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OF THE PU-INTEGRAL 

JiŘí JARNÍK and JAROSLAV KuRZWEiL, Praha 

(Received June 19, 1985) 

0. INTRODUCTION 

Let / : Rn ~> R have compact support. The PU-integral (PU) J/(x) dx was 
* 

introduced [1] as a limit (in a specific sense) of integral sums ХД*7) №AX) ^x> 
y = i 

{#i, #2> • ••> &k} being a partition ofunity (hence the PU-integral). The limiting process 
involved in the definition of the PU-integral resulted in the following properties 
of the PU-integral: 
(0.1) (PU) J/(x) dx є R for every PU-integrable/. 
(0.2) The map/H+(PU) f/(x) dx is linear (on the set of PU-integrable functions). 
(0.3) If/: Rn ~> R has compact support and is Lebesgue integrable, then it is PU-

integrable and the two integrals coincide. 
(0.4) The PU-integral is a true extension of the Lebesgue integral, since / is PU-

integrable and (PU) jV(x) dx = 0 if there exists such a g: Rn ~> R that g has 
compact support, is difFerentiable at every x є Rn and / = dgldxl. It is not 
difficult to find such a g that J |/(x)| dx = oo so that, in general, the PU-
integral is a nonabsolutely convergent integral. 

(0.5) The usual transformation formula holds for difFeomorphisms and the PU-
integral. This property makes it possible to extend the PU-integration to dif-
ferentiable manifolds. 

(0.6) Stokes' theorem can be proved on difFerentiable manifolds for {n — l)-forms 
which are difFerentiable at every point (or in Rn for vector fields which are 
difFerentiable at every point). 

However, the assumption in (0.4) that g is to be difFerentiable at every point is 
essential; if it is dropped for a single point and replaced by the assumption of con­
tinuity of g at this particular point then (PU) J/(x) dx need not exist, and a similar 
situation takes place with Stokes' theorem in (0.6). 

The aim of this paper is to relax the limiting process in the definition of the PU-
integral in such a way that weaker conditions on g in (0.4) be sufficient for the 
existence of (PU) J/(x) dx: It is sufficient to assume that g is difFerentiable at every 
x є Rn \ ^provided one of the following conditions holds: 
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(0.7) Wis a hyperplane and g is continuous at every point of W(in fact, Wma,y be 
an (n — l)-dimensional manifold); 

(0.8) Wis a small set (in the sense of (5.4)) and g is bounded; 
(0.9) J^is a one-point set, W = {w}, and \g(x)\ = #(\\x — w||1"") in a neighbourhood 

ofw. 

Moreover, we prove that the product f% is PU-integrable provided / is PU-
integrable and % is of class C1. 

Section 1 contains some auxiliary concepts and results, in Section 2 the definition 
of the PU-integral is introduced, and in the subsequent sections transformation of 
the PU-integral, multiplication of PU-integrable functions and Stokes' theorem are 
treated. 

First version ofthis treatment was published as a preprint [2]. However, since 
then the manuscript has undergone substantial changes concerning the fundamental 
definitions as well as the organization of the proofs. 

1. PU-PARTITIONS 

If M c Rn, we denote by dM, Int M and C1 M (or M) the boundary, interior and 
closure of M, respectively. The Euclidean space Rn is viewed as a Hilbert space, 
that is, we set 

\\x\\=(xl + ... + xiy\ 
B(y,<x) = {xeR"; ||x - y\\ < oc} , 

n 

and represent linear functionals as vectors: for example, <p(x) = £ <přxř with <p = 
i = l 

= (<p1? ..., <pn) є #Г. If/: Яп ^ R then s u p p / stands for the support of/, D/ is its 
differential, 

M = (ťt 
1.1. Definition (cf. [1]). Let M c Rn be compact. A family 

(1.1) A = {(t*,9j)l1 = l,...,fc} 
where fc is a positive integer, řJ' є M, #,-: Rn ^> [0, 1] are C*-functions with compact 
supports satisfying 

k 

(1.2) 0 й S(ř) = J] 3 / í ) ^ 1 for all t e Rn, 
J = i 

(1.3) Int{feff1 ; a(r) = 1} з M , 

is called а PU-partition of M. (The letters PU stand for "partition of unity". For 
technical reasons, a finite set different from {l, 2, ..., k} is sometimes used as the 
index set for a PU-partition.) 

Any function S: M ~> (0, + co) will be called a gauge on M. 

\—\ \dx;\ 
2\ 1/2 
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If ö is a gauge on M, then the PU-partition (1.1) is said to be ô-fine if 

(1.4) supp 9j cz B(t', o{tJ)), ; - 1 , . . . , k . 

For A defined by (l . l) denote 

Qj = sup {||x - tj\\; x e supp 9j} . 

Then A is c>-fine iif Qj < ô(tJ), j = 1, ..., k. 

Let a > 0, K > 1 be constants. We introduce the following conditions concerning 
thePU-part i t ion(l . l ) : 

(1.5) Sj(x) < (1 + a) 9j(tj) for x є Rn ; 

(1.6) Sj(x) = Sj(tj) for x e B(tJ\ QjjK) ; 

(1.7) J | |DSXx) | | dx<K/ey f i>Xx)dx . 

Notice that (1.5), (l.7) immediately imply 

(1.7*) J | |D9/x) | | dx < xxK(l + a) g"f1 5,(F), 

where Xj = j*B(o,i>dx. 

1.2. Remark. Notice that the integration in (1.7), (l.7*) is in fact over a compact 
set. Throughout the paper, we will always omit the specification of the integration 
domain provided it is the whole Rn. 

1.3. Proposition. For every positive integer n there is a constant x = x(n) ^ 2 
such thatfor every compact set M c Rn and every gauge ö on M there is a ö-fine 
PU-partition A defined by (1.1) satisfying 

(l.5') 9>j(x) й 1 for x є Rn, 

(1.6') 9j(x) = 1 for x є S(řJ', ^ / ^ ( n ) ) , 

(1.70 SlD9j(x)ldx<x(n)|QjS$j(x)dx. 

Proof. Since in the proof we deal mostly with intervals and their unions, it is 
more convenient to make use of the maximum norm (parallelly with the Euclidean 
one). We denote 

[x\ = max {|xf|; i = 1, 2 , . . . , n) , 
n 

U(t, ô) = X [*i — d, ti + c>] (a closed cube with center t and edge 25). 
i = i 

Following the idea of proof of Proposition 1.1 [1], we shall first find a system 

(1.8) I={(t>,D>);] = l,...,k} 
where Dj cz Rn and tJ є Dj satisfy the conditions 

k 

(1.9) M с In tU D*; 
i = i 

(1.10) Int Dl n Int DJ = 0 for і Ф j , i,j = 1 , . . . , fe; 

(1.11) each DJ\ j = 1, . . . , fc, is the union of a finite number of compact intervals; 
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if Qj = sup {jx — tJ\; x є Dj], then for j = 1, ..., k we have 

(1.12) Qj S ïô(tJ) ; 

(1.13) U(t*,iQj)czDJc:U(t>,Qj); 

(1.14) ^„_ i(dZ>0 ^ й(п) §/* mn(DJ) 

where mv stands for the v-dimensional Lebesgue measure and %(n) is a constant 
depending only on the dimension n. 

We shall describe an algorithm which results in such a partition. Choose a de­
creasing sequence \ > f]l > f]2 > ••• > Ці > ••• > І-

Step 1: Find t1 є M such that 

S(t1) > ^sup{o(t); teM) 
4i 

and denote 
Wx = U(i1, i ^ <5(r1)), U± = U(t\ щ o(t1)), 

Гц = tfl. 
Let us assume that after / steps we have points tJ\ j = 1 , . . . , / and sets Wj9 Uj9 Vjm, 

i 

j = 1, ..., /, m = j , j + 1, ..., /. I f M \ Int U E^ = 0, the algorithm stops. Otherwise, 
the algorithm is continued by 7 = 1 

Step (/ + 1): Find 
i 

(1.15) tl+1eM\lntU Uj 
j = i 

such that 

(1.16) ô(tl + 1) > ^ sup{S(t); í e M \ I n t U Uj} 
Чі+i J=i 

and set 
(1.17) Wl+1 = U(tl+\im+1ô(tl+1)), 

Ul+i = U(tl+1,m+1ô(t'+i)), 
1 

Vj,l+1 = Vjj\IntWí+l9 Vl+Ul+1 =Ul+1\btOVJtí+l. 
J = 1 

It is clear from the construction that each VjfTn9 m = j,j + 1, ..., 1 + 1 is the union 
of a finite number of intervals and that the sets Vím9 V2m, • • •, Vmm are nonoverlapping. 
Moreover, it is seen from (1.15), (l.l6) that 

(1.18) щ 3(t1) > ц2 ô(t2) > ... > m+í S(tl+1). 

By (1.15) we have f є M \ Int Uj for j < r S tn, so that 
(1.19) \tr - t3\ ^ t|j o(tJ). 

Further, it can be proved that the system of sets resulting by the algorithm has the 
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following properties: 

(1.20) Wj n Wm = 0 for j < m й 1 + 1 ; 
(1.21) Wj c Vjm cz tf, for ; й m й 1 + 1 ; 

m m 
(1-22) VVjm = VUj for m = l , . . . , i . 

j = i j = i 

(The proof is rather technical but not difficult.) 
Now we will prove that the algorithm comes to an end after a finite number k 

of steps because of 
k 

M c Int U Uj . 
j = i 

Suppose the contrary. Since M is compact and the sets Wm are pairwise disjoint 
00 

(cf. (1.20)), the sum £ rfm ôn(tm) converges and since r\m > £ > 0 we have 
m = l 

(1.23) limč(r) = 0. 
m^oo 

oo m 

There is 5 є П (M \ Int U ^j) since the sets on the right hand side are nonempty 
m = l J = 1 

and compact. However, (l.l6) implies that S(tm) > rjm+1 c(s)/rçw > ^o(s) > 0 
since \ > rjm > rjm+l > £. This contradicts (1.23) and consequently, the algorithm 
stops after a finite number k of steps. 

SetD^= VjkJ = l,...,fc. 
Then the system (1.8) satisfies (1.9)-(l.l4). Indeed, (1.9)-(l.ll) follow from the 
construction, (1.12) and (1.13) follow from (1.21), (1.17) andthe inequality \ < rjj < 
< \. The only point requiring a detailed discussion ofits proofis (1.14). 

Let us first introduce two lemmas. 

Lemma 1. Let a є U, pe {1, . . . , n), and denote 
Ypa = {xeRn; xp^a]. 

Let j < m S k, max {tJ
p, Ç} < a, Uj n Ypa Ф 0 Ф Um n Ypa. Then 

\tJ - f\ = max {|i/ - tT\; і Ф p, i = 1, ..., n) . 

Proof. Since a - íy á(ř̂ ) ^ tp < a, a - tjm ô(tm) й % < a, rjj ô(tJ) > nm ô(tm) > 
> 0, we have 

lf;-til<t,jo(tJ); 
but (1.19) implies that 

|C - **l = *lj Ktf) f o r a t l e a s t o n e ' є (1- • • •> "} • 

Lemma 2. P^ne u>(1) = 4 . <tf? + 1) = 2(r + 1) ca{r) + 2r+1 for r = 1, 2, ... . 
Let 1 < m g fc, î є ft, Q = U(q, цт o(f)), 

L= {l; 1 < m, U,n Q Ф 0} . 
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Then, denoting by \b\ the number ofelements ofL, we have 
(1.24) \L\ й 0)(n) . 

Proof proceeds by induction on n. 
Let n = 1. Denote 

L^{ieL; q-timo(ť")utluq}, 
L2 = {leL;qutlûq + nmô(tm)}, 

L, = {leL; t'<q-t|,,o(r)}, 

L4 = {leL; q +nmô{f)<t1}. 

For і = 1, 2, (1.18) and (1.19) imply that Lt contains at most one element (recall 
that / < m). The same holds for i = 3, 4. Indeed, suppose e.g. thatj, r є L3, j < r. 
As in the proof of Lemma 1 we have 

q - Пт КП - nj KtJ) й t' < q - цт <5(Г) 

and analogously with j replaced by r; hence 
\tj - f\ < meLx{rjjô{tJ), nrö(f)} = njô(tJ) 

but this inequality contradicts (1.19). The prooffor L4 is analogous, hence JL| й 4 = 
= co(l). 

