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Czechoslovak Mathematical Journal, 38 (113) 1988, Praha 

ON A PROPERTY OF PSEUDOMETRICS AND UNIFORMITIES 
NEAR TO CONVEXITY 

JAN HEJCMAN, JiŘí ViLÍMOvsKÝ, Praha 

(Received March20, 1987) 

Several attempts to generalize the concept of convexity to the theory of metric 
spaces appear in the literature. They can be divided roughly into two parts. The first 
one is the study of "convex-like" sets in a general metric space, the second one is 
the study of "convex-like" metrics reflecting some properties of the usual convexity 
in linear spaces (see e.g. [6], [9]). The nature of our work is of the second type. 
In the first part, we define a very general concept of a so-called preconvex pseudo-
metric. Many methods of the convex calculus may be used mainly to examine the 
uniform structure ofthe corresponding spaces. The second part is devoted to uniform 
spaces the uniformity of which has a basis consisting of preconvex pseudometrics. 
It is shown that such spaces have very nice characterizations in terms of covers 
and entourages and that the class of all such spaces contains many natural spaces. 

We refer to [4] for basic definitions and results pertaining to uniform spaces. 
However, we assume no separation axiom, thus a uniform space is a preuniform 
space in the sense of [4]. Similarly several elementary facts on uniform dimensions ôd 
and Ad may and will be used in this general case too. 

If d is a pseudometric on a set X, r a positive number, x є X, we denote Bd(x, r) = 
= {y e X; d(x, y) < r} and J^(r) stands for the canonical uniform cover {Bd[x, r); 
x e X]. If ^ is a cover of X, x e X, then St(x, ^ ) denotes the star of x with respect 
to У, St ^ = {St(x, 9); x є X}. The letters N, R stand for the set of all non-negative 
integers, all reals, respectively. The symbol o denotes the usual composition of 
functions or relations. 

1. PRECONVEX PSEUDOMETRICS 

1.1. Definition. Let d be a pseudometric on a set X, c a positive number. We call d 
to be preconvex for distances less than c if for any x, y in X with d(x, y) < c and 
any positive numbers r, s with d(x, y) < r + s there exists z in X with d{x, z) < r, 
d(z, y) < s. The pseudometric d will be called preconvex ifthe upper condition holds 
for at least one c, it will be called globally preconvex ifit holds for all positive c. 

The following proposition contains several easy reformulations of the definition. 

366 



1.2. Proposition. Let d be a pseudometric on a set X, c > 0. The following 
properties are equivalent: 

(1) d is preconvexfor distances less than c. 
(2) If x, у є X, rt > 0 for i = 1, ..., ra, m ^ 2 and d(x, y) < min {rx + ... 

... + rw, c}, then there arez0 = x, z l 5 ..., zm_1? zm = y inXsuchthatd(z^j^, Z|)-< 
< rř / o r a// i = 1, ..., m. 

(3) J / x, у є X, r > 0, d(x, y) < 2r ^ c, then there is z є X with d(x, z) < r, 
d(z, y) < r. 

(4) For any x є X, 0 < 2r ^ c, we have St(x, ^ d ( r ) ) = 5 d( x ' 2 r ) -
Proof, (l) => (2) follows easily by induction, the implications (2) => (3), (3) o ( 4 ) 

are immediate. To prove (3) => (l) let d(x, y) < r + s ^ c. Choose b > r such 
that d(x, y) < b < r + s. Put zJ = x, z\ = y and take z\ є X such that d(zJ, zJ) < 
< 2 _ 1 b , d(z[,zl) < 2~1b. Proceeding by induction we construct z"eX, n = 
= 1 ,2 , . . . , i = 0 , l , . . . , 2 " such that zn

0 = x, zn
2n = y, d(z^^zf)<2"*b for 

i = 1, . . . ,2 n . Choose n such that (1 + 2~и) Ь < r + 5 and take i g 2rt the first 
integer such that 2""b(r' + 1) ^ r. Then we have 

d(x,zfy й 2~nbi < r , 

d(z"t, у) й 2~пЪ(2« ~ і) = fe(l + 2_и) - 2""b(i + 1) < s . 

Note that if X is a convex subset of a normed linear space, the metric induced 
on X by the norm is (globally) preconvex. On the other hand, X need not look like 
convex and the mentioned metric is still globally preconvex, take e.g. the rationals 
in R. Also the uniformly discrete metric is preconvex. 

The following two observations show that there are not many discrete or zero-
dimensional preconvex pseudometrics. Recall that a pseudometric d on a set X is 
called quasidiscrete if for each x e X there is r > 0 such that d(x, y) < r implies 
d(x, y) = 0, if r can be chosen independently on x, then d is called uniformly quasi-
discrete. This simply means that the corresponding metricis discrete or uniformly 
discrete respectively. 

1.3. Proposition. A pseudometric d on a set X is uniformly quasidiscrete if and 
onlyif d is quasidiscrete and preconvex. 

Proof. Suppose d is preconvex for distances less than c and there exist x, y with 
0 < d(x, y) < c. Given any r > 0, there is z such that d(x, z) < r, d(z, y) < d(x, y). 
But d(x, z) > 0, hence d is not quasidiscrete. The rest of proof is evident. 

1.4. Proposition. Let d be a preconvex pseudometric on a set X. Then either d 
is uniformly quasidiscrete or od(X, d) ^ 1. 

Proof. Take c > 0 such that d is preconvex for distances less than c. Suppose 
od(X, d) < 1 and d is not uniformly quasidiscrete. Take x, y with 0 < d(x, y) < c. 
Then {X \ {y}, X \ {x}} is a uniform cover of (X, d), we can refine it by a uniform 
partition {G, Я} such that x є G, у є Я. The d-distance of G, H is at least some 
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e > 0, by 1.2 (2) for rt ^ є we find u є G, v є H with d(u, v) < s, which is a contra­
diction. 

1.5. Proposition. Let d be a pseudometric on a set X, Ya dense subset of (X, d), 
c > 0. Then d is preconvexfor distances less than c ifand only if its restriction dY to 
Yis preconvexfor distances less than c. 

