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ON THE EXISTENCE OF PERIODIC SOLUTIONS OF A SEMILINEAR 
WAVEEQUATION WITH A SUPERLINEAR FORCING TERM 

EDUARD FEiREiSL, Praha 

(Received October 25, 1985) 

1. INTRODUCTION 

The problem of the existence of periodic solutions of a wave equation has been 
studied very extensively at the present time. There exists a vaste literature concerning 
both the homogeneous case (free vibrations, see [4], [6]) and the nonhomogeneous 
one (forced vibrations, e.g. [2]). In the latter situation all up to now known results 
are dealing with a sublinear forcing term, which is supposed to satisfy some growth 
conditions connected with the spectrum of the corresponding linear operator. No 
satisfactory results seem to be known in the superlinear case (except the paper [6] 
of P. H. Rabinowitz dealing with an autonomous equation). 

A. Bahri and H. Berestycki obtained in [ l ] positive results for Hamiltonian systems. 
Unfortunately, the technique they used does not seem to be applicable in the 
case of partial differential equations like a wave equation. 

The paper presents some results in this direction. It is shown that for every forcing 
term (right-hand side of the equation) satisfying some growth conditions there 
exists a positive integer Tin such a way that the equation possesses a solution which 
is 27i/T-periodic if a force is 2rc/T-periodic with respect to the i-variable. 

Remark. After having completed the paper, the author was informed of the works 
of K. Tanaka (see e.g. [7]). In case the function representing the "force" is a per­
turbation of an odd function or of a time-independent one, Tanaka's results are 
better and deeper than ours. All the same, our approach makes it possible to treat 
more general situations concerning the forcing term. 

2. FORMULATION OF THE PROBLEM AND MAIN RESULTS 

We are going to investigate the problem {PT) : 

(1) utt(x, t) - uxx(x, t) + f(x, t, u(x, t)) = 0 , 

where the unknown function u = u(x, t) is defined for all x є [0,7i], t є Rl and u 
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satisfies the Dirichlet boundary conditions 

(2) u(0, t) = u(n, t) = 0 for all t e R1 . 

Moreover, u is to be periodic in t with the period 2n|T, i.e. 

(3) u(x, t + 2n|T) = w(x, t) for all x e [0, rc] , t є Я1 , 

where Tis a positive integer. 

The function/is supposed to satisfy the following conditions: 

(F 1) The continuity condition: 
/ = / (x , t, u) is continuous on the set [0,7i] x jR1 x Rl. 

(F 2) The periodicity condition: 
f(x, t + 2n|T, u) = f(x, t, u) for all x є [0, к] , ř, u є R1 . 

(F 3) The monotonicity condition: 
If u2 ^ «!, then/(x , ř, w2) ^ / (x , t, мх) for all x є [0, тг], t e R1. 

(F 4) The growth condition: 
There exist positive constants cuc29c3,c4 and a number p , p e ( 2 , + o o ) 
satisfying 

(i) \f(x,t,u)\ S c^uY'1 + c 2 , 
(ii) j / ( x , i , t t ) j z c3|w|^1 - c 4 

for all x є [0, я ] , ř, w є R1 and there exists č > 0 such that 
(iii) C3/2 ^ Cj/p + č (c3, c t may depend on x, t as well). 

Let us denote a = (c l5 c2, c3, c4, p). The vector a will be considered as a parameter 
of our problem. 

Before presenting the main theorem, let us define the solution of the problem {PT} 
in a weak sense. Let us denote 

QT = {(x, i)| x є [0, тс], t e [0, 2тг/Г]} . 

Defìnition. The function u is a solution ofthe problem {P r} ifw e Li(6r)>/(% u) e 
e Li(Qj) and 

(4) JöT U(<Ptt ~ <Px*) + / ( ' , ") <P = 0 

holds for all functions q> which are both sufficiently smooth and satisfying the con­
ditions (2), (3). 