Now suppose that (1.24) holds for n S v- Let n = v + 1 and put 
L0 = {J є L; |i' - q\ й Цт ô(tm)} = {l є L, Xх є Q) , 
L_; = {/eL; t { < i , - 4 - i ( < - ) } , 
Ц ={leL; qi + nmô(tm)<t^, 

і = 1, ..., v + 1. Then 
v + 1 

L = U L*. 
i = - ( v + l ) 

First we estimate |L0|. By halving all edges of Q we obtain 2V+1 cubes with edges 
of length fjm ô(tm); since I < m for / є L, (1.18) and (1.19) imply that each of these 
cubes contains at most one tl with 1 є L, hence \L0\ ^ 2V+1. 

For і є {1, ..., v + 1} let P, denote the i-th projection, i.e. 
Ptx = (xb ..., xř_l5 x /+1, ..., xv + 1) , 

p.M = {Ptx; x e M] for M с Яѵ + 1 . 
If/, r є Lí5 j < r, then applying Lemma 1 we obtain (using again (l.l9)) 

lP^-Pfl = ^-fl^rjjo{t^. 

At the same time, the definition of L obviously yields the inclusion 

Ца {/;/ < m, Р ^ п Р ^ Ф © } . 

The dimension of PtUh PtQ being v, we can apply Lemma 2 concluding that \L-\ й 
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^ co(v) and, quite analogously, |L_ f | ^ co(v). Hence 
V+1 

\L\ й S |L,| á 2(v + 1) o>(v) + 2V + 1 = co(v + 1) . 
r = - ( v + l ) 

Let us now proceed to the proofproper of(1.14). First we shall prove the inclusion 

(1.25) dVjt<zVdUtuVdW,, j = l,...,k. 
i = l p=l 

Using induction on k, we notice that for k = 1, 

evn = öüx c 3^! u a^i. 
If (1.25) holds for some fc, then for jf g k we have dVJtk+i = d (F^xIn t И^ + 1) . 
Using the elementary inclusion д(Л \ #) c dA u d£ and the induction hypothesis 
we obtain 

3VJJt+1 ddVJhudWk+1 <=VdUtuVdWpudWh+1 = U ^ u U ^ . 
i = l P=1 1 = 1 P=1 

Finally, applying this inclusion with j g fc we conclude 
к к 

dVk+X)k+1 = 5 ( ^ + 1 \ I n t U fy,k+i) с a[//c+i u U dVjtk+1 cz 
i = i ; = i 

k k+1 & + 1 k +1 

c di7fc+1 u U dUj u U дЖр = U ^ u U dWp . 
J = 1 P = 1 J = 1 P = 1 

The proof of (1.25) is complete. 
Denote Z{f) = {i; i < j , Ui n Uj ф 0}; by Lemma 2 we have |Z(j)| g co(w). 

Since Fjfc c r7^ for j = 1, ..., fc and the sets t/i5 И ,̂ are compact intervals, we can 
rewrite (1.25) as 

(1.26) dVJkcz U (UjndUt)u U (UjndWi)udUjuV(UjndWp). 
ieZ(j) ieZ(j) P = J 

Taking into account the elementary inequality 

max {m^^Uj n dUt)9 mn_SP} n dWt)} й m,^J^Uj), i < j 

(recall that Uh Uj, Wi are intervals) and the inequality 

(1.27) m,-i(Uj n dWp) й 2nm,-$Uj n Wp), p > j 

(its proof is sketched in Remark 1.4 at the end of this section) we conclude from 
(1.26), (1.20) and the inequality \Z(j)\ ^ co(n) that 

mn^(dVJk) u2co(n)m^,(dUj) + 2nm,.$Uj) + m^^dUj) й 

^ [2 co(n) + 2n + 1] m^^dUj). 

By virtue of (1.17) we have 

m^,(dUj) = 2n[2rijo(t^f-1 = ^ L ^ ( ^ ) 
^ í ( ť ) 
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and, since Dj = Vjk9 it follows from (1.21) and the definition of §j that 

m^^dD*) й ~ 2"n[2 co(n) + 2n + 1] mn(DJ) . 
Qj 

This completes the proof of (1.14) with the constant Sc(n) = 2"n[2 co(n) + 2n 4- 1]. 
Using the just constructed system (1.8), we can find the desired PU-partition (1.1) 

analogously to [ l ] , using smooth approximations of the characteristic functions 
ofthe sets DJ as the functions 9j. The properties of(1.8), in particular (1.12) — (1.14), 
imply that ( l . l ) obtained in the suggested manner satisfies (1.2)-(1.4) and ( l . 5 ' ) -
-(1.7 ') with a constant x(n) > x(n), say x(n) = x(n) + 1. 

The proof of Proposition is complete, which justifies the definition which we will 
introduce in the next section. 

1.4. Remark. Let us sketch the proofofthe inequality (1.27). Since (1.27) evidently 
holds if Int Uj n Int Wp — 0, we may assume without loss of generality that 

(1.28) Int Uj n Int Wp Ф 0 . 

Obviously Uj n dWp <= d(Uj n Wp), so that m^^Uj n dWp) й m^^d(Uj n Wp)) 
and it is sufficient to prove 

(1.29) <b-i(d(Uj n Wp)) й 2nm^(dUj n Wp). 

We have (by the definitions of Uj9 Wp, p > j , (1.18) and (1.28)) 

Uj n Wp = X [«„ ßi] , 
i = l 

where for every i one of the following cases occurs : 

(i) [«„ 0,] = [řf - i , , 5(i'), řf + i^p S(t')l 
(ii) [et,,ft] = [řf - to,Sp), t{ + r,jo(t% t{ < řf - to,o{*')> 

(iii) [a,, fr] = [ř/ - , , 5fV), řf + \% O(t>)l řf + i,/, S(t>) < t{. 

Moreover, ßi — осі > 0 for every i, ßi — осі < rjp ô(tp) in cases (ii) and (iii), and there 
exists at least one i such that either case (ii) or (iii) occurs (cf. (1.19)). Put 

Ft = {x; Xi = ßh xt є [cch ßi] for / Ф i] , 

FJ = {x; Xj = a,, x, є [a„ ßi] for / Ф /} . 

Ft and Ff are all faces of Uj n Wp. Find such an s that 

ßs - a5 = m*n (& - a ř ) . 
i 

Then one ofcases (ii), (iii) occurs for i = s; for instance, let it be case (ii). 
Then Ff c 5C7y, ^ _ i ( F + ) ^ ^ _ ^ F ^ ) , m^JjFt) = ^ „ ^ ( F f ) , i = 1, 2, ..., и 

and (1.29) follows since Fs
+ c Wp evidently holds. 
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2. NEW DEFINITION OF THE PU-INTEGRAL 

Proposition proved in the previous section justifies the following definition. 

2.1. Definition. Let / : Rn ^> R be a function with compact support. For a PU-
partition (1.1) of supp / , set 

(2.1) S(f,A) = im|9j(x)dx. 
; = i 

Let q є R satisfy the following condition: 
for every 8 > 0 there is a > 0 such that for every K > 1 there is a gauge ö on s u p p / 

such that 
\q - S(f, A)\ S в 

for every 5-fine PU-partition (1.1) o f supp /wh ich satisfies (1.5)-(1.7). 
T h e n / i s said to be PU-integrable, q is its PU-integral and we write 

g = (PU)J/dx. 
2.2. Remarks. 1. Definition 2.1 has good sense since Proposition 1.3 guarantees — 

for any gauge 5 and every a > 0, K ̂  x(n) — existence of 5-fine PU-partitions 
satisfying(l.5)-(l.7). 

2. It is the small values of г and a, and large values ofK which are important, as 
is immediately seen from Definition 2.1. Consequently, in our considerations we may 
restrict ourselves, without affecting the definition, to values s < s0, a < a0, K > K0, 
where є0 > 0, a0 > 0, K0 ^ 1 are arbitrary but fixed constants. In particular, it is 
of no consequence that for K < x(n) there need not exist PU-partitions with the 
desired propertie«. 

The notion of PU-integral was introduced in [1] by an analogous definition 
in which the conditions ( l .5 ) - ( l .7 ) were replaced by 

(2.2) Íj\\x~ť\\\\D^(x)\\dxuK. ' 
j = i 

It is easy to verify that (l.7) implies (2.2) (with K enlarged ifnecessary), hence every 
function PU-integrable in the sense of [1] is PU-integrable in the sense of the above 
definition (and the two integrals coincide). Since the PU-integral from [1] is a true 
extension of the Lebesgue integral, so is the PU-integral from Definition 2.1. From 
now on, we shall stick to our Definition 2.1 when dealing with PU-integrability. 

The PU-integral evidently has the following properties: 
(i) the PU-integral of a nonnegative PU-integrable function is nonnegative; 
(ii) if / is PU-integrable, ceR, then cf is PU-integrable and (PU) jc /dx = 

= c(PU)f/dx. 
However, to prove additivity we have to proceed analogously as in [1], introducing 

a modified notion of the PUI-integral. 
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2.3. Definition. Let J be a compact interval in Rn
i l e t / : Rn ^ R, s u p p / cz IntJ^. 

Let q e R satisfy the condition from Definition 2.1 with the only change that ( l . l ) 
is a PU-partition of J (instead of supp/) . Then / is said to be PUI-integrable, 
q is its PUI-integral and we write q = (PUI) j*/dx. 

A proofthat / i + f2 is PUI-integrable and (PUI) f(/x + / 2 ) dx = (PUI) J / t dx + 
+ (PUl)jY2dx provided /f are PUI-integrable, supp/ ř cz IntJ*5* for i = 1,2, is 
straightforward. In the next theorem we assert the equivalence of Definitions2.1 
and 2.3 (hence also the independence of the PUI-integral of the choice of the inter­
val J>). Thus, this theorem yields additivity in the above sense also for the PU-
integral. 

2.4. Theorem. Let f: Rn ~* R have compact support s u p p / c Int J cz Rn, 
J>a compact interval. Thenf is PU-integrable ifand only if it is PUI-integrable and 

(PU)J/dx = (PUI)J/dx 
holds provided one of the integrals exists. 

Proof. The "only if" part is easy; we refer the reader to [1] for details. The main 
step ofthe proof is the restriction of a č-fine PU-partition of the interval J to a á-fine 
PU-partition of supp/ . Such a restriction is trivial if we assume (which we may) that 
B(x, S(x)) n s u p p / = 0 for x є J \ supp/ . 

However, the "if" part consists primarily in the converse process, that is, in 
extending a c>-fine PU-partition of s u p p / to that o f ^ without violating the require­
ments imposed on the "admissible" PU-partitions, which is a much more complicated 
matter. After preparatory Lemmas 2.5 and 2.6, the existence of such an extension is 
established in Lemma 2.8. 

First we introduce three auxiliary function ф, fi, v. Let ф satisfy the following 
conditions: 

(і) ф: R ^ [0, 1] is of class C \ 
(ii) s u p p ^ = [ - 1 , 1], ф(х) > 0 for x e ( - l , 1), 

(iii) ф(х) = 1 for x e [ - i , i ] , 
(iv) ф{х) < 1 for \ < \x\ < 1. 
Further, let ß be a real number, 0 < ß < i, and let fi satisfy the following con­

ditions. 
(v) ß: R ~> [0, 1 + 2ß] is ofclass C\ 

(vi) supp^ = [ - 1 , 1], fi(x) > 0 for x e ( - l , 1), 
(vii) fi(x) = 1 + x for x є [-j8, j8], 

(viii) ß(x) < min {1 + x, 1 + 2ß] for ß < |x| < 1. 
Finally, let v: Rn ^> R be defined by 

v(uu u2,..., un) = fi{Ui) Ф((и2
2 + u\ + . . . + u2

n)1/2). 

