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THE EXPONENTIAL DICHOTOMY 

JAROSLAV KuRzwEiL, Praha, and GARYFALOS PAPASCHiNOPOULOS, Xanthi 

(Received April 1, 1986) 

INTRODUCTION 

Consider the difference equation 

(1) x(n + 1) = A(n) x{n), n є N = {0, 1, ...} 

where A(n) is an invertible k x fc-matrix for n є N such that 

\А(п)\йМ, \А'\п)\йМ9 M > 0 , neN. 

We denote by Wthe space of the systems of the form (1) and by | • | the Euclidean 
norm. 

Equation (1) is said to possess an exponential dichotomy if there exist a projec
tion P (P2 = P) and constants K > 0, 0 < p < 1, such that 

\X(n) РХ~\т)\ й Крп~т , n ^ m 

\X(n) (I - P) X'\m)\ й Kpm~n, m ^ n 

where X(n) is the fundamental matrix solution of (1) such that X(0) = L 
Consider a system in W 

{2) y(n + 1) = B(n) y{n). 
According to [5, p. 17], (l) and (2) are said to be topologically equivalent ifthere 

exists a function h: N x Rk ^> Rk with the following properties: 
(i) if |x| -^ oo, then |ft(n, x)| ^ oo uniformly with respect to n, 

(ii) the map /?„(•) = h(n, •) from Rk to Rk is a homeomorphism for each и, 
(iii) the map #„(•) = fyT*(') from Як to jRfc also has property (i), 
(iv) if x(n) is a solution of (1) then h(n, x(n)) is a solution of (2). 
Equation (1) is called structurally stable if there exists ö > 0 such that if (2) 

belongs to H^and \B(n) — A(n)\ < ô then (2) is topologically equivalent to (l). . 

The results of this paper are: 

(i) Ifequation (1) has an exponential dichotomy then it is topologically equivalent 
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to the system 
(3) xL{n + 1) = eL xL{n), i = 1, 2 , . . . , k 

where eL = l/e or eL = e. 
(ii) System (1) is structurally stable if and only if it has an exponential dichotomy. 
The above results are the discrete analogues of those of Palmer [4] and [5]. We 

denote that the first result is not derived directly form the continuous case. 
We also note that some results on exponential dichotomy and structural stability 

ofdiscrete systems are included in the papers [6], [7], [8], [9], [10], [11]. 

MAIN RESULTS 

Proposition 1. If equation (1) has an exponential dichotomy then it is topolo-
logically equivalent to (3). 

Proof. Suppose that (1) has an exponential dichotomy. Let the rank of the cor
responding projection P be /. Using the same method as in [2, pp. 39 — 41] we find 
an invertible bounded matrix S(n) with bounded inverse such that the transformation 
x = S(n) y transforms (1) into the system 

(4) y(n + 1) = diag (A,(n), A2(n)) y{n) 

where A^n) is an / x 1 matrix and A2(n) is a (k — /) x (k — /) matrix. 
Moreover, the system 

(5) y(n + l) = A,(n)y(n) 

has an exponential dichotomy with a projection of rank equal to / and the system 

(6) y(n + i) = A2(n)y(n) 

has an exponential dichotomy with a projection of rank equal to 0. 
Consider equation (5). Let Yj^n) be a fundamental matrix solution of (5). By 

Gram-Schmidt orthogonalization of the columns of Yj(w), [2, p. 87], starting with 
the first column, we obtain a unitary matrix U^n) and an upper triangular matrix 
V{n) in which the diagonal elements are real and positive functions for all n e N 
such that Ux{n) = Y^n) V(n). The change of variables y = U^n) z transforms (5) 
into the system 
(7) z(n + 1) = Щ\п + 1) A^n) Ui(n) z(n) = B^n) z(n) . 

The matrix tŽ_1(w) is a matrix solution of(7) since U^n) = Y^n) U(n). So Bt{n) = 
= TJ~l{n + 1) TJ(n). Therefore B^n) is an upper triangular matrix in which the 
diagonal are real and positive functions on N. 

Consider the differential equation 
rlog J5i(0) , 0 й t < 1 
l ogBi ( l ) , 1 й t<2 

(8) z = B(t) z , B(t) = 
log B^n) , n ^ t < n + 1 
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From [1, p. 39] we have 

log B,(n) = — Jy (z/ - ^ ( n ) ) " 1 log z dz 
Z7T1 

where y is any simple closed curve which contains in its interior every characteristic 
root of Bx(n) but not the origin. 