Proof. Suppose d is preconvex for distances less than c, take x, у є Y, r, s > 0, 
d(x, y) < r + s S c. There is z є X with d(x, z) < r, d(z, y) < s. Choose w e Y 
with d(z, w) < min {r — d(x, z), s — d(z, y)}, then d(x, w) < r, d(w, y) < s. 

Conversely suppose dY is preconvex for distances less than c, take x, у є X, 
r, s positive such that d(x, y) < r + s g c. Choose e > 0 such that d(x, y) + 4e < 
< r + s and take u, v є Y with d(x, u) < є, d(y, v) < e. Then d(u, v) ^ d(u, x) + 
+ d(x, y) + d(y, v) < r + s — 2є. Find z є Y such that d(w, z) < r — e, d(z, v) < 
< s — e. Then d(x, z) < r, d(z, y) < s, hence d is preconvex for distances less than c. 

1.6. Proposition.Lef d be a pseudometric on a setXpreconvexfor distances less 
than c, x, уєХ, 0 < d(x, y) < c. Let S be an arbitrary countable subset of the 
interval [0, 1] containing 0, 1. Thenfor every а > 0 there is an injective mapping 
f: S ^ X such that / (0) = x, / ( l ) = y and d{f{s)J(t)) < (d(x, y) + e) (t - 5) for 
all t > s in S. 

Proof. I. At first observe that if r, s are positive, d(x, y) < r + s 5g c, then the 
set of all z such that d(x, z) < r and d(z, 3;) < s is infinite. Actually, if it would 
be finite, take a = d(x, z0) the minimum of all the numbers d(x, z). Then d (x, y) g 
^ d(x, z0) + d(z0, y) < a + s, hence we can find v є X with d(x, v) < a, d(v, y) < s 
and we get a contradiction with the minimality of a. 

II. Put k = min {d(x, y) + e, c}. Suppose that S is infinite and S = {sn; n є N}, 
where s0 = 0, Si = 1, sn Ф 5Ш for и Ф m. Define ДО) = x, / ( l ) = у and proceed 
by induction. Suppose n > 1 and /(s ř) have been defined for all i < n and 
d(f(si),f(sj)) < k(sj — sf) for all i,j < n, st < Sj. Take u = max {s ;̂ i < n, 
Si < sn), v = min {sii i < n, Si > sn}. Since d(f(u),f(v)) < k(v — u) ^ c, we can 
choose f(sn) = z such that d(f(u), z) < fc(s„ - u), d(z,f(v)) < k{v — sn). Using I) 
z can be chosen different from all /(s,) defined before. Now, if i < n, st < sn, we 
have d(/(Si),/(s„)) й d(/(s,),/(u)) + </(u) , / (s„)) < % - s,) + % - u) = 
== k(s,, — sř). Similarly for the case st > sn. 

As a consequence of the preceding proposition we obtain the following characteri­
zation of preconvexity. 

1.7. Theorem. Let d be a pseudometric on a setX, c > 0. Thefollowing properties 
are equivalent: 

(1) d is preconvexfor distances less than c. 
(2) For any x,yeX with 0 < d(x,y) < c, for any countable dense subset S 

of the interval [0, 1] containing 0, 1 endowed with the usual metric andfor any 
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к > d(x, у) there exists an injective f: S ~> X Lipschitz with constant k such that 
/ (0) = x, / (1) = y. 

(3) For any x, у є X with 0 < d(x, y) < c and any k > d(x, y) there isf: Q2 -+ X 
Lipschitz with constant k such thatf(0) = x , / ( l ) = y. (Here Q2 stands for the set 
of dyadic rationals in [0, 1] with the usual metric.) 

Observe that if (X, d) is complete, d preconvex for distances less than c, 0 < 
< d(x, y) < c, then by 1.7 and by Mazurkiewicz Theorem (see e.g. [5], § 50), x and y 
can be joined by an arc, hence there is a (uniformly) homeomorphic copy of the 
compact interval between x and y. In the non-complete case, Theorem 1.7 allows 
to join every such points by a one-to-one "almost isometric" image of Q2 , but in 
general it is possible, as the following example shows, to find a non-trivial space with 
globally preconvex metric that contains no uniformly homeomorphic copy of Q2. 

1.8. Example. Let X be the set of all sequences x = (xn; n є N) of non-negative 
numbers such that £(x„; n є N) < oo. For x, y in X define d(x, y): if x Ф y, let h 
be the first index with xh Ф yh and put d(x, y) = \xh — yh\ + £(xn; n > h) + 
+ £(y„; n > A), if x = y, we put d(x, y) — 0. Let us show that d is a metric on X. 
To prove the triangle inequality let x Ф у Ф z Ф x be points of X, let h be as above 
and let k be the first index with yk ф zk. We may suppose h g k. If h < k, then 

d(x, z) = \xh - yh\ + £(x„; n > h) + £(z„; A < n < fc) + zfc + 

+ E(zn; n > к) й \xh - л | + 2(xn; л > A) + % „ ; A < n < k) + 

+ Л + K - ЛІ + £(**; w > fc) Ž d(x, y) + d( j , z) . 

If A = k, let / be the first index with хг ф zv If / > A, then 

d(x, z) = JX| - z,| + Z(x„; n > í) + S(zw; n > /) g 

^ L(xn; n ^ 1) + I(z„; n è /) á rf(x, y) + d( j , z) . 

If / = A, it suffices to use the inequality \xh — zh\ й \xh — yh\ + \yh ~ zh\. 
Let us prove that d is globally preconvex. Moreover, we prove that d is convex 

(see below). Let x, у є X, r > 0, 5 > 0, d(x, y) = r + s. Let h be the first index 
with xh Ф yh. Then d(x, y) = \xh - yh\ + E(xn; и > h) + Ъ(уп\ n > h). We may 
suppose xh < yh. If r > £(хи; и > A), s > ѣ(уп; n > A), put z = (z„) where zn = x„ 
for n < h, zh = r — E(x„; n > A), z„ = 0 for n > h. Then clearly d(x, z) = r, 
d(z, y) = s. Suppose r ^ £(x„; и > A). Let k be the first index such that r > 
> l(x„; n > k) and put z = (z„) where zn = xn for n <fc, zfc = r — £(xn; n > &), 
zn — 0 for и > k. Again d(x, z) = r, d(z, j ) = s. The case s ^ S( j n ; n > A) is 
completely analogous. 