We introduce the following constants: 

XX - m,{B(0, l)) 
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(the measure of the unit ball in ff*), 

x2 = max {\H\ det Я " 1 ; Я є Mn9 \\H - l\\ g і} , 

x3 = max {det Я ; Я e Мю \\Н - /|] ^ £} , 

х4 = max {det Я " 1 ; Я є Ми, \\Н - і\\ й i} , 

where Мп is the set of all (n x n)-matrices, I is the unit matrix; 

к5 — J v(x) dx , 

*6 = *^1! ||^4*)ll d*> 
X7 = ^ 2 ^ 3 ^ 6 ? 

х8 = 4хі1х4х5 . 

2.5, Lemma. Leř w e Rn, a > 0. Leř Ф: Rn ^ Rn be of class C1 and satisfy the 
conditions 

<£(w) = 0 , D Ф(м>) = I , 

\\D Ф(х) - I\\ й i for ||x - wfl й ö". 
Then 

(2.3) Ф(В(\ѵ, ia)) с 5(0, ia) с $(B(w, a)) с 5(0, f^) 

(řfte inclusions hold also with open balls instead òf the closed ones). 

Proof. By assumption we have \ ^ ||D$(x)|] ^ § provided ||x — w\ g c. 
Using the identity 

Ф(х) = ß D#(w + Я(х - w)) d^(x - w) 

(recall that Ф(ѵѵ) = 0), we immediately obtain 

Kx)|**|*-w|, 
which yields the first and last inclusion in (2.3). To prove the middle inclusion, let 
z є B(0, iff), that is, ||z|| й i<r. Set 

x0 = w , xi+ ! = Xi - ф(хг) + z , i = 1, 2, ... ; 
then 

*i+2 - xi+1 = xi+1 - Xi - (Ф(хі+1) - Ф(хг)). 

Substituting for Ф(хі+1) — Ф(хі) from the integral identity analogous to that 
introduced above and proceeding in a standard manner we prove \\xi+2 — *;+i|| ^ 
= 2||*i+1 — xil anc*, by induction, \\xi — w\\ < er, i = 0, 1, 2, ... . Hence there is x, 
x = lim xh \\x — w\\ ^ 0. Since evidently Ф(х) = z, the inclusion is proved. 

i^oo 

2.6. Lemma. Lei Xi > 1, 0 < 0 < | , w є ДО". Leř ç>0: ДР ~> [0, 1] be of class Cl 

with a compact support satisfying 
<PoW * 0 Ф D q)0(w) , 

and denote 
a>0 = sup {||x - w||; x є supp <p0} . 
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Further, let 

(2.4) BÍw,^\czsupp<p0; 

(2.5) \\D 9o(x) - D ç0(w)\\ й Ь for x є В L , ^ \ , 

where у = \\D <po(w)W ; 

(2.6) <Po(x) g (1 + Ѳ) <p0(w), x є Я" ; 

(2.7) J | |Z )<Po(x ) | | dx^^J<Po(x )dx . 
O)0 

Then for every constants ß,K2 with 0<ß<%, X 2 >max{9 , (x 8 0) 1 / ( " + 1 ) } 
there are functions Eq)0, F<p0: Rn ^ [0, 1] of class C1 such that 

(2.8) E<p0 + Fq)0 = ф 0 ; 

(2.9) E q>o(x) > 0 provided q>0(x) > ° > £ <Po(w) > 2 <Po(w) 1 

(2.10) E y0(x) = £ q>o(w) for x є 5 (w, 2Ё?*Л ; 

V ък1к2) 
(2.11) £ <p0(x) ^ (1 + Ѳ) íí - ^ Л X E <p0(w) ; 

(2.12) f \\DE q>o(x)W dx й (1 - 0XgKi<"+1*)"1 (Кх + ѲщщК^К^) . 

. coo1 j E ç0(x) áx . 

Denote 
col = sup{||x — w||; xesuppF<^o} . 

77*еи, moreover, 

(2.13) ^ á co, š
 2--2^ • 

ЗК1К2 iVj_Jv 2 

(2.14) B ( w , 2 j i ) e s u p p F 9 0 ; 

(2.15) ||DF <Po(x) - DF <p0(w)\\ g i? /or x є 5 (w, 2Ё2°Л • 
\ iK^KiJ 

(2.16) F<p0(x)u(l + 2ß)F<p0(w); 

Ayf 

(2.17) J ||Z)F щ{х)\\ dx й — J F c>oG0 dx . 
u>i 

R e m a r k s . 1. Let us mention some simple consequences of (2.8)-(2.17). Since 
both E<p0, F(p0 are nonnegative, (2.8) together with (2.9) implies 

(2.18) supp E<p0 = supp q)0 . 
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By (2.13) we have ißcox g 2ll2ßa)Q\{iKxK2) and thus(2.10)together with(2.8)yields 
E <p0(x) = E q>o(w) and DF <p0(x) = D q>0(x) for x є B(w, ifiœ±); hence y = 
= \\D<p0(w)\\ = ||DF<^o(w)[| and (2.15) may be modified to 

(2.19) \\DF <Po(x) - DF <p0(w)\\ й ІУ for x є S(w, ißco,) . 

2. Notice that E, F are not uniquely determined by the conditions (2.8)-(2.17). 
However, in the course of proof of Lemma 2.6 formulas for E<p0, F<p0 will be given. 
This will enable us to view E, F as operators. 

P roo f of Lemma 2.6. Recall that we assume y = ||D<p0(w)|| > 0. Choose an 
orthonormal system in R" 

(2.20) e\ e2, ..., en with e1 = y~lD <p0(w) . 

Introducing in Rn new coordinates corresponding to this orthonormal system we have 

x = (xu x2, ..., x„) <=> x = xxe
l + x2e

2 + .. . + xne
n. 

Define a mapping Ф: Rn ^ Rn by 

(2.21) Ф: x ^ (y'K<Po(x) - Vo(w)), (x - w, e 2 ) , . . . , (x - w, e»)) . 

Assume x є 5(w, со0ІКх), у є Я". Then 

D Ф(х) y = y " V i o <Po(x) + (0, y2, ..., ytt), 

[D Ф(х) - D *(w)] y = y " V i ( o <Po(*) - D ^o(w)) 

and consequently* 

||D Ф(х) - i) 0(w)W й y-']{D <Po(x) - D q>o(w)l S і 
by (2.5). Hence Ф satisfies the assumptions of Lemma 2.5 with a = coo|Ki-

Lemma 2.5 implies that Ф: B(w, a>o/^i) ~» ^" i s a n injection, and t № (2.3) yields 

(2.22) 5 ( о , ^ с Ф ( % , а ) ) с : Л ( о 5 ^ , 

S ^ , - ^ c = # - ^ S ^ ^ c r % ^ ) 

for any a, 0 < a й W * i - Further, if x e B(w, œ0\KÙ u = ф(4 t h e n w e m a y 

write Wi = y~1(ç0(
x) ~~ <Po(w)),hence 

(2.23) <p0(x) = <Po(w) + yux 

and, since u e Ф(Б(\ѵ9 a>o|Ki)) we may also write 

(2.24) <r&-H*)) = [*o(*"4")) - Ä v ( £ & „)] + £ ^ L v / № « 
K, V wo 

or 
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Recalling the definition of v, we notice that 

(2.25) И = ( £ v\f12 ^ 21'2 implies v(v) = 0 : 
i = l 

KxK2 \ r, . ,. II li 21/2co0 2 w) > 0 implies H | < 
co0 / KtK2 

Setting a = 23/2a>ol(KiK2) we have 0 < o < со0\К\ (since K2 > 9). Hence the last 
inclusion in (2.22) reads 

*-'(г(»'Ш)=г(№'Ш 
\ \ K^2jJ \ KXK2J and from the second implication in (2.25) we conclude 

23'2œ0 (2.26) v (^& Ф(х)\ = 0 provided ^ ^ й ||x - w|| й ^ 
\ Юо / ^ 1 X 2 *И 

^ ѵ № ф ( * ) \ for |bc-
К,К2 \ œ0 7 

Let us define 

II <̂ - °°o 
w ^ ~ ^ 

11 X t (2.27) Fcpo(x) 
for ||jc - w\\ > ^ ' 

* i 

E <Po(x) = q>o(x) - F <p0(x) . 

It is easily seen that F<p0, Eq>0: R
n ^ R are of class C1. Using (2.20) and (2.5) we 

obtain 
D <p0(x) e1 = D <p0(w) e1 + [D <p0(x) - D q>0(w)] el ^ 

Ž 7 - \\Dy0(x)-Dv0(w)\\ ^jff. 

Consequently, the identity 

<Po(w) - <p0 L - ^ e1) = ^0o'Kl D<Po (w + U - g ) e1) e1 dA 

implies 

(2.28) i>o(w) ^ ^ ; 

Z A j 

hence 

Z ^ ^ x 
2Ki " 

Taking into account points (i), (v) in the definition of the functions ф, p we find 
that (2.16) holds, that is, 

F<p0(x)<(i + 2ß)J^. 
К,Кг 
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This togehter with (2.28) and the conditions imposed on ß, K2 in Lemma 2.6 yields 
(recall that K2 > 9) 

(2.29) F<p,{x) й ^ è ± ^o(w) < Ы") á i , 
KtK2 K2 

hence Fq>0: R
n ~> [0 , 1] as required. Moreover , the above inequali ty implies in 

part icular Fq)0(w) < ìcp0(w), and since (2.8) holds by definition (cf. (2.27)), the 
second inequali ty in (2.9), tha t is , E <p0(w) > \ <p0(w), holds . 

T o prove the first inequali ty in (2.9), notice tha t (2.27) and (2.26) imply F q>0(x) = 
= 0, and thus E<p0(x) = q>0(

x)> f ° r x satisfying \\x — w\\ ^ 23/2co0l(KiK2).If 
||x _ w|| < 2ъ,2со01{КхК2) holds and u = Ф(х), then (cf. (2.23), (2.27)) 

(2.30) E <Po(x) = <p0(x) - F <p0(x) = <p0(w) + ущ - Ä - v ( ^ u) ̂  
KiK2 \ co0 ) 

bv,M + n-2b:J*&u), 
K^2 \ m0 ) 

and at the same time | ^ | ^ 3 . І^щЦК^) (cf. (2.22)). If « „ / ( K ^ ) ^ |Ml | й 
й 3 . 2^^o|(K^2)then/i((K^2|co,y) ut) = 0 and, since K2 > 9, we have by (2.28) 

г. ( \ ^ < \ 3 • 2U2(°o ^ ycoo / 1 3 . 2 1 / 2 \ . ^oW^o(w)-y^^^-(--^-j>0. 
If \ил\ й cOol(KíK2), then fz((K^2|coo)u^ S 1 + (^i^2/<^o)wi (see (yii) in the 
definition of ß) and consequently, 

E щ(х) Z <p0(w) + ущ - JÏÏ&- Л + № и \ = 
K ^ V «о / 

= ̂ )_i^,efLi)>o, 
™ ; X ^ ^ V2 Я 2 / 

The proof of (2.9) is complete. Moreover, since ç0(
x) ~ 0 evidently implies 

E<Po(x) = 0, we haveproved that Eq>0: R
n ^ [0, 1] as required. 

To prove (2.10), assume |]w|| й ßcoo^K^), x = Ф_1(м).ТЬеп v^JK^/coo) и) = 
= 1 + [K^K^cooj ut and similarly as in (2.30) we obtain 

u = (2.31) E <Po(x) = ^o(x) - Ä v № M\ 
KXK2 \ œ0 ) 

- f t ( * ) + ^ - ^ ( l + ^ - . ) - f t ( w ) - ^ -
XjK2 V U)0 / ^ 1 ^ 2 

If ||x - w|| ^ IßcOoKlK^), then by (2.22) |Ф(х)| ^ ßa^K^) and (2.31) 
implies (2.10). 

The inequality (2.11) follows by (2.29). Indeed, we have (cf. (2.6)) 

E ç0(x) й 9o(x) á (1 + Ѳ) <Po(w) 
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and, by (2.29), 

E ç>0(w) = <p0(w) - F ç>0(w) ^ Í 1 - — J <Po(w) , 

which combined gives (2.11). 

The first implication in (2.25) yields 

Е<ро(ф-\и))~0 for l « | | ^ ^ ° . 
KtK2 

On the other hand, it follows from (2.22) that if \x - w\\ ^ 2г12со0\{КхК2) then 
| ^ ( x ) | ^ 2 ^ ^ o / ( X i X 2 ) a n d c o n s e q u e n t l y , F<p0(x) = Q. Recalling the definition 
of col9 we conclude that co1 ^ 23/2co0l(KiK2). 

