) D ()] dx = %105 5 ( ) o j 9,(x) dx
(since 9,(x) = 1 for x e B(¥, 0;/(n))), which yields
(29). F DL — £09) 9,(9]] dx <
= [P 8, (9] dx 22 4 g [ D 200)] dx <
2u(n) p
x(n) Eno; 8:: &m
jS()de ) 2—j9j(x)dx§;j"9j(x)dx.

Finally, let tf € aT\ Z. By (2.77) we have
max {"‘—g’ (1 = U#) + U) — t(x); xeB(H, gj)} <

2 ()n+1
mQJ - J
S (1 -t@);

using (2.77) instead of (2.75) we find that (2.88) again holds. Consequently (cf. (1.7)),

@s0)  f[o [(ﬁ (1= 1) + 1) - 19) 949

*
< [ D 9x)] dx — % g [, 0 |DEH)] dx <

dx £

( )n+1”
%(n) 0 m < g () dx
ISJ()dx (),,+1 le‘gj(x)dx=#j.‘91()d :

Again inserting (2.87), (2.89), (2.90) into (2.78) and taking into account (2.21) and
the definition of e, we conclude that (2.56) holds. The proof of Lemma 2.8 is
complete.

Our next step is to prove the “if” part of Theorem 2.4, that is:

Let f: R" — R have a compact support supp f< Int £, where .# is a compact interval.
Let (PUI) [ f(x) dx exist. Then (PU) { f(x) dx exists and the two integrals are equal.

Let ¢ > 0. Set ¢, = {¢ and find & > 0 corresponding to &; according to Definition
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2.3 (of the PUl-integral). Choose 6 = min (}, 32); B and K satisfying 0 < < 4,
(2.37)—(2.39) and (2.59); K, > max {9, (x30)"/"* Y} (see Lemma 2.6) such that
(1 + 6)/(1 — 4/K;) = 1 + «; 0, satisfying (2.58); K5 > 1, and K, satisfying (2.60).

Given K > 1, set K* = max {K, 2K3,K,} and find a gauge §, on .# such that
for every d-fine (8 = %5,) PU-partition = of # satisfying (1.5)—(1.7) with K replaced
by K* we have

I(PUT) 1) dx — S(7, )] < o

Now, let IT be a §,-fine PU-partition of sup f satisfying (2.49)—(2.51) (which is
the same as (1.5)—(1.7) with «, K, /, §; replaced by 6,, K3, z™, {,,, respectively).
Construct A U IT’ = £ according to Lemma 2.8 with M = 4. Then = is a PU-
partition of # (cf. (2.61)); it is 5-fine by (2.52), (2.62). Further, Z satisfies (1.5) by
(2.54), (2.63) and the choice of 6; which guarantees 0, < o; it satisfies (1.6) by
(2.55), (2.64) and the choice of K*; finally, it satisfies (1.7) by (2.56), (2.65) and the
choice of K*. Hence

(U] G2) dx = 356 4) v = 34 ] G ] < v

Since IT is a PU-partition of supp f, we have supp f = Int Z and, since obviously
s' ¢ Int Z, we have f(s') = 0, I = 1,2, ..., L. By (2.57) we conclude

|(PUT) | f(x) dx —"élf(z"‘)j Cu(x) dx| < 2¢; = ¢,

which proves that (PU) [ f(x) dx exists and is equal to (PUI) { f(x) dx. This completes
the proof of Theorem 2.4.

3. TRANSFORMATION THEOREM

3.1. Theorem. Let f: R" — R with compact support be PU-integrable, let G = R"
be open and bounded. Let ¢: G — ¢(G) be a C'-diffeomorphism, supp f < ¢(G).
Then (f o ¢) |det Dg| is PU-integrable and
(3.1) (PU) [ f(x) dx = (PU) [ f(o(»)) |det D o(y)| dy .

(We put formally (f o @) |det Do| = 0 on R"\G.)

Proof. Without loss of generality we may assume that there exist such ¢ = 1 and
o > 0 that

(3.2) [Do@m)| <c, |detDo(n)| <c for neG,
[Do @ Sc. [detDo @S c for cep(c),
B(y,0) = G for yeo *(suppf),
B(x,0) = ¢(G) for xesuppf.