Our main goal is to prove the following existence theorem: 

Theorem 1. Let a parameter a and a nonnegative number K be given. Then 
there is an integer T0 = T0(cc9K) such thatfor every T^> T0, TeN andfor every 
functionf, satisfying ( F l ) - ( F 4 ) with a and T, the problem {PT} hasa solution u. 
Moreover, u belongs to the class L^Qr) and ||w||Loo(ÖT) ^ K. 
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3. THE PROBLEM {PT} AS AN ABSTRACT OPERATOR EQUATION 

First we are going to reformulate our problem {PT}. We shall write Q,Lp, || || 
instead of Ql9 Lp(6x), || ||^(01), respectively. Let us define a function g by 

g(x,t,u)=***f(x,t|T,u). 
Observe that if/ satisfies (Fl)-(F4) with a parameter a then g satisfies (Fl)-(F4) 
with the same parameter and for T = 1. Moreover, it is clear that u satisfying 

u(x,t) =defv(x, Tt) 
solves the problem {PT} only if v is a solution of the problem {PT} given by 
(5) T2 vtt(x, t) - vxx(x, t) + g(x, t, v(x, t)) = 0 , 
(6) v(0, t) = v(n, t) = 0 , 
(7) v(x, t + 2n) = v(x, t) for all x є [о/тс] , t є Я 1 , 
Obviously we have ||t;||^ == ||w||Loo(QT). Consequently it suffices to find solutions of 
the problem {P'T}. 

Let us consider the linear operator 
^2 S2 d2 

DT = T2 

dt2 Ox2 

defined for smooth functions satisfying (6), (7). DT has a selfadjoint extension on L2 
(denoted for simplicity DT again). The system of eigenvectors of DT 

/2 
— sin (kx) sin {jt) for k e N , j e N 

/ n 

ekj(x, t) = — l/71 sin (kx) for к e N , j = 0 
^ /2 

^ - sin (foc) cos (jt) for к є N , —j є N 
n 

(N denotes the set of all positive integers) forms an orthonormal basis in L2. The 
corresponding eigenvalues represent the spectrum AT of DT 

AT = {k2-j2T2\keN,jeZ} 
(Z denotes the set of all integers). Let us define Fourier coefficients for u є Ll by 

akj(u) = j*Q uekj f o r a l 1 k e N > J e z • 

Now the operator DT has a spectral resolution 
DTv = Z(k2-j2T2)akJ(v)ekJ. 

keN 
jeZ 

It seems to be convenient to introduce the notation 
\AT й z\ = span {ekJ | k e N, j є Z, k2 - j2T2 й z} for z є Ä1 . • 

Further we shall write £ instead of £ . 
keN 
jeZ 
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Finally let us denote XT the greatest negative eigenvalue belonging to AT. 

We are going to prove the following lemma: 

Lemma 1. 
(i) For arbitrary a > 1 there exists the constant c5(a), c5(a) does not depend 

on Tand 
(8) £ \k2-j2T2\-"<c5(a)<+K. 

k2-j2T2*0 

(ii) Thefollowing estimate holds 

(9) |A,| ^ T. 

(iii) The nullspace ofthe operator DT, i.e. the L2-closure of \AT = 0| is characterised 
by 

(10) Ji{DT) = {u | u(x, t) = q(t + Tx) - q(t - Tx) , 

q є L2[0, 2л], q(s + 2n) = q(s) for all s є R1, Ц* q(s) ds = 0} . 

(i) Z \k2-fT2\-u I \k2-j2\-°û 
k2-j2T2*0 k2-j2*0 

й2^т-а^п-айс5(а). 
rneN neN 

(ii) \Лт\ = \к0-ІоТ\\к0+]0Т\^І.Т. 
(iii) See for example [2]. • 

Now we need some estimates concerning the function g. Let us set 

G(x, t, v) = def Jo g(x, t, s) ds for all x e [0, тс] , t є R1 . 