Put v = (coo|(K^2)) (1, 1, 0 , . . . , 0). Then by points (ii), (vi) in the definitions of 
ф, fi we have 

y(EnlXv)>0 for |A| < 1, 
V ™0 / 

that is, 
F<Po(<P"*(Xv)) > 0 for |A| < 1 . 

Using the inclusions (2.22) (with open balls instead of closed ones — see the note 
in Lemma 2.5) we find that ||Ф_1(Аи) - w|| ^ |JL| 23,2œ0l(3K1K2); hence щ ^ 
^ 2^coo|(3K^2) and(2.13) is proved. 

To prove (2.14), notice that for |и|| < a>o|K^2 we have v((K^2Jcoo) u) > 0 and 
hence Fq>Q^-^u)) > 0. The inclusions (2.22) yield 

*K^H"(*te)> 
which implies B(w, 2cuQ|(3K^2)) c: supp F<p0. Combining this result with(2.13) and 
the inequality 0 < ß < \ we obtain (2.14). 

The inequality (2.15) is a direct consequence of(2.8), (2.10) and (2.5). 

It remains to prove (2.17) and (2.12). Recall that 

^"M>-a-cr")for •••('(*?}> 
^t)=4^f))'f?")-0^1"1^ 

(cf. (2.27), (2.22), (2.25), respectively). Differentiation of the first formula leads to 

(DF<po) (Ф-Ч«)) D ф-\и) = y(Dv) № u) , 
ÜF <p0(x) = y(Dv) ( Ы * ф(х)\ D Ф(х) . 
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Consequently, 

S [DF <p0(x)\\ dx й y J ||z>v (££i Ф(х) 
II V <»0 

lD4>(x)ldx = 

- rJ 

á y5<2i 

Äu 
Cûn 

|ОФ(ф_ 1(«)) | |det ОФ_1(м)| dM ̂  

№и 
ffln 

dw = 7%2ct)0 -J\\Dv(v)\\dvu 

и | dM 

(*W 
g P ^ i v ( ü ) d ü = J v ^ u \ d w 

( а д г V >̂o ; 
= ^ 2 ^ 6 ^ 1 ^ 2 Г У^О v fKlKl 

CÛ0 Kl&2 \ <*>0 

= ^ 6 ^ ^ _ 2 J F ^ ф | d e t D ф ф| d x á 

co0 

^ ^ M ^ , j F < P o ( x ) d : c g ± í Z j F ^ o W < b c , 
CO0 0>! 

hence (2.17) holds. (The last inequality follows from (2.13).) 
To prove (2.12) we estimate the integral on the left-hand side of the inequality 

using (2.8), (2.7) and the result just obtained when proving (2.17): 

(2.32) J \\DE <Po(x)W dx й J \D <?>o(*)| dx + J \\DF <p0(x)\\ dx ^ 

^^j<Po(x)dx + ^^jFcpo{x)dx. 
co0 co0 

Now we will treat the two terms on the right-hand side separately. From (2.5) we 
easily obtain that \\D <Po(x)\\ ^ %y for x є 5(w, œ0jK^)\ hence 

*('+irPR)-*>***'2-
\ K1lD<P0(w)V Ki 

Combining this inequaUty with (2.6) we have 

(l + e)<Po(w)-<Po(w)^b^, 
Ki 

<Po(w) ^ 
ya>o 

2ѲК, 

On the other hand, (2.5) also yields ||Z> Фо(х)\\ й ìy for x є B(w, ct>o/^i) and thus 

,W,,.,.)-i,^*(.-->^ 
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(recall that 0 < Ѳ < l) holds for x e B(w, ctfo/^i), which implies 

Mx)axb^xJ&)'^fe)'*1. 
3 OV ; WKy \KJ 40 \Kj 

Further, 
íf,0(x)dx = í ^ v ( ^ $ ( x ) ) d , = 

KtK2 \ co0 ) 

= A J v ^ ^ | d e t o < p - > ) | d u s 
KtK2 \ co0 ) 

«*й"Є?-)*-НйГ 
Combined with the previous inequality, this yields 

(2.33) J F<p0(x) dx й ^ ^ K2(n+1} f <Po(x) dx , 
xt 

from which we conclude 
(2.34) J E <p0(x) dx = J <p0(x) dx - f F <p0(x) dx ^ J <p0(x) dx[l - х 8 0^ ( й + 1 } ] . 

Returning to (2.32) and making use of(2.33), (2.34) we conclude 

J \\DE<Po(x)W dx й (Kť+ щх8ѲКхК2П) coô1 f<Po(x) dx g 

й (1 - K80Ki<"+*>)-*(Ki + XnX^KiKi")a>o1 jE<p0(x)dx ; 

thus, (2.12) is established, the proof of Lemma 2.6 being now complete. 

Put qyt = F<p0. Then a>i plays the same role with respect to <pt as co0 did with 
respect to <p0. Let us find conditions under which we can repeat the process from 
Lemma 2.6, that is, under which we can start with the pair <pl9 a>x instead of<p0, ш0, 
and construct E<pu F<p^ To this end we have to guarantee that conditions (2.4)-(2.7) 
are satisfied with <pu co1 instead of<p0, œ0. That this is the case follows from (2.13) — 
— (2.17) provided the constants Kl9 Ѳ, ß satisfy some additional conditions ensuring 
that after passing to <pu cox we have the same constants in (2.4)-(2.7) as before. 
Let us now find these conditions. 

The inclusion 

(2.4j) J 3 ( w , ^ 4 c supp<Pi 

will be satisfied, in virtue of (2.14), if 

<2-35> H ' . 
By (2.15) 

(2.50 lD<p,(x)-D<p^)lub 
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will hold for x є B(w, coi|K^ provided 

(2.36) щ й ^ о . 
зк2 

(Notice that ||o<Pi(w)| = lDFq>o(w)W = | |û?0(*)l = Y-) Further, 

(2.6i) <pi(x) й (1 + Ѳ) 9>t(w) for x є ff" 
follows from (2.16) provided 
(2.37) 2ß й Ѳ , 
and finaUy, (2.17) implies that 

(2.70 ilD<pMaxu&S<Pi(x)ax 
0>! 

holds provided 
(2.38) K± ^ 4к4 . 
Taking into account (2.13), we see that (2.36) holds if 23/2jKl й 2jS/3; so both 
(2.35), (2.36) will certainly hold ifwe assume 
(2.39) ßK± ^ 6 . 

In what follows, let us assume that (2.37)-(2.39) hold. Let N be a positive integer, 
and put 

<Pi+i = F<Pi, <Oi+i = sup{|x - w||; xesupp<pi+1} , 

i = 0 , l , 2 , . . . , i V - 1. 

It follows from (2.8), (2.9), (2.13) and (2.16) that 

(2.40) <p0(x) = E<po(x) + E<p±(x) + ... + E<pN-±(x) + <pN(x), 

(2.41) <pi(x)u(l + 2ß)i2-\ 

/ 23/2 V (242) **fc*b 
for x e Й". 

Rewriting (2.8)-(2.12) for the functions №i, i = 0, 1,..., N - 1, we obtain 
(2.43) Eq>i + F<p;^<Pt; 
(2.44) E <p,(x) > 0 provided çt(x) > 0 , E ф.(^) > i^.(w) . 

(2.45) £ фі(х) = E p,(w) f o r x є 5 ^ " 2 ^ ° г 

ЗК±К2 

(2.46) £ <^(*) ^ (1 + 0) (í - ^ X \ 9t(w) ; 

(2.47) J \\DE <р,(х)\\ dx á [1 - 9^KJ("+1)]-1 

.(Xj + 0XjXsK^2") a7\l £ ^ . ф d x . 
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Let us now introduce a system 

n = {(z" ,Q; m = l , 2 , . . . , p } , 

where zmeRn, Çw: Rn ~> [0, 1] are of class C1 with nonempty compact support; 
p 

denote C(x) = £ Cm(x), om = sup {||x — zm\\; x є supp Cm}- Assume that there are 
m = l 

constants Ѳг > 0, Къ > 1 such that 
(2.48) C(x) á 1 • * є ff" ; 
(2.49) U x ) < ( l + fli)CmH, х е Г ; 

(2.50) Цх) = С„И, xe5^,^j; 

(2.51) J ||D C»(x)B dx < ^2 J Cm(x) dx 
<*m 

for m = 1,2, ...,jp. (Note that (2.49) implies Çm(zw) > 0, hence zmGÏntsuppCw.) 
We are now ready to introduce a definition which will be needed in the sequel. 

2.7. Definition. Let st > 0. A system 

tf' = {(z",C); m = l , 2 , . . . , p } , 

where&:ff"^[0 , l ] 
are ofclass C1, is called an s^-modification of the system П if, 

denoting 
C(*)-SC(*), 

m = l 

*it = SUP {||* - zW||; x e supp Q , 
we have 
(2.52) <u&m, U ( * ) l U * ) , х е й " ; 

(2.53) £'(*) ^ 1, x є Й» ; 

(2.54) C(x)^(l + 0 O C H , х е Г ; 

(2.55) C(x) = C , H , хеВ(гГ,£Л; 

(2.56) f | | o C ; ( x ) I d * g ^ j C ( x ) d x ; 
<*m 

(2.57) J [ C ( * ) - a * ) ] d x < 8 , . • 

2.8. Lemma. Leí 0 < Є! < 1, 0 < 9t < 1, K3 > 1, аиа /eí M с Д" fee compact. 
Let П be the system introduced above (and satisfying (2.48)-(2.51)). Further, let 
zm є M, m = 1, 2,. . . , p, and let ôt be a gauge on M. 

Let ß, 9,КХ,К2 be constants satisfying the assumptions of Lemma 2.6, the con-
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ditions(231)-(2.39), 

(2.58) (1 + Ѳ ) / Л _ і Л < £ і + Ѳі 

and 
(2.59) Ki > x{nf (3x(n) + 1) 
with x(n)from Proposition 1.3. 

Then,for any K4 satisfying 
(2.60) K4 > m a x ^ X f K ^ / ß , (jS^ + dx^^K^{i - 0%8KJ(n+1))} , 

íftere exists an s^modification П' of the system П and such a system 
A = {(s1,^); 1= l ,2, . . . ,L} 

that thefollowing conditions arefulfilled: 
(2.61) A u W is a PU-partition of M ; 
(2.62) supp A, c 5(s', ^(s')) ; 
(2.63) Ař(x) ^ (1 + Ѳі) Az(sř), x є R" ; 
(2.64) A,(x) = A,(s1) , x є B(s1, т,/К4) 
wuere Tz = sup {|]x — s*fl; x є suppAj}; 

(2.65) J ||D A,(x)| dx ^ ^ J Ař(x) dx . 
* i 

Proof. Let us choose a bounded open set G; M c: G c ^", and denote fi = 
= max{^(G), l}, 

Z = {x є Я"; C(jc) = 1} , 
T = {xeW; DC(x) = 0} . 

