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1. ASYMPTOTIC THEOREMS OF TRENCH

Trench recently gave sufficient conditions for a scalar differential equation
) x® + p(H)x™ D+ ..+ p()x=0

to have a solution which behaves for t — oo like a given polynomial of degree <n
(see [5]), and for an equation

@ X+ [ay + ()] X0 + .+ [a, + pi(H)] x = 0

to have a solution like exp (4,t) asymptotically, where 4, is a root of the polynomial
equation

(3) MPtaAd '+ . +a,_A+a,=0

with constant coefficients a, (see [6]) Trench’s integrability conditions on p, are
stated largely in terms of ordinary integral convergence. This presents a significant
weakening of the classical conditions that require the absolute convergence (|1,
Chapter X]) The aim of the present paper is to show that Trench’s sufficient con-
ditions are close to necessary.

Throughout the paper, all functions considered are complex- or real-valued and
continuous on [T, o), for some real T. In all hypotheses (conclusions), the improper
integrals are assumed (concluded) to converge. The symbols “o” and “O” refer
to the behavior for t — oo.

The above mentioned results of Trench imply the following two assertions on the
existence of fundamental systems of solutions of (1) and (2), with prescribed asympto-
tic behavior.

Theorem A. Assume that ¢ is positive and nonincreasing on [T, ), ¢ is a non-
negative constant and

@ I @(s)ds = 0(o(t)) if ¢=0.

Further, assume that (3) has n distinct roots A; such that Re A, = Red, = ...
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... 2 Re A, and the functions p, satisfy

) [ pls) e ds = o(g(1)) (1 = k=n)
and

(6) §2 [p(s)] 0(s) ds = o(o(1) .

If Re (Ay — A,) > g, assume also that e** ¢(t) is nondecreasing on [T, o0), for some «
smaller than any positive value from the set

{Re(Zj — 2,) — 0|1 Sj<mZn}.
Finally, assume that

o) I (387 o) 7 ds = ofolt),
whenever Re (4; — A,) = 0. Then (2) has n solutions x; (1 £ j £ n) satisfying
® XP() = (3 + ol (i) (0= k<n—1).

Theorem B. Assume that \ is positive and nonincreasing on [T, oo), v is a non-
negative integer and

o [ 4= o) v v =0,

If v < n — 1, assume also that t* l//(t) is nondecreasing on [T, oo)for some constant
o < 1. Finally, assume that the functions p, satisfy-

(10) i [pa(1)] dt < oo,

(1) 2 )1 ds = o () (1S k< m)
and, if v <n,

(12) [ea/s) 9 N ds = oY) (vSi=n-1),

where the functions g; are given by
(13) g) = X)) (@) (=i 1),

Then (1) has n solutions x; (0 < j < n — 1) satisfying
(14) xXP(1) = ()P + o * " yY(r)) O<k=n-1).
Remark 1. Theorem A with ¢(t) = 179 (g = const. 20) was essentially proved

in [2]. Then (4) means that g > 1 if ¢ = 0. As shown in [3], Theorem A becomes
false without this restriction on ¢ and g. The case ¢ = 0 and ¢ < 1 was discussed

in [4].
Remark 2. In an unpublished work the author observed that Theorem A holds
with (5) replaced by the weaker assumption

(15) [ ps)ds = o™ o(1) (1=k=n).
(Integration by parts shows that (5) implies (15); the converse implication is false.)
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2. THE FIRST CONVERSE THEOREM

Theorem 1. Let ¢ and g be as in the first sentence of Theorem A, including (4).
Assume that (3) has n distinct roots 2,, (2) has n solutions x; satisfying (8), and (6)
holds. Then the functions p, satisfy (15). Moreover, (7) holds whenever
Re(4; — 4,) = e

It is convenient to state two preparatory lemmas separately from the proof of
Theorem 1.

Lemma 1. Let x be a function in C™[T, o) satisfying
(16) xO(1) = (A + ofe @ p(t)) e (0=k=n-1),

where ¢ and @ are as in the first sentence of Theorem A and A is a constant. Then
the functions

_xX00)

(17) hy(t) = Tt) » (1=k=n)
satisfy
(1) h(t) = oe™ o) (1Sksn—1),
(19) hi(t) = o™ o(t)) (1<k=<n-2)
and
(20) [2 hls)ds = ofe @ p(t)) (1 <k <n).

Lemma 2. Suppose that the equation
(21) u® + au® D + L+ au = f(1)

has a solution u = u(t) satisfying
(22) u®(t) =o(e" o(t)) O<k=n-1),

where B is a real constant and ¢ is positive and nonincreasing on [T, o). If 7,
is a root of (3) with Re 4,, = B, then

(23) [ f(s)e = ds = o(e(1)).
We leave the proofs of Lemmas 1 and 2 for the appendix.

Proof of Theorem 1. We proceed by induction with respect to n, the order of (2).
In the case n = 1, any solution x of (2) satisfies

(24) x(t) = Cexp [—a,t — [§ py(s) ds],

where C is a constant and t > T. If x, is a solution of (2) as in (8), with 2, = —ay,

then (15) follows from (8) and (24) with x = x,. Obviously, if n = 1, then

Re (4; — 4,) = ¢ holds only if j = m = 1 and ¢ = 0, which reduces (7) to (15).
Assume now that (2) satisfies the hypotheses of Theorem 1 with n > 1. We use

reduction of order. Given n solutions x; of (2) as in (8), we introduce constants b,
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and functions hy, g, and z; by

k y ) (k)
(25) be=3, (Z _j) o, (=T x (sksna=1),

x,(2)
(26) ai(t) = pi(t) +:Z: (Z :j) ajh_ 1) +
3 () om0 5 (1T 0s, asksn)
and
(27) () = (4 = 2)7 [x(@x@)]) 2=j=n).