Let Ybe the subset of X consisting of all sequences (xn; n e N) where xn > 0 for 
infinitely many n. It is easy to prove that 7 i s dense in (X, d). Thus, by 1.5, dY is 
globally preconvex. Further, âd(Y,dY)^ 1 by 1.4. Let p r , - : ( Y , d y ) ^ R be the 
projection x h^ Xj forj є N. Since, for any x, y, \xj — ^ | ^ d(x, y), pYj are Lipschitz 
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with constant 1. Observe that any set prJ^[c] with j є N, c ^ 0 is both closed and 
open in Y. Hence e.g., the space (Y, dY) is not separable. But the subspace ofsequences 
of rational numbers is separable and has all considered properties. 

Now, suppose that S is a dense subset of the interval [0, 1] a n d / : S ^ (Y, dY) is 
a uniformly continuous injective mapping. We are going to prove that / is not 
uniformly homeomorphic. In view of the density in any non-degenerate subinterval 
we may suppose 0 є S, 1 є S. There exists a smallest index j such that pry о / is not 
constant. As S is dense and pr,-o/ is uniformly continuous, the set (p ryo / ) [S ] 
contains at least three numbers. Choose a number c such that the set C = 
= (pr,. o / ) " 1 [c] is non-void and contains neither 0 nor 1. Choose у є C and put 
a = inf {£; s є S, £ < s < y => s e C}, ß = sup {£; s є S, y < s < Ç => s e C}. 
Since C is closed and open, we get 0 < a < ß < 1. Now, let s > 0 be arbitrary. 
Then there exists ö > 0 such that \s — t\ < ô implies d(f(s),f(t)) < s, we may 
suppose 30 < ß — a. As S is dense, there exist u, v in C and u', v' in S \ C such that 
u' S a <'U < v< ß ^ v' and u — u' < ô, v' — v < ô. L e t / ( w ) = (xn; n є N), 
f(v) = (yn; n є N). Then d(f(u'),f(u)) < e and и' ф C implies E(xn; и > j) < є. 
Analogously£(yw; n > j) < є. Thus d(f(u),f(v)) < 2є. However, v - и > (ß — a)/3, 
hence the inverse mapp ing / " 1 is not uniformly continuous. 

Let us mention still two non-trivial properties of the space (X, d), which are not 
needed now: (X, d) is complete, Ad (X, d) ^ 1, hence öd (У, dY) = Ad (Y, dY) = 1 
(see [4], V.2, V.5). 

We will turn our attention to the question, how to construct preconvex pseudo-
metrics on a given pseudometric space. We are going to describeauseful method, 
roughly speaking defining a new distance as "the length ofthe shortest path". 

Let d be a pseudometric on a set X, let J c R, / : J ~> X. Put var / = 
= supE(d(/(ii_!),/(r;)); i = l , . . . , n ) where the supremum is taken over all 
sequences t0 < tx < ... < tn, where tt e J and n is arbitrary. Further, for any x, y 
in X, denote by P(x, y) ( = pathes from x to y) the collection of all mappings/such 
that thereexist J czK, a є J, ft є J with J = [a, ft] such that J is the domain of/, 
/ : J -• (X, d) is uniformly continuous, / ( a ) — x, /(ft) = y. Any J c R will be con-
sideredto be endowedwith the usual metric. 

.1.9. Lemma. Let d be a pseudometric on a set X. Let J cz R? J = [a, b], a є J, 
beJ, let f:J^>(X,d) be uniformly continuous, v a r / < o o . Put v(t) = 
= v a r / ^ ( J n [a, f]) /or ř є J. Then z;[J] is Jense in the interval [0, v a r / ] . 

Proof. Suppose u[J] is not dense in [0, v a r / ] . The function v is non-decreasing, 
hence there exist p e [a, ft] and a, jß, 0 < a < ß < ѵаг/ such that t;(r) ^ a for any 
/ є J, í < p and t)(r) ^ jS for any t e J, ř > p. Assume a < p < ft. Choose e > 0, 
s < \[ß — a) and ô > 0 such that s, í є J, s < ř < s + ^ imply d(f(s),f(t)) < s. 
Let ř; є J, a = r0 < t1 < ... < tn = ft. Let h be the greatest index with th < p 
and k the smallest index with tk > p. In view of the density ofJ , there are sí9 s3 є J 
such that th < sx < p < s3 < tk and s3 — sí < ô. Put s2 = p = th + 1 if ^ = h + 2 
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and s2 = s1 if к = h + 1. Now we have 

2(d( / ( i i - i ) , / ( i0) ; * = 1. •••> ») á 2(d(/(i ,_!), /(i ,)); 1 ^ i ^ h) + 

+ d(f(th),f(Sl)) + d(f(Sl)J(s2)) + d(f(s2),f(s3)) + 
+ d(f(s3),f(tk)) + Z(d(f(u^),f(u); k < і й n) й 

й ф х ) + d(f(Sl),f(s2)) + d(f(s2),f(s3)) + v(b) - v(s3) < 
< a + 2s + v a r / — ß < v a r / , 

which is a contradiction. The cases p — a and p = b are similar but simpler. 

1.10. Proposition. Let d be a pseudometric on a set X, c > 0. For x, y in X put 
d(x, y) = inf{var/ ; / є P(x, y)}, dc(x, y) = min {d(x, y), c}. Then, for any x, y, 
d(x, y) g d(x, y), d(x, y) = 0 implies d(x, y) = 0 and d(x, y) ^ c implies d(x, y) S 
5̂  dc(x, y). Tfte function dc is a pseudometric on X preconvex for distances less 
than c. Iffor any x, y in X there isf in P(x, y) with v a r / < oo then d is a globally 
preconvex peudometric on X. 