Then 
M - (M n Int T) u (M \ T) u (M n Z n dT) u (M n 5T\ Z), 

the union on the right-hand side being disjoint. For every u є (M \ T) u (M n дТ) 
there exists an integer q{u), 1 ^ g(w) ^ p, such that 

^C,(u>(w) + 0 if ueM\T9 

u e C1 {x є Rn; D Cq{u)(x) ф 0} if u e M n дТ. 
Let á2 be a gauge on M satisfying the following conditions: 

(2.66) 52(x) S min {1, St(x)} , x є M , 
(2.67) B(u, ô2(u)) <= G , w є M , 
(2.68) S(u, <52(w)) c Int T, м є M n Int T ; 
if M є M \ T, m = q(u), x e B(w, ô2(u)), then 

(2.69) B(M2O4)) c Rn\T, 
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(2.70) lDC(x)-DÇ(u)\\ii\\Dt:(u)\\, 

(2.71) C(*) < (1 + ìst) С(и) , 

(2.72) B(u, 52(н)) с B(z-, ап) ч ß(zm, ff,„/K3), 

(2.73) ||i>C(«)[|«52(W) < f 0 ( l - f(u)); 

if w є Z n дТ, m = q(u), x є В(и9 ô2(u)), then 

(2.74) ô2(u) < £ - , 
J A 3 

(2.75) l*>i(*)l< 
2 x ( n f > ' 

if u є дТ\ Z, m = q(u), x є B(u, ô2(u)), then 

(2.76) h{u)<^-, 
óK3 

(2.77) | | Z K ( * ) | | < ( l - i W ) ; 2%(n)"+1^' 
in (2.75) and (2.77), e* is a constant, 

0 < £ ^ min | ( 1 + Ѳ±) Cm(zm) - sup {Cm(x); x e Я-} , 

^$Ux)dx-$\\DUx)\\àx, ^ , 2 ^ r v l . 
^ m A* J 

It is easy to verify that it is indeed possible to satisfy the conditions (2.66)-(2.77). 
Notice that C(w) Ф 0 in (2.71) since otherwise we should have D C(u) = 0 but и ф T. 
Further, the set on thé right-hand side of the inclusion (2.72) is open and contains 
the point и (и ф T and m = q(u), hence D Çm(u) ф 0 and (2.50) yields the result). 
Finally, in (2.73) and (2.77) we have C(u) < 1 since и ф Z, while (2.49), (2.51) make 
it possible to choose г* a positive constant. 

Let 
A = {(f,$j);j= 1,2,.. . ,*} 

be a d2-fine PU-partition of M from Proposition 1.3, that is, A fulfils ( l .5 ' ) - ( l .7 ' ) . 
The modification ТҐ and the system A are constructed as follows: 
(i) If tJ є M n Int T, we include the pair (tJ\ (l - Q &j) into the system Л (if, at 

the same time, tj є Z, then (2.70) implies ((x) = 1 for x є B(tJ\ S2(tJ)) and the cor­
responding pair will be omitted). 

(ii) If tj є M \ T then we put ф0 = (1 — С) &j, w = tJ in Lemma 2.6 and use it 
repeatedly iVy-times (Nj an integer to be fixed later). The pairs (tJ\ Eq>0), (tJ\ E<p^, ... 
..., (tJ, E^jy._i) are put in the system A while the function <pNj = FNj((l — f) &J) 
is added to Cq(tJy 

(iii) If tJ e M n Z n a r t h e n we add the function (1 - f) Ŝ  to £ í (ř /). 
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(iv) If tJ є (M n дТ) \ Z then the pair (tJ\ (1 - (e^Qj|(2 x(n)n+ í pt)) (1 - Ç(tJ)) 9j) 
is included into the system Л, while the function [(e*(^>^/(2 я(и)и+1 ^)) (1 — Ç(^)) + 

+ C(*0 - C] s ; i s a d d e d t 0 CfCii>-
Following the notation introduced in Lemma 2.6, let us denote the pairs that form 

the system A by (s', Аг), 1 = 1, 2,. . . , L. 
On the other hand, taking into account the above described procedure, we may 

write 

(2.78) Cm = L + E F"i(l - C) 9j) + 
tJeM\T 
q(tJ) = m 

+ I ( i - 0 ^ + I Гг^%т-(і-с(^) + С И - ф , . 
tJeMnZndT tJe(MndT)\z\2x(n]U 

q(tJ) = m q{tJ) = m U Ч У J 

Our task now is to prove (2.52)-(2.57) and (2.61)-(2.65). Let us start with the latter 
set of conditions. 

Taking into account (2.40) we find from (i)-(iv) that 

(2.79) £ Xt(x) + t C(*) = E 3/x) (1 - C(x)) + C(x) , x є Я" ; 
ї = 1 m = l У = 1 

the right-hand side of the identity is always less than or equal to one, the equality 
k 

holding if and only if £ 9j(x) = 1 or C(x) = 1. Thus, (2.61) is proved. 
j = i 

Since A is c>2-fme, (2.62) follows from (2.66) and (i), (ii), (iv). 
Now, let (sř, Aj) є Л, sl є M n Int T. Then there exists such j that 

(s1, Àt) = (i', (1 - C) fy) , iJ' є M n Int T 

(cf. (i)). By (2.68) we have C(x) = Ç(tJ) for x є B(tJ\ ô2(tj)) (recall the definition of T\ 
hence ( l -C(*) )3 /x ) = ( l - i ( ^ ) S / x ) and (2.63)-(2.65) evidently hold as 
a consequence of (l.5')-(1.7'), since we have K4 > x(n) by (2.60). 

If (sl, Ař) є Л and s* є (М n dT) \ Z, then we proceed quite similarly (notice that 
by (iv), Xx = const. 9j in this case). 

If (s1, Àt) є Л and s* є М \ T, then there are such j , i that 

(s1, A,) = (^, EF'[(l - 0 S J ) , ^ e M \ T. 

As mentioned in (ii), in this case we apply Lemma 2.6. To justify its application we 
have to verify (2.4)-(2.7),where w = tJ\ <p0 = (1 - C) $j-

If D C(x) Ф 0 then obviously 0 < C(x) < 1 and since tJ є M \ T, (2.69) implies 
1 - C(x) > 0 for x e B(tJ\ ô2(t

J)). Consequently, <p0(x) Ф 0 if and only if 9j(x) * 0, 
and hence ш0 =? ̂ . Therefore, by (1.6') from Proposition 1.3, (2.4) holds since 
(2.59) guarantees Kt > x(n). Further, q>0(x) = 1 - C(x) for x e B(w, ф0/Хі)» h e n c e 

y = ||D C(w)|| and (2.5) follows from (2.70). 
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By virtue of (2.70) and (2.73), for x є B(w, ť»0) we have 

(2.80) 1 - C(x) Ž 1 - C(w) + | JŽ DC(w + q(x - w)) d^(x - w)\ ^ 
á 1 - C(w) + f| |o C(w)]| Юо ̂  (1 + 0) (1 - f(w)) 

(notice that (2.70) implies flDC(x)fa i||OC(w)|), and since 9/x) g 9/w), (2.6) 
immediately follows. 

Finally, (2.80) together with (l.7'), (2.70) and (2.73) yields 
(2.81) J \\D q>o(x)j dx й max {1 - C(x); x є B(w, <o0)} J ||l> 9/x) | dx + 

+ U w , o , o ) ! | o C ( x ) | | d x a 

^ (1 + 0) (1 - C(w)) (*00fo) J 9,(x) dx + f||D C(w)i x ^ ^ 
^ (1 + 0) (1 - C(w)) x(n) xlQ

nfl + \xx $0(1 - C(w)) u>"o"1 = 
= [(1 + 0) x(n) + 0] *i(l - C(w)) « Г 1 

(by (2.66), co0 ^ 1). For x є j?(w, co0), analogously as in (2.80), we obtain 
l - C ( x ) S ; ( l - 0 ) ( l - C ( w ) ) . 

For x e B(w, со0\к(п)) we have fy(x) = 1, hence 

(1 - 0) (1 - C(w)) x, ( ^ J g f, (1 - C(x)) Bj(x) dx ^ J <Po(x) dx , 

and combining this inequality with (2.81) we conclude that 

J \\D <Po(x)W dx <; [(1 + Ѳ) x(n) + 0] ^П)П J ф0(х) dx 
u>o(l - 0) 

and (2.7) holds by (2.59) (recall that Ѳ й è). 
Thus, we have shown that the assumptions of Lemma 2.8 guarantee that we may 

use Lemma 2.6 repeatedly as described above. We choose Nj so large that 

(2.82) f cpNj(x) dx й £ J Sj(x) dx , J \\D <pNj(x)\\ dx й ^ J S/x) dx , 
ß fi 

* 
(2.83) 1>Nj(x)u- for xeR\ coNj^^~ 

fl X{n) 

(again m = g(^))- Such a choice is possible in virtue of (2.41), (2.42) and (2.17) 
since the pair (<pNj, coNj) satisfies (2.4)-(2.7) with <p0, a>0 replaced by <pNj, coNj. 

Recall that we are now dealing with the case (s\ Xt) є Л, sl є M \ T which cor­
responds to point (ii) of the construction of Л, so that Xx is actually some Еср{. 
Consequently, (2.44)-(2.47) hold. In particular, (2.44) implies 

cot = sup{||x - i'||; x є supp F'[(1 - C) fy]} = 
= sup{[|x - ^||; x є supp EF'[(l - Ç) fy]} = t | , 

and (2.45)-(2.47) yield (2.63)-(2.65) by virtue ofthe assumptions (2.58), (2.60). 
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Thus (2.63)-(2.65) hold for all (s\ Xt) є A. It remains to prove (2.52)-(2.57), i.e., 
that W is an ^-modification ofJT. 

The second inequality in (2.52) is trivial, the inequality (2.53) follows from (2.79). 
The rest of the proof will be based on the formula (2.78) for Ç'm. 

If í ' e M \ T t h e n supp3 , c B(tJ,S2(t
J)) c B(zq(tJ\aqitJ)) by (2.72); if t*edT, 

then о) й áist(zq(tJ\tJ) + iaqitJ) (cf. (2.74) or (2.76)), and it follows from the 
properties of q(u) that the first summand on the right-hand side is not greater than 
crq{tj). Hence the first inequality in (2.52) holds in both cases. 

Further, to prove (2.55) we notice that for tj є M \ Г, (2.72) implies 
supp$jnB(zq(tJ\aqitJ)lK3) = 0, while for t*edT, either (2.74) or (2.76) yields 
supp 9j n B(zqitJ\ $aqitS)lK3) = 0 since dist (zq(tJ\ tJ) ^ aq{tJ)jKz (see (2.50)). Hence 
(2.55) always holds. 

Now we proceed to prove (2.54) and (2.57). Again we distinguish two cases. 
If tJ є M \ T then supp q>N. c B(tJ, coNj) and by (2.83) we have 
$upp<pNjczB(tJ,Qjl>c(n)). Hence for x e s u p p ^ . we have Sj(x) = l by (l.5') 
and (2.83) yields (we denote q(tJ) = m again) 

(2.84) <РмАх)й-.й&»А*)> x e R n 

V 
(recall that p ^ 1). 

If tJedTn Z, then taking into account the definition of Z we have C(řJ) = 1, 
hence (2.75) yields 

1 - C(x) = C(tJ) - C(x) Û iQjsZ|fi 

for x e B(tJ\ Qj) and, since we have assumed Qj ^ 1, yc ^ 1, we have 
(2.85) (1 - C(x)) ф) й et 9j(x) . 

Finally, let tJ є ôT\ Z (and q(t3) = m again). Then by (2.77) we have 

|cM-cOO|*k,(i-c(*0)TAr 
x(n) ß 

for x є B(tj, Qj), hence 

(2.86) o s [—,%!- (і - m + m - cc*)l ад) á 
L2x(n)" + 1 ^ J 

ue*mej(ì-C(tJ))9j^)ue*m9j{x). 

Inserting (2.84)-(2.86) into(2.78) and taking into account the definition of г* 
(just after the formula (2.77)) as well as (2.49) and the evident inequality £#,(*) = * 
we conclude that (2.54) is valid. 

Further, we obtain from (2.78) that 

5 [C(*) - Ш]d* ^ C J І ад dx ̂  & jG dx = 6l, 
j = i ^ 

which proves (2.57). 
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It remains to prove (2.56). Let tJ є M \ T, q(t3) = m. Since q>Nj = FNj((l - f) 9j)9 

we obtain from (2.82) 

(2.87) J lDF*i(l - C(x)) e / x ) ) | dx g £ f 9/x) dx . 
^ 

Let tj є Z n аТ. By (2.75) we have 

max {1 - C(x); x є B(f', ву)} ^ : ^ ^ 
2 x{n) fi 

(notice that C(řJ') = 1 since tJ є Z). Further, again by (2.75) we have (cf. (l.7')) 

(2-88) b ( t , , e j ) || D C(x)|| dx S xtf - ^ r - = i Í ^ ) d x 

2 %(n) jU 2jti 

(since 5,(x) = 1 for x e B(tJ\ Qj|x(n))), which yields 

(2.89) f | | D [ ( l - C ( x ) ) S / x ) ] | | d x < ; 

á Í |D 9,(x)|| dx ^ L - + іКіІла \\D C(x)|| dx <; 
2 x:(nJ ̂  

й ^ j 3 / x ) d x _ & i - + f p / x ) d x ^ J S , ( x ) d x . 
Qj 2 x(n) jx 2fi ц 

Finally, let tJ є дТ\ Z. By (2.77) we have 

max i^%r- (1 - « + ^ ) - «*) ï * є s(řJ*> e 4 ^ 
(2х(п)и+1д J 

^7#r-(1-^)); 
x(n) fj. 

using (2.77) instead of(2.75) we find that (2.88) again holds. Consequently (cf. (l.7')), 

(2-90) Í |o [(2x(^i (1 - « + W) - «*)) *X*)]| dx * 

^ Í И *X*)0d* T ^ V - + bc**> II0 ^ H d * = 
и(и)и 1 ̂  

^ ^ J ^ x ) d x ^ ^ - + f i 5 , ( x ) d x a ^ J S / x ) d x . 
^y %(n) ^ 2 ^ jU 

Again inserting (2.87), (2.89), (2.90) into (2.78) and taking into account (2.21) and 
the definition of e*, we conclude that (2.56) holds. The proof of Lemma 2.8 is 
complete. 