It follows from (3.2) that

(33) le() = em)| < c[|y —n| for yeo~'(suppf), neB(y.e),
le™'(x) = @71 (@)] = ¢fx = ¢] fOfr xesuppf, feB(x,0)-
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Let« > 0, K’ > 1, and let §,: ¢~ *(supp f) — (0, ) be a gauge.

Assume that
A" ={(s¢);i=1,....k
is a §,-fine PU-partition of ¢~ *(supp f). Put
o; = sup {|ly — s’; y e supp {}
and assume that (1.5)—(1.7) is fulfilled for 4’ (with ¢/, ;, o, K replaced by s/, {;,5;,K’,
respectively).
Put ¢/ = ¢(s/), 9; = {; o ¢ '. Then it is not difficult to see that
(3.4) A={(t,9);j=1,...K
is a PU-partition of supp f. It follows from (3.3) that 4 is d,-fine with
(3.5) 3x(x) = cé,(p~*(x)), xesuppf.
We shall prove that (1.5)—(1.7) hold for 4 provided
(3.6) , K = ¢*K’
(¢; has been defined after (1.4)). Observe that (3.3) implies
6; = cj, 0 = co;.
Since ! = ¢(s’), we have (for x € R")
9,(x) = (o' (x) < (1 + ) §i(s7) = (1 + 2) 9(0(s") = (1 + @) 3,(¥))
and (1.5) is fulfilled.
Let x € B(t/, ¢;/K). Then ¢~ '(x) = y € B(s/, cg;/K) = B(s’, 6;/K’), hence 3;(x) =
= 407 () = 40) = 0) = 3¢ and (1.6) holds.
Now, let us prove (1.7). We have
[P 8;x)] dx < [ D &) [P o™ (0(0)] |det D o(y)| dy <

2K’ c*K’
PG dy £ —[4()dy = — [ 9,(x) dx -
J i
and (1.7) holds for 4.
After the preliminary considerations let us proceed to the proof proper. Let ¢ > 0.
Find o > 0 from Definition 2.1. Given K’ > 1, find a gauge & on supp f such that

(37) (PU) [ 7(x) dx — S(1. 4) < 4

holds for every é-fine PU-partition 4 of supp f satxsfymg (1.5)—(1.7) with K = ¢*K".
Assume in addition that

(3.8) |det D o(y) — det D o(n)] <

€
2.m(G) [1 + |f(e(»))]

for yeo~!(suppf), neB(y,d(y))
(which can be achieved by decreasing 6 if necessary).
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Let A’ be a ¢~ 'é-fine PU-partition of ¢~ *(supp f) satisfying (1.5)—(1.7) with
s, ¢ ;» 0;, K’ instead of 9 ., 0;, K, respectively. Define 4 by (3.4). Then 4 is a J-fine
PU-partition of supp f (cf. (3.5)) satisfying (1.5)—(1.7) with K = ¢*K’, so that (3.7)
holds. By easy calculation we have

k
S(f, 4) = XS (e(”)) [ £,(3) |det D ()] dy
F=
and by virtue of (3.8) we find that
IS(f, 4) — S((f - @) |det Do|, 4')| < 1e.
This together with (3.7) yields

I(PU) [ £(x) dx — S((f + 9)] det Do], 4)| < &
and the proof of Theorem 3.1 is complete.

4. MULTIPLICATION OF PU-INTEGRABLE FUNCTIONS

4.1. Theorem. Let f: R" - R with a compact support be PU-integrable. Let
G o> supp f be an open bounded set, let x: G — R be of class C*. Then the function fx
is PU-integrable.

We will first prove a less general result.

4.2. Theorem. Let the assumptions of Theorem 4.1 be fulfilled, let Dy(x) + 0
for x € G. Then the function fy is PU-integrable.

Proof. Without loss of generality we will assume that
(4.1) x:G-[+3].

To prove our theorem we will use the analogue of the Bolzano-Cauchy condition,
that is, we will estimate the difference of two integral sums corresponding to suf-
ficiently fine PU-partitions.