Proof. Let x, y e I , r > 0, s > 0, d(x, y) < r + 5. Choose / in P(x, y) with 
v a r / < r + s. By 1.9, there are z eX and g є P(x, z), h є P(z, y) with var g < r, 
var h < s. Then d(x, z) < r, d(z, y) < s. The rest of the proof is easy. 

1.11. Proposition. Let d, e be pseudometrics on a set X, d(x, y) g e{x, y)for all 
x, y, let c > 0. If e is preconvex for distances less than c, then dc(x, y) ^ e(x, y) 
and ife is globally preconvex, then d(x, y) g e(x, y)for all x, y. 

Proof. Suppose / is preconvex for distances less than c. Let e(x,y) < c. Let 
k > e(x, y). Take the mapping / : Q2 ^ (X, e) from 1.7. Clearly, / : Q2 ^ (X, d) 
is Lipschitz with constant k,fe P(x, y), v a r / ^ k. Hence d(x, y) ^ e(x, y) and both 
assertions follow. 

As an easy consequence we obtain the following interesting characterization of 
preconvexity. 

1.12. Corollary. Let d be a pseudometric on a set X, c > 0. Then d is preconvex 
for distances less than c if and only if min {d(x, y), c] = dc(x, y)for all x, y, and d 
is globally preconvex if and only if d = d. 

It is evident that on a linear space, every pseudometric generated by a seminorm is 
preconvex. The following example shows that, for metric linear spaces, there is no 
good relation between local convexity and preconvexity of the metric. 

1.13. Example. Let 0 < p < 1. The space Lp([0, l]) endowed with the standard 
metric d defined by d(x, y) = jo \x(t) — y(t)\pdt is not locally convex. Given any 
x, y, then by the continuity of the integral there exists a number s such that, if z is 
defined by z(r) = y(r) for t ^ s and z(r) = x(t) for t > s, then d(x, z) = d(z, y) = 
= 2d{x,y). Therefore, by 1.2(3), d is globally preconvex. On the other hand the 
standard metric e on lp is not preconvex. Indeed, choose a > 0 and put x = (0, 0 , . . . ) , 
y = (a, 0, . . . ) . Then 2.2~p ap > ap = e(x, y). Now e(x, z) < 2~pap implies z0 < \a, 
e(z, y) < 2~pap implies z0 > \a, which is impossible. 
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Now we will present some propositions which will illustrate how the classical 
results on convex sets in normed linear spaces may extend to the case of spaces 
endowed with preconvex pseudometrics. 

1.14. Proposition. Let d be a pseudometric on a set X, preconvex for distances 
less than c. Ife is any pseudometric on X which is uniformly continuous on (X, d), 
then there exists a constant k, 0 < k < 00 such that d(x, y) < c implies e(x, y) < k, 
specially sup {e-diam Bd(x, c); x є X] < oo. 

Proof. There exists a natural number m such that d(u, v) < c|m implies e(u, v) < 
< 1. By 1.2(2) for x,y with rt = c|m and the triangle inequality for e, we get 
e(x, y) < m. 

The following extends a result of Corson and Klee [2]. 

1.15. Proposition. Let (X, d), (Y, e) he pseudometric spaces, f: (X, d) -• (Y, e) 
uniformly continuous. Thenfor each ô > 0 there exists a constant k such that ifd 
is preconvexfor distances less than c, then ö ^ d(x, y) < c implies e(f(x),f(y)) ^ 
^ k . d(x, y). 

Proof. Choose n > 0 such that d(u, v) < ц implies e(f(u),f(v)) < \. Put k = 
= l/min {rj, ö]. Let ô ^ d(x, y) < c. Let m be the least integer such that k . d(x, y) < 
< m. By 1.2, there exist x0 = x, x l 5 ..., xm = y with d(xi_1, xt) < \\k for i = 
= 1, ..., m. But l/fc й Ц, hence e(f(x),f{y)) S ^(e(f(x^,),f(x,)); 1 й i S m) < 
< \m й i(k . d(x, y) + 1) й ik(d(x, y) + S) й к . d(x, y). 

1.16. Proposition. Let (X, d), (Y, e) be pseudometric spaces, f: (X, d) ~> (Y, e) 
uniformly continuous. Let d be preconvexfor distances less than c. Then the module 
ofcontinuity off, i.e. thefunction ýf definedfor r > 0 by 

ФАГ) = sup {e(f(x),f(y)); d(x, y) < r] 
is subaditive on the interval ]0, c[. 

Proof. Let r, s > 0, r + s < c. Given ô > 0, there exist x, y such that d(x, y) < 

< r + s and ýf(r + s) < e(f(x),f(y)) + ö. Take z with d(x,z) < r, d(z, y) < s. 
Now фг(г + s) < e(f{x),f(z)) + e{f(z),f(y)) + Ô й Ф/{г) + ^/(s) + <5. Since ö 
was arbitrary, ^ is subadditive. 

Observe that the subadditivity of ф/ implies that the values of ф/ are finite. The 
uniform continuity of /means lim ф/(г) = 0 and, ф$ being non-decreasing, this fact 

r^>0 

with the subadditivity implies the uniform continuity of ф/. As a consequence of 
1.16 and a theorem of Aronszajn and Panitchpakdi [ l ] we obtain 

1.17. Proposition. Let (X, dx) be a subspace of a pseudometric space (Y, d), H the 
space C(K) of continuous functions on an extremally disconnected compact 
space K endowed with the supremum norm. If dx is globally preconvex, preconvex, 
then every uniformly continuous mapping of X into H can be extended over' Y, 
over some uniform neighbourhood ofX in Y, respectively, with preservation of the 
module of continuity. 
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In the literature, a concept ofconvexity ofmetrics has been introduced and studied 
(see e.g. [6], [9]). Recall (in a little more general fashion) that a pseudometric d 
on a set X is said to be convex for distances less than c > 0, if for any x, y in X with 
d(x, y) < c there exists z in X such that d(x, z) = ď(z, y) = ^d(x, y). Ifthe condition 
holds for at least one c, then d is said to be convex. 