Our next step is to prove the "if" part of Theorem 2.4, that is: 
Let / : Rn ^> R have a compact support s u p p / c IntJ^, whereJ4s a compact interval. 

Let (PUI) f/(x) dx exist. Then (PU) J"/(x) dx exists and the two integrals are equal. 
Let 8 > 0. Set si = \г and find a > 0 corresponding to st according to Definition 
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2.3 (of the PUI-integral). Choose Ѳ = min (£, i<x); j8 and i<^ satisfying 0 < ß á i , 
(2.37)-(2.39) and (2.59); K2 > тах{9,(%80)1 / ( и + 1 )} (see Lemma 2.6) such that 
(1 + fl)/(l ~ 4/X2) g 1 + a; 0! satisfying (2.58); K3 > 1, and iC4 satisfying (2.60). 

Given K > 1, set X* = max {K, 2КЪ, J£4} and find a gauge c^ on J> such that 
for every à-fine (ö = | 5 i ) PU-partition 5 ofJ^satisfying(1.5)-(l.7) with iC replaced 
by X* we have 

| ( P U I ) i / ( x ) d x - S ( / , 2 ) | < e i . 

Now, let П be a ^-fine PU-partition of s u p / satisfying (2.49)-(2.51) (which is 
the same as (l .5)-(1.7) with a9K,tJ\9j replaced by 9l9K3,z

m,Çm, respectively). 
Construct A u П' = S according to Lemma 2.8 with M = J. Then 3 is a PU-
partition ofJ^ (cf. (2.61)); it is d-fine by(2.52),(2.62). Further, S satisfies (l.5) by 
(2.54), (2.63) and the choice of Ѳ± which guarantees Ѳ1 й oí; it satisfies (1.6) by 
(2.55), (2.64) and the choice ofJC*; finally, it satisfies (l.7) by (2.56), (2.65) and the 
choice ofJ£*. Hence 

| (PUI)J / (x) dx - i / ( s ' ) J X,(x) dx - £ f(zm) J Cn,(x) dx| ^ в 1 . 
Z = 1 m = l 

Since Я is a PU-partition of supp/ , we have s u p p / <= I n t Z and, since obviously 
sl ф Int Z, we have /(s*) = 0, / = 1, 2 , . . . , L. By (2.57) we conclude 

|(PUI) J f(x) dx - t / И Í Ш **\ < 2e, = e , 
m= 1 

which proves that (PU) J / (x) dx exists and is equal to (PUl) f /(x) dx. This completes 
the proof of Theorem 2.4. 

3. TRANSFORMATION THEOREM 

3.1. Theorem. Letf: Rn -^ R with compact support be PU-integrable, let G c Rn 

be open and bounded. Let q>\ G ^ <p(G) be a Cl-dijfeomorphism, s u p p / c= q>(G). 
Then (fo <p) |det D<p\ is PU-integrable and 

(3.1) (PU) f / (x) dx = (PU) $f(<p(y)) |det D <p{y)\ dy . 

(We put formally (fo<p) |det D<p\ = 0 on Rn \ G.) 

Proof. Without loss of generality we may assume that there exist such c ^ 1 and 
g > 0 that 
(3.2) \D <p(fj)l й c , |det D <p(rj)l ^ c for rj e G , 

\\D <р~Щ\ й с , |det D <р-Щ S c for { є q>(G) , 
S(y, g) c G for y e <p - x(supp / ) , 
S(x, g) a q)(G) for x є s u p p / . 

It follows from (3.2) that 

(3.3) l<p(y) - ц>Щ й Ф - t|l for у є ç>- *(supp/) , Ц e B(y, g) , 
l<p-'(x) - <р~Ш\ Š ф - i|| for x є s u p p / , { є 5(x, g). 
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Let a > 0, К! > 1, and let Ьх\ q> *(supp/) ^ (0, oo) be a gauge. 
Assume that 

J ' = { ( s ' ; Q ; j = l,...,fc} 

is a ^-fine PU-partition of ^>"*(supp/). Put 

o, = sup {\\y - s'||; у є supp Q 

and assume that (1.5) - (l.7) is fulfilled for A' (with i^ 9p Qj, K replaced by sJ\ fy, apK\ 
respectively). 

Put tJ = <p(sJ), &j = С/ о Ф"1. Then it is not difficult to see that 

(3.4) A = {(t\$j);j= l , . . . , f c} 

is a PU-partition of supp/ . It follows from (3.3) that A is 52-fine with 

(3.5) S2(x) = co^<p-*(x)) , x є s u p p / . 

We shall prove that ( l .5 ) - ( l .7) hold for A provided 

(3.6) , K = c4K' 

(@j has been defined after (l.4)). Observe that (3.3) implies 

Oj й CQj , Qj й COj . 

Since tj = cp(sJ), we have (for x є Rn) 

9j(x) = Cj(q>-*(x)) < (1 + a) Cj(sJ) = ( 1 + a) 9/<p(^) = (l + «) 3/i>) 

and (1.5) is fulfilled. 
Let x e B(tJ, Qj|K). Then ф_1(х) = у є B(sJ, caj|K) <= B(s\ 0j|K'), hence 9,(x) = 

= Cj(<p-'(x)) = С/у) = Cj(sJ) = 5,(i^) and (1.6) holds. 
Now, let us prove (l.7). We have 

J ||D Sj(x)| áx й J ||D ф)\\ WD<p-*(<p(y))W |det D c>(j;)| áy й 

S c> J ||D ф)\\ *У й — J Cj (У) áy S — J в/х) d* -
°j Qj 

and (1.7) holds for A. 
After the preliminary considerations let us proceed to the proof proper. Let г > 0. 

Find a > 0 from Definition 2.1. Given K' > 1, find а gauge ô on s u p p / such that 

(3.7) | ( P U ) J / ( x ) d x - S ( / , J ) | ^ i e 

holds for every c>-fine PU-partition zl of supp/satisfying ( l .5 ) - ( l .7 ) with X = c4K'. 
Assume in addition that 

(3.8) |det D cp{y) - det D q>(rj)l ^ 
2шп(0)[1+\/(ф))\] 

for y e q> - *(supp / ) , ц e B(y, o(y)) 

(which can be achieved by decreasing ö ifnecessary). 
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Let A' be a c *5-fine PU-partition of <p 1 (supp/ ) satisfying (l .5)-(1.7) with 
sJ, Cj, 0j, K' instead of tJ, Sj, Qj, K, respectively. Define A by (3.4). Then A is a 5-fine 
PU-partition ofsupp/(cf . (3.5)) satisfying (1.5)-(l .7) wi thX = c4K\ so that (3.7) 
holds. By easy calculation we have 

S(f, A) = E/(<Ks')) Í Ф) |det D <p(y)] ay 
j = i 

and by virtue of (3.8) we find that 

\S(f, A) - S((fo<p) |det Dq>\, A')\ й ¥ • 

This together with (3.7) yields 

|(PU) lf(x) dx - S((fo<p)] det D<p\, A')\ й e. 

and the proof of Theorem 3.1 is complete. 

4. MULTIPLICATION OF PU-INTEGRABLE FUNCTIONS 

4.1. Theorem. Let f: Rn ^ R with a compact support be PU-integrable. Let 
G з suppfbe an open bounded set, let x'- G ~> R be ofclass C1. Then thefunctionfx 
is PU-integrable. 

We will first prove a less general result. 

4.2. Theorem. Let the assumptions of Theorem 4.1 be fulfilled, let Dx(x) Ф 0 
for x є G. Then thefunctionfx is PU-integrable. 

Proof. Without loss of generality we will assume that 

(4.1) * :G^Db*] . 
To prove our theorem we will use the analogue of the Bolzano-Cauchy condition, 
that is, we will estimate the difference of two integral sums corresponding to suf­
ficiently fine PU-partitions. 

Let e > 0; find a > 0 corresponding to e according to Definition 2.1 of the 
PU-integral. Given K > 1, find a gauge S on s u p p / corresponding to s, a,K ac­
cording to the same definition. Then there is a constant b > 0 and a gauge dx on 
supp/ , ôx(x) fg 5{x) for x є supp/ , such that the following proposition is true. 

Proposition. Let 
&i = {(t*,&j);jeJi}, i - i , 2 , j i n j 2 = 0 

be ôx-fine PU-partitions of s u p p / satisfying 

(4.2) e /*)<(v+jW*o. х є й"; 

(4.3) e/x)"*X*0. * e f ( *V(^) ) ï 
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(4.4) J | | D 9 , . ( x ) | | d x s ^ P , . ( x ) d x , 
bQj 

where Qj = sup{||x - ^ | ; x є supp #,-}. Set 

(4 5) v. = {* f0r jeJl 

K ) Xj {l-x for jeJ2. 
Then there exists a dt-fine PU-partition o/supp/, 

Л = {{ť, Xj,); j є Jt u J2, Ï = 0 ,1 , . . . , Lj} , Lj ^ 0 , 

such that Л satisfies (1.5)-(l.7) with &j replaced by Xjh and 
(4.6) i | 9 X x ) x / x ) - S A , , ( x ) | d x g e ( l + £ I/O')!)"1, 

ï = 0 JeJiuJi 

j Є J i U J 2 . 

Let us first show that Theorem 4.1 is an easy consequence ofthis proposition. 
Let Ѳь i = 1, 2, be PU-partitions ofsupp/satisfying the assumptions ofProposi-

tion. Evidently, Ѳь i = 1, 2, as well as A from Proposition are 5-fine and satisfy 
(1.5)-(1.7). Following the definition ofthe PU-integral we have 

|(PU) J /(x) dx - S/(*0 Í Ш d*| ^ 8 ; 
j,l 

hence (4.6) yields 
|(pu) j /(x) dx - x /(*0 Í9 /*) xX*) d*)l ^ 

J*eJiuJ2 

á e + | I /(»0 Í ГА(х) x/x) - | ^,(x)] dx| ^ 2e . 
jeJnjJ2 1 = 0 

Taking into account the definition of %j (°f- (4.5)) and the above mentioned fact 
that 6>2 is c5-fine and satisfies (1.5)-(l.7) we obtain 

| x № í ад x(x) dx - X /0') j ад x(x) dx| = 
j e J 2 Jf'eJi 

= 11 /07') f ад (і - ад) àx - E m j ад ад dx| ^ 
je^2 jeJ l 

a | I / ( i ' )R . (x )dx - (PU)J / (x )dx | + 
j e J 2 

+ i(pu) j/(x) dx - s / w í ад ад <N ^ Зб. 
jeJiU^2 

We may assume that the gauge St satisfies the condition 

(4.7) if u є supp/, x e B(u, <*i(tt)), then B(u, S^u)) c G and 

^-^-атшта-
Then evidently 
(4.8) | I /(i ') %{t1) J ад dx - £ / И z(*0 Í ад dx| й 5г , 

j e / 2 j'eJl 
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which is the desired analogue of the Bolzano-Cauchy condition. The existence of the 
integral (PU) f/(x) x(x) dx follows by the standard argument. 

Thus we have to prove Proposition, that is, to construct a partition A with the 
required properties. To this end we will use Lemma 2.6. 