Using (F4) (i), (ii) we get immediately 

(11) 0(х,иѵ)йф\ѵ\* + c2\v\, 

(12) G(x, t, v) ^ c3lp \v\p - c4\v\ for all x є [0, тс] , ř, v є R1 . 

Combining it with (F4) (iii) we have 

(13) \v g(x, t, v) - G(x, t, v) ^ ô\v\p - (c2 + c4) \v\ 

for all x є [0, тс] , t, v e R1 . 

Finally let us define the function H 

(14) H(v) = d e f sup {g(x, t, v)\ x є [0, тс], t e [0, 2тс]} -

- inf {g(x, t - v)\ x є [0, тс], t є [О, 2тс]} . 
Observe that according to (F3) H is nondecreasing in v. Moreover the assumptions 
(F4) (i), (ii) imply 
(15) limH(v) = - o o . 

v^>- — oo 

Let us consider the scale of Hilbert spaces # J , defined for s e [0, 1], where # J is a 
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completion of \AT ф 0| according to the norm 

IIHI|,r = { Z \k2-fT^aUv)V'2. 
k2-j2T2*0 

We have for every v є Hj 

l*U*y/2|* I \akJ(v)\u 
k2-j2T2*0 

uj2|Kjc,(a){ I \k2-fT2\'a2
kJ(v)V12, 

k2-j2T2 + 0 

where a > 1 arbitrary (lemma 1). Interpolation theory gives 

M, й N2c*W~1)lp { x l̂ 2 - j2r2|fl(p-2)/2 4(u)}i/2 

\ 7Г J k2-j2T2*0 

since p є (2, + oo). We can choose a > 1 such that 

, = ^ ^ ) < i . 
P 

Thus we have obtained an important estimate 

(16) \\v\\p S c6\\\v\\\r,T for all v є Hj . 

The constant c6 > 0 does not depend on T. 
One easily verifies that v is a solution of the problem {P'T} (see definition in § 2) 

only if 
weLi , 

g(%v)eLl9 

(17) ( ^ 2 - J 2 r 2 ) a f c » + ^ ( - ^ ) ) = 0 

holds for all k є iV, j є Z. 

4. THE FINITE DIMENSIONAL APPROXIMATION 

We shall approximate our problem given by (17). Let us consider the sequence 
of finite dimensional Hilbert spaces 

En = span {ekj | k ^ n, \j\ S »} for n eN 

with a norm induced by || ||2. We define the functional lT
n on the space E„ by 

lt(v) = lZ(k*-fT>)a2
kJ(v) + SQG(',v). 

Clearly lT
n is of the class C\En, R1) with the gradient 

< g r a d J „ » , w> = Y(k2 - j2T2) aJv) akj(w) + jQg(% v) w . 

We get according to (12) that / J is coercive on En, i.e. 

(18) lim Il(v) = + oo . 
I|y|[2^00 
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Our aim is to find some appropriate critical points of the functional lT
n on En. 

We shall use the following assertion. 

Lemma 2. Let us choose z є R1 arbitrary. Then there exists a constant c7(z) e R1, 
c7(z) depends neither on Tnor on n, such that 

(19) Il{v) ^ c7(z) for all v e \ЛТ ^ z\ n En. 

Proof. Let us choose v є \ЛТ ^ z\ n En. We have 

Ш = i S (к2 - fT2) a>j(v) + Jß G(., v) ž z/2 \\ѵЦ + c*|p | , | ; - c > | N -
fc2-y2r2^z 

We have used the estimate (12). Further we get 

IT
n(v)^zl2\\v\\2

2 + c8\\v\\'2-c9\\vl2 

where c8, c9 > 0 depend on a only. Thus we obtain 

Il{v) £ inf(z/2 x2 + c8xp - c9x) ^ c7(z) . . 
x^0 

Let us denote the unitsphere in Hj (r from (16)) by 

SPj = { у | у є Я г
г , |||ü|||P>T = 1} . 

We are going to prove the following lemma. 