It is known that, if (X, d) is a complete pseudometric space and c > 0, then the 
following properties are equivalent: 

(1) d is convex for distances less than c. 
(2) If x, у є X, 0 < d(x, y) < c, then there exists z e X such that d(x, z) > 0, 

d(z, y) > 0 and d(x, z) + d(z, y) = d(x, y). 
(3) If x, у є X, 0 < d(x, y) < c, then there exists an isometric mapping 

/ : [0, d(x, y)J ~> (X, d) such that /(0) = x, /(d(x, j ) ) = j>. 
Clearly (see 1.2), convexity implies preconvexity. We are going to show that the 

reverse implication holds in case (X, d) is compact and need not hold if (X, d) is 
complete. 

1.18. Proposition. Let d be a pseudometric on a set X preconvex for distances 
less than c. If(X, d) is compact, then d is convexfor distances less than c. 

Proof. Let x, y e X, d(x, y) = 2r < c. For each n є N with 2|n < c — 2r, choose 
zn such that d(x, zn) < r + l|n, d(zn, y) < r + l|n. The sequence (z„) has a convergent 
subsequence, let z be its limit. Then clearly d(x, z) ^ r, d(z, y) ^ r, hence d(x, z) = 
= d(z, y) = r. 

1.19. Example. Let X be the subset of the plane R2 consisting of all points (x,y) 
where 0 g y = (1 — |x|)/m and m = 1, 2, ... . Let d be the usual Euclideanmetric 
on X, d the metric from 1.10. Put u = ( - 1 , 0), u = ( l , 0). Let us prove thatthe 
metric space (Z, d) is complete. Suppose (z„) is a Cauchy sequence in (Z, Я), both u, v 
are not cluster points of (zn). Then there is n0 such that (zn; n > n0) ranges in the set 
{(x, y); s S У = (l — | x | ) / m } w^ t n some fixed integer m and e > 0. If(z„) does not 
converge to (0, l/m) then there is nt such that (z„; n > nt) ranges in a compact 
segment where d and d coincide. By 1.10, d is globally preconvex. Clearly, cl(u, v) = 
= d(u, v) = 2. But there is no point w in X such that d(u, vv) g 1, d(vv, v) g 1. 
Thus, as d ^ d, d is not convex for distances less than 3. Put Xn = {(x, у) є R2; 
(n(x — 2n), у) є X} for n = 1, 2, ... . Let Ybe the union of all Xn's with all segments 
in R2 with end points (2л + l|n, 0), (2n + 2 ~ l/(n + 1), 0), where n = 1, 2 , . . . . 
Then the corresponding metric d on 7is again globally preconvex, (7, d) is complete, 
but d is not convex. 

1.20. Remark. The reader might observe that the concept of preconvexity is 
meaningful for very general functions and the proofs of most propositions used only 
these properties of pseudometrics: d(x, x) = 0 <£ d(x, y) ^ d(x, z) + d(z, y) for any 
x, j , z, which are axioms for quasi-pseudometric. E.g., the function a defined for 
any reals s, t by cr(s, i) = ř — s for s S t, a(s, ř) = 1 for s > t is a quasi-metric on R 
inducing the Sorgenfrey topology. Thus the following propositions also hold for 
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quasi-pseudometrics: 1.2(l)-(3) , 1.3, 1.6, 1.9 with the uniform continuity under­
stood with respect to the restriction of a to J, similarly 1.10, 1.11, 1.12; further 1.14 
without the conclusion on diameters, 1.15, 1.16. Also the "Metrization Lemma*' 
(2.2 below) without the asumption of symmetry of entourages provides for the 
existence and the uniqueness of a quasi-pseudometric. On the other hand, 1.4 is not 
true in any direction for quasi-pseudometrics as shows the following example. 

Let X be the set of all pairs x = (x l5 x2) where xt є R, x2 ^ 0. The function d 
defined by d((xbX2),(y1,y2)) = |*i — Ух\ + G{x2>y2) is a quasi-metric on X. 
Put Z - {(xl9 x2)eX; x2 > 0}, Y = Z u {(2"", 0); n є N}. Clearly Z is dense in 
(X, d), hence 7is dense in (Z, d), Z is dense in (У, dY). However, d, dz are preconvex 
for distances less than 1 and dY is not preconvex. 

2. PRECONVEX UNIFORMITIES 

As we have seen in the preceeding section, preconvex pseudometrics have nice 
uniform properties. This leads us to the study of uniformities defined by a collection 
of preconvex pseudometrics. Recall that a collection Q of uniformly continuous 
pseudometrics on a uniform space X is a basis for uniformly continuous pseudo-
metrics on X, shortly a basis of the uniformity of X, if each uniform cover of X can 
be refined by some J^(r) with d є 2 and r > 0 or, equivalently, the collection of all 
sets {(x, y); d(x, y) < r} with d e Q) and r > 0 is a base of the filter of uniform 
entourages. 

2.1. Definition. A uniformity, and the corresponding uniform space, will be called 
preconvex, if the uniformity has a basis consisting of preconvex pseudometrics. 

Before we present the fundamental theorem characterizing preconvex uniform 
spaces in terms ofuniform covers and entourages, we prove the following metrization 
lemma. If Fis an entourage, we define Vn for n = 1, 2, ... by Vі = Fand Vn+1 = 
= Vo V\ 

2.2. Lemma. Let (Vn; n e N) be a sequence of symmetric entourages on a set X 
such that 
(i) Vn_1oVn.1 = Vn 

for each n e N. Then there exists a pseudometric d on X such that it is preconvex 
for distances less than 1 and 

(ii) {(x, y); d(x, y) < 2-"} c Vn c {(x, y); d(x, y) ^ 2""} 

for each n є N. Ife is another pseudometric with the same properties then e(x, y) — 
= d{x, y) for (x, у) є V0. 