Let ¢ > 0; find « > 0 corresponding to & according to Definition 2.1 of the
PU-integral. Given K > 1, find a gauge 6 on supp f corresponding to ¢, o, K ac-
cording to the same definition. Then there is a constant b > 0 and a gauge &, on
supp f, 8,(x) < 8(x) for x e supp f, such that the following proposition is true.

Proposition. Let
0,={t,%)iel}, i=1,2, Jy;nJ,=0
be 8,-fine PU-partitions of supp f satisfying

42) 59 <(1+ 2o, xer:
(43) 509 = 946). xe (v (%));
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(4.4) [ 9,(x)] dx < ;’Z— [ 9,(x) dx,

where ¢; = sup {|x — #/[|; x € supp 9;}. Set

for jeJ
4, =X 1
(45) X {l—x for jelJ,.

Then there exists a §,-fine PU-partition of supp f,
A={(t2;);jeJ; T, 1=0,1,..,L}, L; 20,
such that A satisfies (1.5)—(1.7) with 9; replaced by 1;;, and

(46) §19x) 2,0) = z(x)l de<e(t+ 3 AN

jeJ1u

JeJlqu.

Let us first show that Theorem 4.1 is an easy consequence of this proposition.

Let ©;, i = 1, 2, be PU-partitions of supp f satisfying the assumptions of Proposi-
tion. Evidently, @;, i = 1,2, as well as 4 from Proposition are §-fine and satisfy
(1.5)—(1.7). Following the definition of the PU-integral we have

(P) 16 b = £ 06) ) 0] o
hence (4.6) yields "

(P76 dx = 3 0) 9,9 ) a9 5
e+ ¥ f(tf).r[s (9 1/3) = % 2,0] 05| = 2.

jeJiu
Taking into account the definition of y; (cf. (4.5)) and the above mentioned fact
that @, is 5-fine and satisfies (1.5)—(1.7) we obtain

IJEZZf(t’) §8;(x) x(x) dx — Zf(t’ §8,(x) x(x) dx| =
U319 (1 ) b — 310 960 1409 ]
<| _Z F@) ] 9(x) dx — (PU) §f(x) dx| +

+|(PU) [ f(x) dx — ¥ (')  9;(x) 2,(x) dx| < 3e.

JjeJ1uJ2
We may assume that the gauge J, satisfies the condition
(4.7) if u esupp f, x € B(u, §,(u)), then B(u, §,(u)) = G and
|x(x) — x(w)] <

(L + [f(@)]) #G)
Then evidently
(48) l ,g;f(t") 1(#) | 9,(x) dx — > A() 2() § 9,() dx| < 5e,
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which is the desired analogue of the Bolzano-Cauchy condition. The existence of the
integral (PU) [ f(x) x(x) dx follows by the standard argument.

Thus we have to prove Proposition, that is, to construct a partition A with the
required properties. To this end we will use Lemma 2.6.

Forje J; U J, put 9o = 9;x;, w = t/, wy = ¢;. In order to justify the application
of Lemma 2.6 we have first to find conditions which b, 0, K;, §, have to satisfy

in order that (2.4)—(2.7) might hold. Without loss of generality we will assume o < %
(cf. Remark 2.2). Set 6 = 1o < %.

Comparing (2.4) with (4.3), we see that (2.4) holds if
(4.9) K, 2 K[b.

Further, y = | D(8;x;) ()| = 94(¢) | D x(¥)| > 0 in view of (4.3) and the con-
dition D x(x) =* 0, and (2.5) holds if the gauge J, satisfies the inequality
(4.10) D) = D) = 4[D ()], xeBu, 5:(u).
Indeed, B(¥, wo/K,) = B(t, bg;/K), and for x from the bigger ball we have (cf.
(4.3) D 9o(x) — D o(t!) = 9,(¢') [D x,(x) — D x,(+))]-

The inequality (2.6) reads

9;(x) 1,(x) = (1 + of2) 8;(¢)) 2,(¥)) .