For j e J1 u J2 put <p0 = SjXj, w = tj, œ0 = Qj. In order to justify the application 
of Lemma 2.6 we have first to find conditions which b, Ѳ, Ku 5± have to satisfy 
in order that (2.4)-(2.7) might hold. Without loss of generality we will assume a < J 
(cf. Remark 2.2). Set Ѳ = i« < h 

Comparing (2.4) with (4.3), we see that (2.4) holds if 
(4.9) Kt ^ K|b . 

Further, y = lD(SjXj) (tJ)\\ = 9j(t*) \\D x(*0|| > ° i n v i e w o f (4*3) a n d t h e con~ 
dition D x(x) Ф 0, and (2.5) holds if the gauge ог satisfies the inequality 

(4.10) \\D x(x) - D x(u)W й i\\D x(u)\\, x є B(u, <5,(u)) . 

Indeed, B(tJ, cc>o|K^ c B(tJ, bQj|K), and for x from the bigger ball we have (cf. 
(4.3)) D <Po{x) - D <p0(i') = 9tf) {DxA*) ~ D *Ш 

The inequality (2.6) reads 

зЛ*Ы*)а(і + «/2)аЛ«0хЛ*0-
It is fulfilled, by virtue of (4.2), if дг satisfies 

(4.11) xj(x) й (1 + a/5) xj(u) , x є B{u, 5x(u)) , 
since 

(1 + a/5)2 ^ 1 + a/2 . 

Finally, to satisfy (2.7) it suffices to subject the gauge dt to the condition 

(4.12) 6 ( l + | ) | D z / a ) l ^ i i ( t t ) a l , « e s u p p / , 

and the constant Kx to the condition 

(4.13) Kt Ш 4K/b . 

Indeed, we have (by virtue of(4.1), (4.2), (4.10), (4.4), (4.12) and (4.3)) 

Í lWjXj) (*)1 dx ^ max 9,(x) J ^ , \\DXj(x)\\ dx + % J \\D 9,<x)|| dx й 

ž(l + ^ W ) Ф ХМ\ *rfJ + \ ~ í Ф) dx й 
5/ 4 bQj 

á [ 1 + | ) )|JD xX*01l 4 */*0 ™n *W *i (f)" ( ^Y + 
1 F 

+ 7^i^(*)x/*)<M 
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й 6 ( l + $) |D*X*0( ( f ) " " 1 f Ьс**,/ж> */*) min */x) dx + 

+ ~ í S/x) */*) dx ^ ̂  J S/x) z/x) dx 
bQj bQj 

and(2.7)holdsby(4.13). 
Consequently, if ôx is a gauge on supp/ satisfying ^(x) ^ ö(x) and (4.7), (4.10), 

(4.11), (4.12), if Ѳ = ia and if Kx satisfies (4.13) (and, a fortiori, (4.9)), then we 
can apply Lemma 2.6 to <p0 = Зду as desired. 

Let us further assume ß = \u. and 

(4.14) Kx ^4x7, Ki ^24/oc. 

Then conditions(2.37)-(2.39) are satisfied, and thus we can use Lemma 2.6 re­
peatedly as in the proof of Lemma 2.8, obtaining for each j є J± u J2 a set of pairs 

(4.15) (t>, E9jXj), (tJ, EF$jXj),..., (i>, EF^1^), {t3, FN>$jXj) 
(Nj are positive integers to be fixed later). 

Let us list some properties that the functions appearing in (4.15) possess, denoting 
<o| = sup {||x - i'|]; x є supp F%xj} , j є Jl u J2 , і = 0, 1,..., Nj : 

(4.16) œJ
0 = Qj , оз\ = sup {||x - řJ'||; x є supp EF'9jXj} 

(cf. (2.44), (2.43)) ; 

(4.17) EF% xj(x) й U + fj ( l - £ p EF% Xj{t1) 

(cf. (2.46); recall that | a = Q) ; 

(4.18) EF% xj(x) = EF% Xj(tJ), x є S (ť, J^L) 
\ 6КХК2) 

(cf. (2.45)) ; 

(4.19) SlD(EF%Xj(x))tdx^^+^K^-A. 

- ( l - - % s ^ - > ) " l . i E ^ ^ ) d , 

(cf. (2.47)) ; 

(4-20) Y EF%Xj + F*9,Xj ъ 9jXj 

(cf. (2.40)) ; 

(4-21) ***jxA*)*(i + f)**,xm 
(cf. (2.16)) ; 
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(4.22) f p(F%Xj) (*)|| dx й Ц \ F% xj(x) àx 
Щ 

(cf. (2.17)) ; 

(4.23) J ^ ^ ^ 1 
ЪКХК2 coj КХК2 

(cf.(2.13)). 

Comparing the inequalities (4.17), (4.18), (4.19) with (l.5)-(l.7), we see that the 
pairs from (4.15) except the last ones will satisfy (1.5)-(1.7) if 

(4-M) (i+t){i-£fl<i+-
(4.25) 9 ^ < ř , 

a 

(4.26) K± (l + - x7x8K2
n\ (l - - x8K2

in+1)\ < K . 

Let us summarize our considerations. First we have to find a, 0 < a < J, cor­
responding to the given є > 0. Let K be given. Without loss of generality we will 
assume (cf. Remark 2.2) 

(4.27) K > ^ i , ct = max {4x7, 24} . 
a3 

Choose b = 4Kccjc1. In Lemma 2.6 choose Kt = ct/a so that (4.13) and (4.14) are 
satisfied. Set Ѳ = |a , ^ = Ja. Choose iC2 so that (4.24), (4.25) and also the ine­
quality K2 > тах{9,(к8іа)1 / (и+1)} from Lemma 2.6 are fulfilled. (Notice that 
(4.24) is certainly fulfilled ifK2 > 16/a, while in view of (4.27), (4.25) is fulfilled if 
K2 < 160/9a; hence both the inequalities can be satisfied simultaneously.) The 
inequality (4.26) is then fulfilled as well, at least for а small enough. 

To the given K find the gauge ô and choose a gauge дх so that (4.7), (4.10) and 
(4.12) hold. 

Thus, we have fixed all the constants involved in such a way that, on thebasis of 
Lemma 2.6, we can construct the functions in (4.15) and that, moreover, the functions 
EF%Xj satisfy (l.5)-(1.7). 

Let us now continue in the proof proper. To construct the partition A we will use 
the pairs from (4.15) except the last ones of the form (tJ, FNj9jXj); the functions 
FNjQjXj from these pairs will be either added to some of the functions EFl#pxp with 
i e {0, 1,..., Np — 1} suitably chosen, or otherwise arranged in such a way thatthe 
resulting functions will still have the required properties, in particular, will satisfy 
(1.5)-(1.7). 
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For w є Я" we denote 
J,(w) = {j є J,; ť = w] , і = 1, 2 ; 

U = {w; I 9j(w) = l= £ S » } ; 
jeJi(w) jeJ2(w) 

F = { w ; 0 < X. 3 / w ) < 2 } . 
je/i(w)uJ2(w) 

Evidently, 

(4.28) tfnF=0, t / u 7 = { ^ ; j G J i U J 2 } . 

It foUows from the definition of the set Fthat 

(4.29) for every w e V there is such p(w) є Jx u J2 that 

t*W*w, Sp ( w )(w)>0. 

Further, (4.23) implies that for every w є Fthere is an index i = i(w) such that 

(4.30) < ^ ^ l w - i ^ ) | | < a , f A > . 

Since V is finite, there exists а positive integer ß such that 

(4.31) \\w - tpiw)l > co$w) for all weV 

(evidently Q > i(w) for all w є V). 
In the sequel we will assume, forj є J1 u J2, iJ є F: 

(4.32) Nj £ Q , 

mj <' 2 ~ \ mp('J) 
Шл"< ~5^7 Wi(íí) 

< < <# - ІГ'> - *[. 
(Notice that the right hand side of the last inequality is positive by (4.30), and 
lim a4 = 0 by (4.23).) 
i^oo 

Let tJ e V. Then we add the function FNj&jXj to the function EFiW$p(tJ)xp(tjy 
(It may happen that several functions FNj9jXj — with different indices j — are added 
to the same function EF'd„j£m. In that case, however, p(tJ) = m for all such /s.) 

Now, let w є U\ Then evidently Ji(w) ф 0 ф J2{w)l let us denote by q(w) the 
number of elements in the union Ji(w) u J2(w)- For j є J^w) u J2(w) we replace 
the last pair in (4.15) by the pair 

(4.33) ( w , _ L H , where 4>w = £ F"%Xj 
\ 3 v W ) / jeJi(w)uJ2(w) 

(that is, given w e U, we put together all pairs with tJ = w, thus forming a single 
pair (4.33)). 

All pairs resulting from (4.15) by the above described modifications form the 
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desired PU-partition A; in the sequel, we denote them 

( ^ , A , o ) , ( ^ ^ i ) , . . . , ( ^ U y L , ) ; 
evidently we have Lj = Nj for tj є U, Lj = Nj — 1 for tj e V. 

It follows from the construction and from (4.20) that 

£ А Я - %(MjXj + ... + EF*>-%Xj + * * ' » Л ) = 
і ,г j 

- І*л=Х»д + І»Лі-*); 
J jeJl ÍeJ2 

hence if x is such that £ #,-(x) = £ $/x) = 1 then 
jeJi je/2 

I * , , - 1 , 
J>1 

which implies that A is a PU-partition of supp / . Moreover, it is evident that it is 
enfine (this follows from the fact that Ѳь i = 1, 2, are cVfine, and from (4.32)). 

Now we have to show that A satisfies (4.6) and (1.5)-(1.7). This will be proved 
provided Nj satisfy some further conditions. 

First of all, let us assume that Nj is so large that 
(4.34) £ SF*%-Xjdx<e{l+ Y {Wir1 

jeJiKjJ2 jeJluJ2 

(cf. (2.41)). Then (4.6) immediately follows from (4.20) and from the construction 
of A. 

In order to fulfil (1.5), we further require that for tj e V, fee{0, 1, ..., Nj — 1}, Nj 
is so large that 

(4.35) Jfc^f-b. xJpc) ^ [l + « - (l + fj (l - ^ Y 4 EF% xtf) 
p(t*") = i,i(ta) = k ^ 2 

(cf. (4.24) and (2.41)). This together with (4.17) yields that (1.5) is fulfilled for Xml 

provided 1 < Nm. If tm є U, 1 = Lm = Nm then 

^ml = = ~/ Š *tm 

q(tm) 

and (1.5) again holds by virtue of (4.21). 
Now we will prove (l.7). By virtue of (4.23) we may and will assume that 

(4.36) if w є U , j , r є Ji(w) u J2(w) , then 

^ s3.2-*'*K&2. 
CD Nr 

Indeed, this can be achieved by starting with such s є Ji(w) u J 2(w) that 

(4.37) cos
Ns = min {cos

Nj:j є J^w) u J2(w)} 

and then successively increasing the other Nj$ in order to fulfil (4.36) with r = s 
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(we need not worry about the inverse ratio since in view of (4.37) it never exceeds 
one). 

This procedure has to be repeated (finitely many times), in each step omittingthe 
minimal cos

Ns. 
Moreover, for tJ є V, k e {0, 1, ..., N,-_J let us assume 

(4.38) £ $\\FN">9mXm(x)\\dxu 
meJiuJ2 

P(tm) = j,i(tm) = k 

й [K - (1 - 0XgKJ<"+1))-1 (Kt + 0x,XsK&*ft —, J EF% xj(x) dx 
co{ 

(notice that the expression in the square brackets is positive in view of (4.26), and 
again recall (2.41)). 

Let us first consider a pair (tJ\ A )̂ withj є J1 u J2, / < Nj. Then 
co{ = sup {||x — i |̂|; x є supp A,-J . 

Indeed, ifj = p(tm) for some m e Jx u J2 and 1 = i(řm), then this identity follows 
from the third inequality in (4.32) since this inequality implies B(tm, co™m) a 
c B(tJ\ co/(řm)). In the other cases, Х]г = EFlSjXj and our identity is trivial (cf.(4.16)). 
Consequently, (l.7) holds (with Xjb co/ instead of Qj9 Qj) for j є J± u J2, 1 < Nj in 
view of(4.19), (4.26), (4.38) and the above identity. 