Proof. Clearly, V„ => Vn_1 for each n. Put 
f(x,y) = 2-" if (x,y)eV„\Vn+1, 
f(x, y) = 0 if (x, у) є V„ for each n , 
f(x,y) = l if (x,y)e(X xX)\V0. 
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Now, for any x, y e X, put 
d(x, y) = infZ(/(x,._i, Xj); j = 1, . . . , fe) 

where the infimum is taken over all finite sequences (x,-; j = 0, ..., k) such that 
XjeX, x0 = x, xk = y and k > 0. Clearly, d(x,y) Sf(*>y) S 1 for any x,y, 
which proves the second inclusion in (ii), and d is a pseudometric. Now suppose 
0 < b <jj 1, d(x, y) < b. Then there are fcand x0 = x, x1? ..., xk = y such that 
I ( / ( x ; ^ , x , . ) ; j = l , . . . , f c ) < b . I f / ^ _ , x J = n then (xy_!,Xy)eK.,, if 
/ ( x / - i , Xj) = 0 choose ay arbitrary but so large that E(2~a '; ; = 1, ..., fc) < b; 
thus again (x , - i , Xy) e Faj. Put a = max (ay, j = 1, ..., fc). By (i), Faj. = Fa

m' where 
m7 = 2a~aj. Ťíow(x,y)eVako...oVai = C k . ° - - - ° C 1 = KTwhere m = т х + ... 
... + тк < 2ab. In case b = 2~n we have m < 2a~n, hence (x, у) є Vn and thus (ii) 
is completely proved. Moreover, for arbitrary b, (x, у) є Ѵ*+и hence there is z such 
that (x, z) є C + 1 , (*, j ) є Fe

M
+1, this implies d(x, z) g m . 2 - " " 1 < 2ab . 2 " 0 " 1 = 

= b/2 and d(z, y) < b|2, therefore by 1.2, d is preconvex for distances less than 1. 
Now, let e be another pseudometric on X that fulfills (ii) and is preconvex for 

distances less than 1. Let (x,y)eV0. If (x', / ) є 7BJ then e ( x ' , y ) ^ 2 " " thus 
e(x', y') S f{*'> У') a n d by the definition of d, e(x, y) ^ d(x, y). Suppose that 
e(x, y) < d(x, y). Let h, p be positive integers, h < 2P, e(x, y) < h . 2~p < d(x, y). 
By the preconvexity of e and 1.2(2), there exist z0 = x, z l 5 ..., zA = 3; such that 
e(z^u zt) < 2~p for i = 1, ..., ft. By (ii), d(**-i> z 0 ^ 2~P h e n c e d(*> У) á h . 2 " p 

which is a contradiction. Therefore e(x, y) = d(x, y). 
The reader is familiar with the classical metrization lemma where the condition 

(i) is replaced by 

K+i ° Vn + i ° K + i c : ^i • 

As shown in [3], F n + 1 0 Fw + 1 c Vn is not sufficient, therefore the equality in (i) 

is essential. 

2.3. Theorem. Let X be a uniform space. Then the following properties are 
equivalent: 

(1) X is preconvex. 
(2) There is a basis 33/or uniform covers ofX such thatfor each & in Ш there 

is Ж in Ш such that St Ж = У. 
(2') There is a basis 93 for uniform covers ofX such thatfor each @ in 33 there 

is Ж in 93 such that St Ж refines <3 and <e refines St Ж. 
(3) There is a basis *ff for uniform entourages on X such that for each V in 'V 

there exists Win Vwith Wo W= Vand each Vis symmetric. 
Proof. Suppose (1), let Q) be the collection of preconvex pseudometrics that is 

a basis of the uniformity. Then the collection of all &d(r) where d є 2, r > 0 and d 
is preconvex for distances less than r is a basis for uniform covers. By 1.2(4), 
St &d(r|2) = $d(r)9 hence (2) holds. (2) => (2') is trivial. 

Suppose (2'). If ^ e $ put V# = {j{G x G; Ge<$}. Clearly, V^ is a symmetric 
uniform entourage and the collection of all V<$ is a basis for uniform entourages. 
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Given ^ , let Ж be the cover described in (2'). Let us prove that Ѵж о Ѵж == V#-
Suppose (x, z) є V#>, (z, y) e V#>. There are H, K in «^7 such that x e # , z є H n X» 
j> є K. Thus x, y belong to St(z, Ж\ this is a subset of some G in ^ , hence (x, y) e V<§-
If (x, у) є V#, then x є G, y e G for some G in ^ . But G c St(z, ^f) for some z. This 
implies (x, z) є Ѵж, (z, у) є Уж. Thus (З) follows. 

Suppose (3). Given any uniform entourage U, choose V0 in "Ґ such that V0 a V. 
There is Vt e V such that V1 o Fi = F0. Proceeding by induction we get a sequence 
(F„; n e N) in У7" such that Vn+l o F„+1 = F„. Let J be the pseudometric from Lemma 
2.2. Then d is uniformly continuous, preconvex for distances less than 1 and {(x, y); 
d(x, y) < 1} c= t7, which proves (l). 

The main task of this section is to find some general sufficient conditions for 
a uniform space to be preconvex. 

2.4. Proposition. IfX is a uniform space and AdX = 0 then X is preconvex. 
Proof. Given a uniform cover of X, refine it by a uniform partition 0. For 

x, у є X put d(x, y) = 0 if there is P in 0 such that x є P, у є P and d(x, y) = 1 
otherwise. Then d is a uniformly continuous pseudometric preconvex for distances 
less than 1, @d(l) refines 0>. 

2.5. Proposition. The product and the sum of arbitrary family of preconvex 
uniform spaces are preconvex, too. 

P r o o f i s straightforward and may be left to the reader. 