It is fulfilled, by virtue of (4.2), if §, satisfies
(4.11) 1(x) < (1 + af5) x(u), xeB(u,s,(u),
since

(1+0af5)> <1+ a2,
Finally, to satisfy (2.7) it suffices to subject the gauge J, to the condition

o K+t
(4.12) 6 (1 + g> [ x;(w)| PP o(u) <1, uesuppf,
and the constant K, to the condition
(4.13) K, =2 4K|b.

Indeed, we have (by virtue of (4.1), (4.2), (4.10), (4.4), (4.12) and (4.3))
SIS, (x)]| dx = max 8,(x) [pees,ep | P 2,(x)] dx + 3 [ | D 9,(x)] dx =

< (1 + %) 3,(t) 3| D x,(¥)|| %10} + %{i §9,(x) dx

< (1 + )%IID 1i(#)] 4 9,() min 1,(x) %, <E> (ée_) "

b K

IIA

IR

W

+ 2K 79,00 1) dx <
bo;

J
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K\""'K .
< 6(1+ ) 10n@I () 5 Tomin 20 min 15 +

+ 3K §8(%) 1(x) dx = K § 8,(x) 2,(x) dx
be; bo;

and (2.7) holds by (4.13).

Consequently, if 3, is a gauge on supp f satisfying &,(x) < 8(x) and (4.7), (4.10),
(4.11), (4.12), if 0 = %« and if K, satisfies (4.13) (and, a fortiori, (4.9)), then we
can apply Lemma 2.6 to ¢, = 9;x; as desired.

Let us further assume 8 = t« and
(4.14) Ky =z 4x;, K =24fo.
Then conditions (2.37)—(2.39) are satisfied, and thus we can use Lemma 2.6 re-
peatedly as in the proof of Lemma 2.8, obtaining for each j e J; u J, a set of pairs
(4.15) (¢, E9jx;), (¢, EFSyx;), ..., (¢, EFY™19,5), (¢, FN9,x))
(N; are positive integers to be fixed later).

Let us list some properties that the functions appearing in (4.15) possess, denoting

o] = sup {|x — ¢']; xesupp F9,3,}, jeJ,uJ,, i=0,1,..,N;:

(4.16) o} =0;, o} =sup{|x —|; xesupp EF'9;1;}
(cf. (2.44), (2.43)) ;
; : o 4\~
(4.17) EF'9, 7,(x) < (1 + 5) (1 - kj) EF9, 1,(¢)
(cf. (2.46); recall that o = 0);
(4.18) EF'9, 3,(%) = EF'9, x,(t)), xeB(d, %2
6K K,
(cf. (2.49)) ;
i @ -
(419) SIS, 1) 05 5 (K +5 o).

o —n -1 , '
.(1 -3 ngK; ¢ +’>) po [ EF'g, y,(x) dx

(cf. (2.47)) ;

Nj—-1
(4.20) 2 EF9;; + FY8%; < 9.4,
i=0 .
(cf. (2.40)) ;
i %\ ni
(4.21) Fi9; 74(x) £ (1 + 5) F'9, 5 ()

(cf. (2.16));
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422 JID(ES;1) (] dx 5 222§ P19 () dx

(cf. (2.17));
23/2 < (0{4.1 < 23/2
KK, - ol ~ KK,
(cf. (2.13)).

Comparing the inequalities (4.17), (4.18), (4.19) with (1.5)—(1.7), we see that the
pairs from (4.15) except the last ones will satisfy (1.5)—(1.7) if

(424) (1+g>(1—1<iz)~1<1+“’

KK, _
o

(4.26) K, (1 + g x7x8K2‘"> (1 - g xsK;(””)

(4.23)

(4.25) K,

1
<K.

Let us summarize our considerations. First we have to find o, 0 < « < 4, cor-
responding to the given ¢ > 0. Let K be given. Without loss of generality we will
assume (cf. Remark 2.2)

(4.27) K > 160

aS

, ¢ = max {4x,, 24} .

Choose b = 4Ka/c,. In Lemma 2.6 choose K; = ¢, [« so that (4.13) and (4.14) are
satisfied. Set 6 = 1o, B = . Choose K, so that (4.24), (4.25) and also the ine-
quality K, > max {9, (xg 32)"/"*D} from Lemma 2.6 are fulfilled. (Notice that
(4.24) is certainly fulfilled if K, > 16/o, while in view of (4.27), (4.25) is fulfilled if
K, < 160/9oc; hence both the inequalities can be satisfied simultaneously.) The
inequality (4.26) is then fulfilled as well, at least for o small enough.