The last case for which we have to prove (1.7) is that ofAw with f e U, 1 = Lr; then 

Ki = ~r~ ^V • 
«(0 

Let s satisfy (4.37) with w = f, and denote 
xr = sup {||x - /r|| ; x є supp Wtr} . 

By (4.36) we have œJ
Nj й 3 . 2~3/2KíK2cos

Ns for j e J±(f) u J2(f), and since tr = 
= max {œJ

Nj; j є Ji(ír) u J2(?)} (cf. (4.33), we conclude 

(4.39) тгйЪЛ-ЪІ2КхК2со*„а. 
The inequalities (4.33), (4.22), (4.37) and (4.39) yield the estimate 

J | D ^ * ) | d * a I l\DiF^»^{x)\àxu 
jeJi(tnuJ2(n 

^ E ^ 2 J F*>9;Xj(x) dx Ï ^ J *V(x) dx â г Л т К ^ J ЗД dx 
jeJi(tnuJ2(tn COJ

Nj CONs Xr 

and (1.7) holds provided 
(4.40) 3 . 21/2КхК2 < X , 
which evidently is a weaker condition than (4.25) (recall that a < ^). 

The last step is to prove (1.6) (for Xjh co{, of course). Again let us first consider the 
case j є Jx u J2, / < Nj. lfj Ф p(řm) for all m є J^ u J2, (1.6) is obviously fulfilled. 
Ifjf = jp(řm) for some m e JXKJ J2 and 1 = i(tm), then the second inequality in (4.32) 
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and the first inequality in (4.30) combined with (4.23) yield 

B ( r , < J n f i ( i ' , ^ ^ ) = 0 

(recall that a < ^). Consequently, 

^(x) = EF%Xj{x) for x e B ^ ^ J L _ t o r 

and (1.6) follows from (4.25). 
We still have to prove (l.6) for Xrl with ť e U, 1 = Lr. By the definition of U and 

by (4.3) we have 
I 3,(x) = 1 = £ 9 /x) 

i e J l ( t^ j6j2(t^) 

for x є B(f, bgjK), where @ = min {oj-;j є J ^ f ) u ігОО}- Hence (4.5) yields 

I s/*)*/*) = i 
j6Ji(íOuJ2(řO 

for x є B(f, bg|K), and in view of (4.20) we can write this identity in the form 
(4.41) 

£ [E3jZX*) + EF&jXj(x) + . . . + EF"J-%xA*) + ^ 4 x / * ) ] = 1 . 
jeJ i ( r )uJ2( iO 

In this identity we can put x = f; using (4.18) in which we set tj = f (recall the 

definition of Ji(f), Ji(f)) w e obtain 

(4.42) £ F^jXj(x)= £ F"'SjXj{f) 
jeJi(iOuJ2(fO jeJl(íO^J2(í r) 

for x є B(f, c^), where 

Gl в m i n W ^ ш^-ь ^ є Ji(f) u j 2 ( f )> • 
(ЗІЧІС2 J 

By (4.23) we have 2~3/2K1K2coJ
Nj S co^- i , hence (4.42) is valid for xeB(f,a2), 

where 
oc 

Ö-2 = T~ZJ]2 m Í n W/ І Є JÁf) U J 2 ( 0 ) ' 

If s is the index for which (4.37) holds with w = f, then evidently 

oc s . a 
&2 = ГТТ C0N > T 

3 . 23 / 2 Ns - 9K,K2 

(cf. (4.39)) and (l.6) holds provided (4.25) is valid. 
We have already shown that the conditions concerning Kl9 K2 can be satisfied 

by a suitable choice of the constants. Further, the conditions imposed on Nj9 i.e. 
(4.32), (4.34)-(4.36), (4.38) are easily satisfied by gradually increasing Nj. 

Thus the proof of Proposition is complete, and Theorem 4.2 is proved as well. 
4.3. ProofofTheorem 4.1. Choose an open set G± such that s u p p / c Gx c= Gx a 
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c G, and a number X so large that D(% + %x) (x) * 0 for x є Gu where Xi{x) = ^ i 
(we write x = (xi*2, . . . ,xn)). Such a Я obviously exists. Hence f(% + Xi) is PU-
integrable, and the same evidently holds for/xi-

Consequently, fx = f(x + Xi) ~ fXx is PU-integrable as well. . 

5. STOKES' THEOREM 

5.1. Theorem. Let g: Rn ^ R with compact support be differentiable at all 
points x e Rn \ W. For p = 1, ..., n set 
,e t4 r = №g\dxp) {x) for x є Я" \ W, 
K ) Jp \ 0 for xeW. 
ThenfpisPU-integrableand 

(5.2) ( P U ) í / p ( x ) d x = 0 

provided one ofthefollowing conditions isfulfilled: 

(5.3) g is continuous, W= {xeRn, xx = 0}; 

(5.4) W is closed, g is bounded; for every e > 0 there is oc' > 0 such that for 
every K > 1 there is a gauge o' on supp g such that for every ô'-fine PU-
partition ( l . l ) of supp# satisfying ( l .5 ) - ( l .7 ) with cc' instead of a the 
inequality 

Se749/*)<i*se 
tJ'eW 

holds; 
(5.5) g(x) = 4Wxf-}, W={0]. 

Proof. Following the idea of proof of the analogous theorem in [1], denote 

( \ _ J9(t) + Dg(t) (x - t) for t ф W, 
qAX)~\0 for teW. 

Let є > 0. Find a > 0 according to Definition 2.1. Let K > 1. Find a gauge 5 on 
supp g such that 
(5.6) m„{ U B(x, S{x))) й «»(supp g) + 1 = c 

xesupp g 

(mn again stands for the Lebesgue measure in Rn), 

(5.7) B(x, 2 o(x)) n W = 0 for x ф W, 

(5.8) |flf(x) - g,(x)| ^ (e/X) c"*||x - i|| for t ф W, x є B(t, 5(t)) . 
Let Л given by (1.1) be a č-fine PU-partition of supp# satisfying ( l .5 ) - ( l .7 ) . 

We have to estimate the integral sum S(/p , A). 
Integration by parts (with respect to xp) together with the obvious identity 

m-%<* 
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yields similarly as in [1] 

/ ,(*0 Í Ф) àx - J ^ L ' (x) ОД dx - - J 4,,(x) fSí (*) áx 
дхп дхп 

Further, 
д9, IJ^)P(x)dx = 0 

j = i d x n 

since J] Sj(x) = 1 for x є supp #. Hence to establish the desired estimate for S{fp> A) 
y = i 

we have to establish the inequality 

(5.9) 33, SZi0(x)-q,>(x)ljp-(x)dx 
j=i dxp 

< £ . 

Let us first estimate the terms with tJ ф W: 

39, 
Í S [ ф ) - 4tj{xf[ —J- (x) dx 

tHw 8x„ 

*$''*I,li*-*i 
K tj$w 

1 (x) dx й sc'1 J JT fy(x) dx ^ e 
y = i 

by virtue of(5.6)-(5.8) and (1.7). 
To estimate the terms with t3 e W we have to treat the three cases corresponding 

to the conditions (5.3)-(5.5) separately. 
Let (5.3) be fulfilled. Without loss of generality we may assume that 

(5.10) \g(x) - g(t)\ ^ s for x e B(t, S(t)) . 

For tJ є P^we have qtj(x) = 0; moreover, since 9j and thus also dSj|dXp have compact 
supports, we have 

Consequently, we can write 

J ^ ( x ) d x = 0 . 
dxp 

39, 
fI[*(*)-<a*)]r4*)d* dx„ 

^[g(x)-g(t>)f^l{x)ax 
tieW OXp 

and, using successively (5.10), (l.7*), (l.5) we obtain 

89, 
iZie(x)-q,>(x)ift(x)d*z*Zi 

tJeW dx„ UeW 
Цх) àx < 

s e x ^ ( l + < x ) I e r 4 M = 
tieW 

= e ї і К\\ + a) £ $B(tt,ej/K)r>w &ÂX) dxi • • • àx„, 
tieW 

46 



where к0 is the measure of the (n — l)-dimensional unit ball. Since £ &j{x) á 1 for 
y= i 

all x є Rn and since we can assume тп-х( U #(^> £y) n ^ ) ^ ^ „ - / s u p p g n Pf) + 
+ 1, we eventually obtain " є Ж 

% 

^ o 
є ^ K"(i + a) X iB((/,ej/X)n^ &A*) dx2 • • • dx« ^ 

tJeW 

й s ^ K"(1 + a) J u B(tJ>Qj)nW £ 5Xx) dx2 . . . dxn ^ 
K0 tJeW j = l 

g 8 î i x - ( l + a) [*^_/supp g n Ж) + 1] , 
x0 

which evidently completes the proof. 
Now, let (5.4) be fulfilled, let \g(x)\ й M for x є Rn. For the given e > 0, K > 1 

find a' > 0, c>' so that the inequality from condition (5.4) holds. Without loss of 
generaHty we may and will assume that a < a', o(x) < o'(x) for x e Rn. Using the 
identity qtj(x) = 0 for tJ'e W, the boundedness of g, the condition (l.7) and the 
inequality from (5.4), we obtain 

за, E Í Ых) - 4tj(x)] т ^ (x) áx 
tJeW дхп 

uMZS 
tJeW 

д9, 
дх 

L(x) dx < 

^ MK £ Qjx 9j(x) dx ^ MKe 
tJeW 

Finally, let (5.5) be fulfilled. Then the only terms to be estimated are those with 
tj — 0 and their contribution reduces to 

tJ = 0 
iBio.Qj)9(x)j^-(x)dx 

dxp 

since q0(x) = 0 again. 

We divide the integration domain into two parts, Bj = B(0, Qj) \ B(0, Qj|K) and 
Bj = B(0, Qj|K), and write g(x) = v(x) \\x\\l~n with lim v(x) = 0, v = sup {|v(x)|; 
xeB(0,Qj)].Then x~*° 

I 
fJ = 0 

SB,-8(x)jJ-(x)ax 
dxp 

<^vK"-!2>j-"J 
tJ=o 

dSj 

dx, 
dx < 

й v K % ( l + a) X 3/0) = ѵКпнх(і + a) 
tJ = 0 

by virtue of(l.7*), while (1.6) yields 

I 
tJ = 0 

hj e(x) J-1 (x) dx 

dxp 

= 0. 

Since v ~> 0 with o(0) ^> 0, а suitable choice of c>(0) completes the proof. 
Let N be an n-manifold of class C1 without boundary or with a boundary dN. 
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The concept of the PU-integral can be extended to differential n-forms on N in the 
same way as in [1]. From Theorem 5.1 and from [1], Theorem 4.2, Stokes' theorem 
can be proved in an analogous way as in [1], in the following form: 

5.2. Theorem (Stokes). Let n be an (n — i)-form with compact support on N. 
Let Wbe a submanifold ofN with or without boundary, Wn dN = 0. Assume that rj 
is differentiable at every point ofN\ Wand that n is continuous. Then àn is a PU-
integrable n-form and 

(PU)^dr, = ^ ^ . 

5.3. Remark. Ifwe make use ofTheorem 5.1, case (5.5), we may modify the above 
theorem in the following way: W= {wl9 w2, ..., wm} cz N, Wn dN = 0, r\ is dif­
ferentiable at every point of N \ W and fulfils the growth condition analogous to 
(5.5) in a neighbourhood of each wj9 j = 1 , . . . , m. 

5.4. Remark. Let B = S(0, 1) <= Rn, h: B >̂ R. Let h have continuous derivatives 
of the second order on B \ {0} and let 

(5.11) i ( g r a d f c ) ( x ) | | = . { H | 1 - } . 

It can be deduced from Theorem 5.2 that 

(5.12) JB div grad h dx = \dB (v, grad h) àS , 

v being the outer normal to the sphere dB and dS denoting the (n — l)-dimensional 
Lebesgue integration on dB. If (5.11) is relaxed to 

(5.13) | | (gradfc)(x) | |=0{ | |x | | 1 -"} , 

then (5.12) need not hold. This can be seen if we put h(x) = | |x | |2 -" in case n ^ 3, 
h(x) = ln | | x ] | - 1 in case n = 2. 
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