2.6. Example. Let X be the subset of the Euclidean plane R2 consisting of all 
points (и, k . 2~~") where n є N and k = 0, 1, ..., 2". We take on X the uniformity 
defined by the usual metric d. Let e be an arbitrary uniformly continuous pseudo­
metric on X such that e(x, y) < 1 implies d(x, y) < 1. Then for any x e I the set 
j5e(x, 1) is finite, hence e is quasidiscrete. For any s with 0 < e < 1, since e is uni­
formly continuous, there is 3 > 0 such that d(x, y) < 3 implies e(x, y) < e. If 
2~n < 3 then the numbers e((n, 0), (n, 2" n ) ) , . . . , e((n, 1 - 2"n), (n, 1)) are smaller 
than e but not all are equal to zero, as e((n, 0), (n, l)) ^ 1. Thus e is not uniformly 
quasidiscrete and, by 1.3, e is not preconvex. Hence X is not preconvex. 

If x, yeX, x = (x1? x2), y = ( j ^ , y2)5 put ai(x, y) = |xi - ^ | , d2(x, y) = 
= |x2 — y2\. Clearly, du d2 are uniformly continuous pseudometrics preconvex 
for distances less than 1. Since d(x,y) gj d^x,y) + d2(x,y), the pseudometric 
dx + d2 is not (as just proved) preconvex. Moreover we see: (a) A collection, e.g. 
{d1? df2}, of preconvex pseudometrics is a subbasis of a non-preconvex uniformity, 
(b) the collection of all preconvex uniformly continuous pseudometrics need not 
be a basis of some uniformity. 

2.7. Example. Let Ybe the subset ofthe Euclidean plane R2 consisting ofall points 
(2~w, i. 2~m) where m є N, i = 0, 1, ..., 2m. Let Ybe endowed again with the uni­
formity inherited from R2. Since Y is discrete, it contains neither a continuous 
one-to-one image of Q 2 (see 1.7). The Euclidean metric on Y is not preconvex. 
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However, put for k є N and any m, n, i, j 

dk((2-m,i.2-m),(2-"J.2-"))^\i.2-m~j.2-n\ for m,n>k, 

= 1 for m ^ k or n ^ к . 

then each dk is a uniformly continuous pseudometric on 7preconvex for distances 
less than 1. Further, the collection {dk; k є N} is a basis of the uniformity of 7, thus 7 
is preconvex. This shows that 1.3 and 1.6 do not hold either for preconvex metrizable 
uniform spaces. 

In the sequel, we are going to show that the class of preconvex uniform spaces is 
surprisingly large. For our purpose, we need a slightly strenghtened concept of 
essentiality (see [4], chapter VIII). 

2.8. Definition. Let ^ = (Ga; a є A) be а uniform cover of а uniform space X. 
We say that 0 is strongly essential if for any uniform cover (# a ; a є A) of X with 
Я а c Ga for all а є Л and any B a A we have Г\(На а є B) Ф 0 whenever 
0(Ga; а є Б ) Ф 0. A uniform space X will be called strongly essential ifthe uniformity 
ofX has a basis consisting of strongly essential uniform covers. 

The strong essentiality implies essentiality as shows the following simple proposi­
tion (cf. [4], VIII.1, IV.14). 

2.9. Proposition. A uniform cover & = (Ga; a є A) of a uniform space X is essen­
tial if and only iffor any uniform cover (# a ; a є A) of X with Ha a Ga for each 
ос є A and any finite В с A we have Г\(На; а є В) Ф 0 whenever C\(Ga; a є Б) Ф 0. 
If the cover & is essential, yeA, Gy ф 0 then (Ga; a є i \ {y}) is not a uniform 
cover of X. 

By a general abstract complex over a set A we will understand every set K of 
subsets of A such that if B e K, C e K9 B n С ф 0 then B n C є K. Further, we 
denote by M(A) the set of all families (wa; a є Л) where ua є R, 0 <[ ua S 1 for 
each а and wa = 1 for at least one a. Consider M(A) as the subspace of /°°(Л), i.e. 
endowed with the metric d defined by d(u, v) = sup (|wa — va\; a є A). For u є М(Л), 
put supp и = {a є ^4; wa > 0]. If K is a general abstract complex over A, let МХ(Л) 
be the subspace {ueM(A); suppueK} (thus MK(A) is a certain "geometric re­
alization" ofK). 

2.10. Lemma. Let K be a general abstract complex over a set A. Let d1 be the 
metric on MK(A) defined in 1.10. Then d^u,v) ^ 2d(u,v)for any u,veMK(A). 

Proof. Let d(u, v) < 1. Put B = supp u n supp v. Then В Ф 0, BeK and if 
ua = 1 or va = 1 then oceB. Let us define / : [—1,1] -> МХ(Л). P u t wa = 
= max {ма, г;а} if a є B and wa = 0 if a є Л \ B. For a є Л, put f^{t) — tva + 
+ (1 - t) wa for 0 ^ ř ^ 1, fa(t) = -tux + (1 + t) wa for - 1 ^ ř ^ 0. Finally, 
put f(t) = (fJt); a є A). A simple calculation shows that f(t) є MK(A) for any ř, 
/ ( - 1 ) = w, Д0) = w, / (1) = t; and d(f(s)J(t)) й d(u, v). |s - t\ for any s, t. 
Thus v a r / ^ 2d(w, v), hence d^(w, u) ^ d(u, v) ^ 2d(w, v). 

377 



2.11. Theorem. Every strongly essential uniform space is preconvex. 

Proof. Given a uniform cover of a strongly essential uniform space X, refine it 
by a strongly essential uniform cover ^ = (Ga; a є A). We are going to search for 
a uniformly continuous pseudometric e on X such that it will be preconvex for 
distances less than 1 and &e(l) will refine ^ . We may suppose X Ф 0. Let c be an 
arbitrary uniformly continuous pseudometric on X such that ^ c ( l ) refines У. For 
a e A, x є X, put fa(x) = min {l, c-dist (x, X \ Ga)}, / (x) = (/a(x); a є Л). Let 
J£ = {C с Л; n(Ga; a e C) ф 0}. It is easy to see that f(x) є MK(A) and 
d(f(x),f(y)) s= c(x, y) for any x, y, hence / : X ~> Мк(^) is uniformly continuous. 