To the given K find the gauge 6 and choose a gauge , so that (4.7), (4.10) and
(4.12) hold.

Thus, we have fixed all the constants involved in such a way that, on the basis of
Lemma 2.6, we can construct the functions in (4.15) and that, moreover, the functions
EF'9;y; satisfy (1.5)—(1.7).

Let us now continue in the proof proper. To construct the partition 4 we will use
the pairs from (4.15) except the last ones of the form (¢, F"9,x;); the functions
FYi9,y; from these pairs will be either added to some of the functions EF'9,y, with
ie {0, 1,..,N, - 1} suitably chosen, or otherwise arranged in such a way that'the
resulting functions will still have the required properties, in particular, will satisfy

(1.5)—(1.7).
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For we R" we denote
Jw)={jeds ¥ =w}, i=12;

U={w; Y 9w=1= Y 9(w)};

jeitw) Jjedz(w)
V={w; 0< > 9,(w) < 2}.
JjeJ1(w)ula(w)
Evidently,
(4.28) UnV=0, UuV={tjel,ul,}.

It follows from the definition of the set V that
(4.29) for every w e V there is such p(w)e J; U J, that
M £ w, Y,u,w) > 0.
Further, (4.23) implies that for every w € V there is an index i = i(w) such that
(4.30) Wiy S lw — 2™ < F3) .
Since V is finite, there exists a positive integer Q such that
(4.31) [w— ] > ™ forall weV
(evidently Q > i(w) for all we V).

In the sequel we will assume, forje J, U J,, t e V:

(4.32) N;zQ,

232 _ 1
3K,K,

p(t))

oy, < i(1d)

o, < o = [ = 0]

(Notice that the right hand side of the last inequality is positive by (4.30), and
lim o] = 0 by (4.23).)

Let ! € V. Then we add the function F*9,z; to the function EF' ™3,y s
(It may happen that several functions F*#9,x; — with different indices j — are added

to the same function EF'S,,,. In that case, however, p(t/) = m for all such j’s.)

Now, let we U. Then evidently J;(w) # 0 & J,(w); let us denote by g(w) the
number of elements in the union J,(w) U J,(w). For je J,(w) U J,(w) we replace
the last pair in (4.15) by the pair

(4.33) <w, 1 Ww), where ¥,= Y  F¥9y,

q(w) JeT(W)T2(w)
(that is, given w e U, we put together all pairs with #/ = w, thus forming a single
pair (4.33)).

All pairs resulting from (4.15) by the above described modifications form the
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desired PU-partition 4; in the sequel, we denote them

(1, 2go) (¢, Aja)s -os (P, Ay ) 5
evidently we have L; = N;for ¥ e U, L; = N; — 1 for # e V.
It follows from the construction and from (4.20) that

;}.ﬂ = Y(ESx; + ... + EFY 0y + FY9;7)) =
Js J

=Z9,~x, 291x+29(1 -0

JjeJy jela
hence if x is such that Z 9,(x) = Z 9,(x) = 1 then
Jjedi jeJ2
YAn=1,
J,l

which implies that A is a PU-partition of supp f. Moreover, it is evident that it is
d,-fine (this follows from the fact that @, i = 1, 2, are 6,-fine, and from (4.32)).
Now we have to show that A satisfies (4.6) and (1.5)—(1.7). This will be proved
provided N; satisfy some further conditions.
First of all, let us assume that N; is so large that

(4.34) Y fFNi9ydx < g(1+ Z TG

JjeJ1uJ2 JjeJiudy
(cf. (2.41)). Then (4.6) immediately follows from (4.20) and from the construction
of A.