We claim that log B^{n) is a real valued bounded matrix for n є N. It is obvious 
that it is a real matrix since Bx{n) is an upper triangular matrix with real positive 
diagonal elements. Since the matrices B^n),B^(n) are bounded for neN there 
exist constants X, fi > 0 such that X ^ XL(n) ^ fi, n eN, i = 1, ..., 1 and XL(n) are 
the eigenvalues of Bj(n). We choose r > max { (̂e + ^ — Я), ^(e + ^)}, Я > e > 0. 
So —r + 8 + ^ < r < r — e + X. Consider z0 e R+: r < z0 < r — e + X. It is 
obviousthat |z0 — X\ < r — e and |z0 — ^| < r — e. Let y be the sphere |z — z0\ = 
= r. Then wehave \z — At(n)| = \z — z0 + z0 — At(w)| = | z ~~ zo| ~ |zo ~ ^(rc)| ^ 
^ r - (r - e) = г, i = 1, . . . , /. So if |J5i(n)1 ^ L, L > 0, neiV then [2, p. 47} 
implies 

\(zi - B,(n))-4 s Ф'-Д'ООГ1 <; Фо + г + ьу-* 
|z — Aj(n)| .. . \z — Я1(п)| г1 

с a constant. 
Therefore log Б^и) is a bounded matrix for n є АГ. Hence our claim is proved. 
Let Z^t) be the fundamental matrix of (8) such that Zx(0) = I. Then 

f*logBi(n)ds 

Z,(t) = eJn Zi(w) = е
( Ґ-" ) І08Ві (и ) Zi(n) , n й t < n + 1 , 

Zi(í) = e
( ř -"~ 1 ) l o g B l ( n + 1 ) Zi(w + 1) , n + 1 ^ t < n + 2 . 

The above relations yield 

Z,{t) = e ( í"""1 ) , 0 i J , l ("+ 1 ) elogfîl(/J) Zi (n) , и + 1 â t < n + 2 . 

Take t = n + 1. Then we obtain 

Zi(n + 1) = ^i(n) Z±(n) , и є iV . 
Therefore Zi(w) is a fundamental matrix solution of(7). 

We prove that equation (8) has an exponential dichotomy. If z(f) is a solution of 
(8) then for t є R+ we have 

z(t) = Zt(t) Z r*(M) Z M ) > M b e i n § t n e integral part of ř . 
If |B(i)| й L then for teR+ we have {Z,(t)Z^([t])l й e I ( ř~ [ ř ] ) g e1. So for 
t *> 5 ^ 0 and provided e~ö, a > 0, К > 0 are the constants of the exponential 
dichotomy of (7) we have 

|z(i)| й e£ |z(M)| й Ke r e- e ( [ ř ] " w >| z([s])| ^ 

á K e V ^ - ^ " * > | z ( [ s ] ) | á Í?e2Ie2ae~fl(ř~s)|z(s)| , í ^ 5 ^ 0 . 

Then by Palmer's Theorem in [4, p. 9] and arguing as in [5, p. 20] we prove that (8) 
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and x[ = —XjL are topologically equivalent (c.f. [5, p. 17]). Let ht: R+ xR1 ^> Rl 

be the corresponding homeomorphism. If z(t, 0, x) is a solution of (8) such that 
z(0) = x we get 

hx(t9 z(t, 0, x)) = e"%(0 , x), t є R+ , x є R1 . 

Take t = n, n eN. So (7) and xx(n + 1) = c~1x1(n) are topologically equivalent. 
Now consider system (6). Proceeding as in (5) we obtain a unitary matrix U2(n) 

such that the change of variables y = U2(n) z transforms (6) into a system 

<9) z(n + 1) = B2(n) z{n) 

where B2(n) is a (k — /) x (fe — /) upper triangular matrix in which the diagonal 
elements are real and positive functions on N. Arguing as in (7) we prove that (9) 
and x2(n + 1) = ex2(x) are topologically equivalent. Let h2:N x iť""1 ~> jRfc_1 

be the corresponding homeomorphism. Therefore the system 

z(n + 1) = diag (Bi(n), B2(n)) z{n) 

is topologically equivalent to (3). Hence (4) is topologically equivalent to (3). 
The corresponding homeomorphism is h(n, x) = (h^n, [U~~1(n) x}x), 
h2(n,{U~1(n)x}2)) where {U~i(n)x}l and {U~1(n)x}2 are the components of 
U-i(n)xin R1 and Rk~\ respectively, U(n) = d i a g ( ^ ( n ) , U2(n)). So (l) and (3) 
are topologically equivalent. The corresponding homeomorphism is h(n, x) = 
= h(n, S'1^) x) and the proof ofthe proposition is complete. 

Proposition 2. Equation (l) is structurally stable ifand only if it has an exponen
tial dichotomy. 

Proof. The proofofnecessity is given in [10, Proposition 2]. Using Proposition 1, 
the roughness of the exponential dichotomy [3, p. 232] and the same argument as 
in [5, p. 20] we can easily prove sufficiency. 
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