Lemma 3. Let z e R1 be a given number. Then there is T0 = T0(z), T0 є N (T0 does 
not depend on n )such thatforallT^ T0 

(20) Il{v) й z 

whenever v belongs to SPj n \AT < 0| n En. 

Proof. For v є SPj n \ЛТ < 0| n En we have 

ВД = І I (k>-fT>)aUv) + !aG(;v) 
k2-j2T2<0 

й -і^-'РШт + сіІрМі + ьМі-, 
Now according to (9), (16) we can conclude 

й -iTl-' + c10, 

where cl0 does not depend on T, n. If Tis sufficiently large, then (20) holds. m 

Now we are ready to show the existence of critical points of the functional lJx 

belonging to a critical level which is bounded independently on n. This fact will 
enable us to carry out a limit process. 

Let us choose a number d < 0 arbitrary, d < c7(0). According to lemma 3 we 
can find T = T{d) satisfying 

(21) Il{v) S d for all v e SPj n \AT < 0| n En. 

In what follows, T = T(d) will remain fixed. Thus we can drop the subscript T 
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for the sake ofconvenience. Set 
c u = min (с7(Я), d) — 1 . 

Denote by Pn the orthogonal projection 

Pn: En ^ \A < 0| n En . 

Suppose that there is not a critical value ofJw in the interval [c11? i ] i.e. 

(22) If v e {v | grad lJv) = 0} , then In(v) є (— oo, c n ) u (d, + oo) . 

Since (18) holds, it can be shown (see [5] for example) that there is a homotopy h 
satisfying 

h:{v\ln(v)ud} x [ 0 , 1 ] ^ £ и , 

h(v, 0) = v for all v, 

(23) 4(A(t;, i)) ^ d + e < c7(0), г > 0 , for all v, t 

(according to (21)), 

(24) h({v | Іп(ѵ)й dl 1) Я {v | In(v) й ctl} . 

Let us denote the unit sphere in En n \A < 0| by 

S;={v\veEnn\A<Ol H i - 1 } . 

Clearly there is the homeomorphism Q from S~ onto S P r n |Л < 0| nEn. Now 
according to (23), (21) 

Pn(h(v, t)) Ф 0 for all ü є SPr n \A < 0| n £ и . 

Thus it is correct to define a new homotopy 

Ä: s ; x [o51] ^ s ; , 

h(v t) =
 Р^Ш^) 

V ' J \\Pnh(Q(v),t)\\2' 

Now the mapping fi(% 0) is essential because it maps 5 " onto 5 " . 
On the other hand if n is sufficiently large (in order to \A = k\ Ç En), there exists 

e e S~ n \A = A|. According to (24) 

^ A ( S " , 1 ) . 

Consequently £(••, 1) is homotopically trivial. But this is impossible and thus (22) 
must be false. 

We have just obtained the following result: There exists the sequence {vn}^=no 

of approximate solutions of the problem {P'T} satisfying 

(25) i X(fc2 - fT2) 4 ( 0 + Jfl G(., vn) e [ c u , d] , 

(26) I ( f c 2 - 7 2 T 2 ) a f t , ( O % W + ÍQ6 ' ( - .Ow = 0 foralI w e £ „ . 
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5. THE CONVERGENCE OF APPROXIMATE SOLUTIONS 

We are going to carry out the limit process in the sequence {vn}™=no. First let us 
set w = vn in (26) and combining it with (25), we get 

(27) iíQg(-,vn)vn - $QG(-,vn)e[-d, - c u ] . 

Now using (13) we obtain the existence ofthe constants ci2 > 0 and c13 > 0 (by (F3)) 

(28) \\vn\\p < c12 , 

(29) Ы->»п)\\р> <ci3 forall n^ n0 

where l|p + l|p' = 1. Further we need the following lemma. 