In order to fulfil (1.5), we further require that for #/ €V, ke{O 1,..,N; -1}, N;
is so large that

-1
(439) T P 50) < [1 fo— (1 + g) (1 - I-:—) ]Est,. ()

2
p(rm)=j,i(t™)=k
(cf. (4.24) and (2.41)). This together with (4.17) yields that (1.5) is fulfilled for A,
provided I < N,,. If "€ U, 1 = L, = N,, then

1
Amp = - ¥ o
q(1")
and (1.5) again holds by virtue of (4.21).
Now we will prove (1.7). By virtue of (4.23) we may and will assume that

(4.36) if weU, j,reJy(w)u Jy(w), then

o, <3.2732KK,.

Wy,
Indeed, this can be achieved by starting with such s € J,(w) U J,(w) that
(4.37) oy, = min {@},: j € J;(w) U J,(w)}

and then successively increasing the other N;’s in order to fulfil (4.36) with r = s
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(we need not worry about the inverse ratio since in view of (4.37) it never exceeds
one).

This procedure has to be repeated (finitely many times), in each step omitting the
minimal wy,.

Moreover, for eV, ke {0, 1,..., Nj_,} let us assume
(4.38) Y JIE™S xu(x)] dx <

meJyuldy
p(tm)y=j,i(tm)=k

S [K — (1 = 0x¢gK5; " D)1 (K + 075K, K5")] i | EF*9; x;(x) dx
k

(notice that the expression in the square brackets is positive in view of (4.26), and
again recall (2.41)).
Let us first consider a pair (#/, A;;) with je J; U J,, | < N;. Then

o] = sup {|x — /|; xesupp 4;} .

Indeed, if j = p(t") for some m e J, U J, and | = i(¢"), then this identity follows
from the third inequality in (4.32) since this inequality implies B(t", o} ) <
< B(t!, w}my). In the other cases, 1;; = EF'9;y; and our identity is trivial (cf.(4.16)).
Consequently, (1.7) holds (with 1;;, o] instead of 9;, ¢;) for je J, U J,, I < N; in
view of (4.19), (4.26), (4.38) and the above identity.

The last case for which we have to prove (1.7) is that of 4,, with £ € U, I = L,; then

ha= ¥,
a(#)
Let s satisfy (4.37) with w = ¢, and denote
1, =sup {|x — "||; xesupp ¥,}.

By (4.36) we have o}, < 3.2732K,K,w}, for je J (1) U Jy(f"), and since 7, =
= max {w}; j € J,(t") U J5(t")} (cf. (4.33), we conclude
(4.39) T, < 3.273K K, 0, .
The inequalities (4.33), (4.22), (4.37) and (4.39) yield the estimate

P redloxs | 5 FIp() () dx <

JeJi(tryuda(tr

1/2
< Y Mryppugua s P f e ae < 225K 1y g ax
NI ) O, oy, o
and (1.7) holds provided
(4.40) 3.212K K, <K,

which evidently is a weaker condition than (4.25) (recall that « < }).

The last step is to prove (1.6) (for 1;;, w], of course). Again let us first consider the
case je J; U J,, 1 < N;. If j =& p(¢™) for all m € J, U J,, (1.6) is obviously fulfilled.
If j = p(™) for some me J; U J, and I = i(¢"), then the second inequality in (4.32)
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and the first inequality in (4.30) combined with (4.23) yield

. o .
B(t", oy Yn B ¢/, wll=0
(", o5, ( 3K K, ‘)

(recall that « < }). Consequently,
LI
KK,

Aj(x) = EF'9; y/(x) for xeB (tf,
and (1.6) follows from (4.25).

We still have to prove (1.6) for 4,; with t" e U, | = L,. By the definition of U and
by (4.3) we have

Y 9 =1= % 9x)

JjeJi(tn) JjeJ2(tr)
for x € B(t", bg/K), where ¢ = min {g;; j € J,(t") U J,(¢")}. Hence (4.5) yields
8;(x) 1(x) = 1

JeJ1(t")vJ2(17)

for x € B(t", bg/K), and in view of (4.20) we can write this identity in the form
(4.41)
[ES; xi(x) + EFS; x,(x) + ... + EFM7'9; x,(x) + FM9, x,(x)] = 1.
JjeJ1(tr)ud2(17)
In this identity we can put x = #'; using (4.18) in which we set / = ¢" (recall the
definition of J,("), J,(#)) we obtain