Let us prove that / [ X ] is dense in MK(A). Assuming the contrary let a' e MK(Ä) 
and r > 0 such that Bd(a', 5r) с М К ( Л ) \ / [ Х ] . Clearly r ^ 1/5. Then there exist 
a є MK(A) and у є A such that d(a, a') g 2r, ay = 1 and r ^ aa ^ 1 - 2r for 
ос є supp a, a ф y. Put Я = supp a, Я7 = Я \ {y}. Put P = {w є MK(A); d(u, a) > 
> 2r}, c lear ly / [Z] c P. Define a mapping p: P •*> MK(A) by р(м) = (pa(u); ot e A) 
and pa(u) for w є МК(Л) by the following formulas: 

if a є H' put 

jPa(M) = ° i f Wa ^ «a ~ Г , 

= К ~ Я« + r ) / r if fla - Г £ "a а ^a , 

= 1 if aa ^ wa ; 

if a є Л \ Я put 

Р«(и) = uJr if 0 ^ wa ^ r , 
= 1 if r й ua ; 

and finally 
py(u) = max {0, min {inf {(aa + r - ua)jr; a e H'} , 

inf{(2r - wa)/r; а є і \ Я } , м ? } } . 

Obviously supp p(w) c supp w for any u. If jPa(w) < 1 for each а ф y, then ма < аа 

for а є Я ' and ма < r for осєА\Н, hence wy = 1 and py{u) = 1. Therefore 
supp p(u) Ф 0, p(u) є MK(A). A simple calculation shows that, for any u, v in P, 
W " ) - P*(v)\ й \ua - va\jr if а є Л, а Ф у and |ру(м) - ру(ѵ)\ g d(w, u)/r, hence p 
is Lipschitz with constant l/r. Let us show that, for any u є P there exists а є Я 
with ра(н) = 0. If и є МК(Л) a n ( i |wa - öa| < 2 r f ° r e a c n a є ^. \ {7} then ua < 1 
for each а є A \ {7}, thus uy = 1 = ay and d(u, a) ^ 2r. Let u є P. Then d(w, a) > 2r 
and hence \ua — aJ ^ 2r for some a є Л \ {y}. Suppose pJu) > 0 for each а є H'. 
Then Ma > aa - r for a є Я ' , hence there exists either cc e H' with ма > aa + r 
or а є Л \ Я with ua ^ 2r. But this implies py(u) = 0. Now let T = (мєУИк(у4); 
НфБпрри}. Clearly p[P]<=T. For а є Л put Sa = {ueMK(A); a e s u p p w } . 
Given v є MK(A), there is а є A with üa = 1 and then Bd(v, 1) cz Sa, hence (Sa; а є А) 
is a uniform cover of MK(A). Further, (Sa n T; а є Л) is a uniform cover of T, 
p " ^ S j c S., /" '*[S,] c Ga- Thus (0>o / ) " 1 [ S J ; а є Л ) is a uniform cover o fX, 
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( p o / ) - ^ S j c = G . . But n ( ( p o / ) " 1 ^ ] ; a e H ) = 0 a n d f | ( G . ; a e f f ) # 0 . I tcon-
tradicts the strong essentiality o f Z and proves t h a t / [ X ] is dense in ЛЛК(Л). 

The metric dt is by 2.10 uniformly continuous and by 1.10 preconvex for distances 
less than 1. The restriction ď of dx to f[X] is by 1.5 preconvex for distances less 
than 1 too. Since d(v, w) g d'(v, w) for any v9 w i n / [ X ] (see 1.10) we have for each 
u e / [ Z ] , 2^>(w, 1) c Bd(u> 1) c Sa for some a є A. Finally put, for any x, y in X, 
e(x, y)- d'(f(x),f(y)). Then clearly e is a uniformly continuous pseudometric on X, 
e is preconvex for distances less than 1 and given x є X, Бе(х, 1) = / " * [B^(/(x), 1)] с 
с / _ 1 [ S a ] с Ga for some a є Л. 

Observe that Proposition 2.4 is a simple corollary of Theorem 2.11. Isbell ([4], 
Theorem VIII.4) proved that every locally fine uniformspace admits a basis consisting 
of point-finite essential covers, so it is strongly essential (Notice that locallyfine 
spaces have an equivalent description as subspaces of (topologically) fine spaces 
[7]). Thus as an immediate consequence of Theorem 2.11, we have 

2.12. Corollary. Every locallyfine (therefore everyfine or every totally bounded) 
uniform space is preconvex. 

Immediately from 2.12 and 2.3 (2) we get 

2.13. Corollary. In a paracompact topological space there is a basis 23 of open 
covers such thatfor each & in 93 there is Ж in Ъ with St Ж — У. 

We are able to extend 2.12 directly even to the class of so-called sub-metric-fine 
spaces. Recall that a uniform space X is sub-metric-fine ifevery uniformly continuous 
mapping/: X ~» 7where Yis a complete metric space remains uniformly continuous 
into the fine uniformity of Y (for details and other descriptions see e.g. [8]). Note 
that every locally fine space is sub-metric-fine. 

2.14. Proposition. Every sub-metric-fine uniform space is preconvex. 

Proof. Take a uniform cover ^ of a sub-metric fine space X. Then there is (see 
e.g. [4], 1.14) a uniformly continuous mapping / of X onto a dense subset of 
a complete metric space Y and a uniform cover Ж of Y such that { /~A [#] ; He Ж} 
refines ^ . Since X is sub-metric-fine, / remains uniformly continuous into the fine 
uniformity of У. By 2.12, we can find a preconvex continuous pseudometric d on Y 
such that ^d(l) refines H. The restriction of d t o / [ Z ] is by 1.5 preconvex too. The 
pseudometric e on X defined by e(x, y) = d(f(x),f(y)) is uniformly continuous, 
preconvex and ^ e ( l ) refines ^ . 
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