Lemma 4. For arbitrary s > 0 there exists l(s) > 0 satisfying 
(30) £ \k2-j2T2\a2

kJ(v„)<e forall n^n0. 
\k2-j2T2\^l(8) 

Proof. Let us set 
wn = £ s S n (k2 - fT2) akj(vn) ekj 

\к2-рТЦ^І 
in (26). Thus we get 

X \k2 - j2r2 | **,(».) š c 1 3 k L ^ сіз <*IHI|r ^ 
jfc2_j2j2J^i 

s c , A r " ^ { E | * * - ^ | a & * , ) } 1 ' * . 
|fc2.y27>2|^l 

Since r < 1, we can choose 1 > 0 such that 
сізс61(г~1)/2 <e2 . . • 

Consider now the orthogonal projection 
P: L2 ^ Я0 . 

According to (30) we have {Pva}™=„0 is totally bounded and consequently precompact 
in Hv Combining it with (28), (29) we get the existence of a subsequence (denoted 
{*Viw=i f° r simplicity) satisfying 
(31) vn ^ v weakly in Lp , 

g(%vn)^><p weaklyin Lp,, 
Pvn -> v strongly in H± . 

For fixed w є En we can pass to the limit in (26) now. We get 
(32) l(k2 - j2T2) akj(v) akJ(w) + Ja <pw = 0 . 
Setting w = vn in (26) we get 

(33) Km$Qg(-,v„)v„ = - | I H | i -
n^oo 

Now we can insert w = vn in (32) and pass to the limit 

(34) - | |HI|i = ie<^-
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Combining (33), (34) and (31) with (F3) we get 
(35) <P = g ( ' , v ) 
using standard arguments of monotone operator theory (see [3]). Thus (32) is equi­
valent to (17) and we conclude that the function г; is a solution of the problem {P'T} 
belonging to the space Lp. 

Moreover from (27) using (33), (34), (35) and the convexity of G, we have 
i!Q9(->v)v-$QG(%v)ž -d. 

Applying (F4) (i), (ii) we get an estimate 

(36) Ci/2|Hl5 + (c2 + c 4 ) H | i Ž -à. 

6. REGULARITY OF THE SOLUTION v 

It remains only to show that v is of the class L^. The estimate (36) then gives 
|]t;||oo ^ K if we choose d < 0 sufficiently small. In order to prove this, we use an 
analogous technique as in [2]. 

Consider the following decomposition 

v = v1 + v2 

where v1 = Pv and v2 = (Id — P) v. It is known that |t>i||oo ^ M (see [2]) for 
some constant M. Now v2 represents the nullspace component of v according to DT. 
Now we have 

(37) JS g(x, t + Tx, v(x, t + Tx)) - g(x, t - Tx, v(x, t - Tx)) dx = 0 

for a.e. t e [0, 2rc] 

since g{% u) is orthogonal to J^(DT) given by (10) (see [2] for details). Now v2 can 
be written as 

v2(x, t) = q(t + Tx) - q{t - Tx) , q as in (10) , q є Lp[0, 2тс] . 

Thanks to the assumption (F3) we get from (37) 

(38) JS g(x, t + Tx, M + q(t + 2Tx) - q(t)) -

- g(x, t - Tx, - M - q(t - 2Tx) + q{t)) dx ^ 0 . 

Consequently after an easy computation 

(39) Ц* H(M + q(s) - q(t)) às £ 0 for a.e. t e [0, 2тт] . 

Suppose that there is a sequence {*„}£Li £ [0, 2rc], g(ř„) >̂ rc and 

meas {i | ř є [0, 2тс], g(í„) ^ n] > 0 . 
We can insert t = ř„in (39) now. According to monotonicity of H we can pass to 
the limit on both sides of (39). But the limit on the left-hand side equals — oo ac-
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cording to (15). Thus 
ess sup q(s) < + 00 . 
se[0,2*] 

Similarly we prove 
ess sup — q(s) < + 00 
se[0,2n] 

and consequently v2 є L^. 
Theorem 1 has been proved. 
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