(4.42) Y FMSpx) = ¥ FMy(r)
JeJ1(tr)yuda(tr) JeJ1(tr)ud (1) )

for x € B(f", 0,), where

o .
0y = min ok _1; jeJ () u JL (")} .
1 {3K1K2 Nj—15 J 1() 2( )}

By (4.23) we have 27%2K,K,w}, < w},-, hence (4.42) is valid for x € B(', 05),
where

o : j . » ¥
%= T min {of,; j € J, (") v Jo(1)) .
If s is the index for which (4.37) holds with w = ", then evidently

Oy = — W, =g
273032 M T 9k K,
(cf. (4.39)) and (1.6) holds provided (4.25) is valid.

We have already shown that the conditions concerning K, K, can be satisfied
by a suitable choice of the constants. Further, the conditions imposed on N, i.e
(4.32), (4.34)—(4.36), (4.38) are easily satisfied by gradually increasing N;.

Thus the proof of Proposition is complete, and Theorem 4.2 is proved as well.

r

4.3. Proof of Theorem 4.1. Choose an open set G, such that suppf = G, = G, <
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< G, and a number A so large that D(x + x) (X) * 0 for x € G,, where x;(x) = Ax,
(we write x = (x1X3, ..., X,)). Such a A obviously exists. Hence f(x + x1) is PU-
integrable, and the same evidently holds for fy;.

Consequently, fx = f(x + x1) — fxy is PU-integrable as well.

5. STOKES’ THEOREM

5.1. Theorem. Let g: R" - R with compact support be differentiable at all
points xe R"\W. For p=1,...,n set

_ {(oglox,)(x) for xeR'~\W,
(1 U { 0 for xeW.
Then f, is PU-integrable and

(52 (PU) [ £,(x) dx = 0

provided one of the following conditions is fulfilled:

(5.3) g is continuous, W= {xe R", x; = 0};

(5.4) W is closed, g is bounded; for every ¢ > 0O there is o' > 0 such that for

every K > 1 there is a gauge 8’ on supp g such that for every &'-fine PU-

partition (1.1) of supp g satisfying (1.5)—(1.7) with o' instead of « the
inequality
Z ;9 (x)dx <S¢

tieW

holds; ]
(55) g(x) = o{[x[*™}, w={0}.
Proof. Following the idea of proof of the analogous theorem in [1], denote
' _ (g(t) + Dg(t) (x — t) for t¢W,
4:(x) = {0 for teWw.

Let ¢ > 0. Find o > 0 according to Definition 2.1. Let K > 1. Find a gauge 6 on
supp g such that

(5.6) m U B(x,8(x))) £ m(suppg) + 1 = ¢
Xesuppg

(m,, again stands for the Lebesgue measure in R"),

(5.7) B(x,28(x))nW=0 for x¢W,

(5.8) l9(x) — qx)| < E/K)c™Y|x —t]| for t¢W, xeB(15(1)).

Let 4 given by (1.1) be a §-fine PU-partition of supp g satisfying (1.5)—(1.7).
We have to estimate the integral sum S(f,, 4).
Integration by parts (with respect to x,) together with the obvious identity

g,
f(t) = qu_ (%)
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yields similarly as in [1]
0 09,
Sot) §8,(x) dx = T S (x) 8,(x) dx = —[ qu(x) S () .
ox, ox,
Further,
zww %ﬂ®~0
k
since z Sj(x) = 1 for x € supp g. Hence to establish the desired estimate for S(fp’ A)
j=1

i=
we have to establish the inequality

(5.9) f Z [9(x) - qu(X)] % (x X
Let us first estimate the terms with +/ ¢ W:

f ﬂ_zW[goc) ~ 0] 5 () o

< e.

=

é PR ’(x)

by virtue of (5.6)—(5.8) and (1.7).
To estimate the terms with t/ € W we have to treat the three cases corresponding

to the conditions (5.3)—(5.5) separately.
Let (5.3) be fulfilled. Without loss of generality we may assume that
(5.10) lg(x) — g(t)l <e for xeB(1t).
For / € Wwe have g,,(x) = 0; moreover, since 9, and thus also 89,/0x, have compact

‘
dx Sec™'[Y 9(x)dx < ¢
j=1

supports, we have
) 9 (x)dx =0.
0x

14
Consequently, we can write

[ 2 [0 - qn(x)] % (x) dx

- g(t’)] 2% (X) dx

and, using successively (5.10), (1 7*) (1.5) we obtam
J 5, 609 = a1 52 () 0] < 3

< e, K(1 + oc) ZWQ" 1 9j(tf) =
tle

dx <

% (x)

= K"(1 + @) Y. fsws,eymow 9(x) dx; ... dx,
Ao tieW
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k
where %, is the measure of the (n — 1)-dimensional unit ball. Since Z 9,(x) < 1 for
=1

all x € R" and since we can assume s, _ 1( U B(t, 0,)) " W) < s,y 1(supp gn W)+
+ 1, we eventually obtain

P
e 2 K1+ @) Y. [aopmow 3i(x) dx; ... dx, <
X tieW

K

®

Se K1+ &) f § puiepew 2 9(x) dx; ... dx, <
Ao tieW j=1

< gﬂK"(l + @) [mn_l(SUPpg nw)+ 1],
Xo

which evidently completes the proof.

Now, let (5.4) be fulfilled, let |g(x)| < M for x € R". For the given ¢ > 0, K > 1
find o’ > 0, 8" so that the inequality from condition (5.4) holds. Without loss of
generality we may and will assume that « < o, 5(x) < 6'(x) for x € R". Using the
identity q,/(x) = 0 for t/ € W, the boundedness of g, the condition (1.7) and the
inequality from (5.4), we obtain

ST — a1 ()0 5 M 2 f 09

S MK Y o; ' 9(x)dx < MKe.
tieW

dx <

Finally, let (5.5) be fulfilled. Then the only terms to be estimated are those with
/ = 0 and their contribution reduces to

tZ IB(O 2)) g(x) J (x) dx

since go(x) = 0 again.

We divide the integration domain into two parts, B; = B(0, ¢;)\ B(0, ¢;/K) and
B; = B(0, ¢;/K), and write g(x) = v(x) [x|' ™" with hm v(x) = 0, v = sup {|v(x)|;
x € B(0, ¢;)}. Then

Py

29,

I 0() 22 (9 05| 5 vk~ 5 0~ [

< vK"%I(l + a) Y. 9,(0) = vK"%,(1 + o)
ti=0

dx £

by virtue of (1.7*), while (1.6) yields
PIRED (X) % (X) dx

Since v — 0 with 6(0) — 0, a suitable chmce of §(0) completes the proof.
Let N be an n-manifold of class C' without boundary or with a boundary oN.

=0.
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The concept of the PU-integral can be extended to differential n-forms on N in the
same way as in [1]. From Theorem 5.1 and from [1], Theorem 4.2, Stokes’ theorem
can be proved in an analogous way as in [1], in the following form:

5.2. Theorem (Stokes). Let n be an (n — 1)-form with compact support on N.
Let W be a submanifold of N with or without boundary, W ON = (. Assume that n
is differentiable at every point of N \ W and that n is continuous. Then dn is a PU-
integrable n-form and

(PU) IN dn = _"aNﬂ .

5.3. Remark. If we make use of Theorem 5.1, case (5.5), we may modify the above
theorem in the following way: W= {w, w,,...,w,} = N, Wn N = 0,  is dif-
ferentiable at every point of N\ W and fulfils the growth condition analogous to
(5.5) in a neighbourhood of each w;, j = 1, ..., m.

5.4. Remark. Let B = B(0, 1) = R", h: B - R. Let h have continuous derivatives
of the second order on B\ {0} and let

(5.11) |(grad &) (x)]| = o{[x]"~"} .
It can be deduced from Theorem 5.2 that
(5.12) [pdiv grad hdx = [,5(v, grad h) dS,

v being the outer normal to the sphere B and dS denoting the (n — 1)-dimensional
Lebesgue integration on 0B. If (5.11) is relaxed to

(5.13) I(grad ) (<) = o{f=[* "},
then (5.12) need not hold. This can be seen if we put h(x) = |x]|>~" in case n = 3,
h(x) = In x| ™! in case n = 2.
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