Since x, is as in (8), the functions in (25)—(27) are defined on [T, o) for some real
T, = T. Moreover, Lemma 1 with x = x; and A = 1, implies that (18)—(20) hold
for our functions h, in (25). The constants b, are chosen in (25) so that the poly-
nomial 2" 4+ byA""!' + ... + b,_ A + b, has n distinct zeros 1; — A,, 1 £j < n.

The following assertion makes the meaning of the definitions (26) and (27) clear:
the equation

(28) 207D 4 [by + q4()] 2" + oo+ [y + gu—y()] 2 =10
has (n — 1) solutions (27) that satisfy
(29)  Z9(1) =[(4; — A)* + o(e™ @ ()] eX™ ™", (0= k=n-2).

To see this, we first put x = x,(f) y. A routine computation shows that (2) is trans-
formed into

(30) ¥y + [by + q;(0] ¥ O + ... + [by + a,(t)]] ¥y = 0,

with b, and g, as in (25) and (26). Since x, is a solution of (2) and 4, is a root of (3),
we have

(31) b,=0 and ¢,(t)=0 (1=T).

Consequently, we may put z = »' = (x/x(t))’ to obtain the equation (28) with
(n — 1) solutions (27). To prove (29), we need to show that the functions y; in

(32) Xj(t) = xl(t) yj(t) (2 <j< n)
satisfy
(33) Y1) = [(4; = ) + o™ (r))] =20

for k =1,2,...,n — 1. First we note that (33) with k = 0 follows from (8) with
k = 0. Further, assume that (33) holds with any k < m — 1 for some m, 1 <
< m < n — 1. If we differentiate (32) m times, we obtain

0 = 50570 + 5, (%) 0520
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and, therefore,

64 A0 =500 - £, (1) 68 + 5700

(see the definition of hy in (25)). Now (8), (18), (33) with k < m — 1 and (34) imply
that

ety = 25 (V)6 + [0 = 2y o] =
14+0 k=1

m < m m-— m
=7 _k; (k>'ll§(’1j =) o= (4 = )" + o,
where, for brevity, “0” stands for “o(e % ¢(t))”’. Thus (33) with k = m holds, which
proves (29).

Assuming now that Theorem 1 holds if (2) is of order n — 1, we conclude from
(29) that

(35) [Pafs)ds=o0(e o)) 1Sk=n-1),
because, as we now verify,

(36) I |a1(s)] o(s) ds = o(¢(1)) -

Indeed, we see from (18) and (26) that

(37) a1(t) = pa(t) = n hy(t) = o(e™ ¢(1)) ,
hence (36) follows from (6), (37) and the fact that

(39) I ole™® 67(5) ds = ofo(t)

The last relation follows either from (4), or from
[P e @%(s)ds < @*(1) [P e ds = o(p(t)) if ¢>0.
The next step of our proof is to show that
) I p(s) ds = ofe ¥ o(1)
holds for k = 1,2,...,n. If k = 1, then (39) follows from (18), (35) and (37).

Assuming now that (39) holds with kK < m — 1 for some m, 1 < m £ n, we obtain
from (20), (26), (35) and (39) with k < m — 1 that

[ Duls) ds = o(e™2" (1)) —mf (n __j]) 2 pi(s) - (5) ds ,

=1 \m

provided the integrals on the right hand side converge. (Note that (35) holds also
with k = n because of (31).) Consequently, (39) with.-k = m holds if

(40) §2 pi(S) h-i(5) ds = o(e™*" o(1))
is valid for j = 1,2,...,m — 1. If j = 1, (40) follows from (6) and (18), because

[2 [Pi(s) hu-s(9)] ds = [ [pa(s)] @(s) oe™®) ds = ofe™* (1)) .
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If 1 < j = m — 1, then integration by parts yields
(41) §* Pi(s) B () ds = —P(s) hp— (s)[i* + [i* Py(s) hpn-j(s) ds
where Pj(t) = o(e™% ¢(t)) is the integral (39) with k = j. Since both P/(s) h,— (s)
and P(s) h,,_ (s) are o(e™2% ¢*(s)) (see (18) and (19)), we can let t; — oo in (41)
and use (38) to obtain (40). Thus (15) is proved.

To complete the proof of Theorem 1, we need to show that (7) holds if
Re (2; — 4,) = 0. We put u(t) = x(t) — exp (4;t), where x; is the solution of (2)
that satisfies (8). Then

(42) u(t) = o(e® M (1)) (0<k=n-1).
Moreover, u; is a solution of (21) with f given by
@ 0 = — 5 p 575 — 3l (0.

Since Re (4; — A,) = 0, Lemma 2 with f = Re A; — ¢ and (42) imply (23) with f

J

as in (43). Now (23) and (43) imply (7) provided
(44) [ pls) u™(s) €™ ds = o (1)
fork =1,2,...,n. If k = 1, then (44) follows from (6) and (42):

£ [pa(s) uf"™D(s) €™ ds = [ [pu(s)] ol(s)) = o(e(1) -
If | < k = n, then integration by parts yields
(45) 2 pu(s) uS P (s) e A ds = —Py(s) ulR(s) e +
b 10 P [ 9s) — A 2(5)] 5 ds,
where P,(t) = o(e™ ¢(1)) is the integral (39). By virtue of (39) and (42), the integrand
and the outintegral function on the right hand side of (45) are o(e™ ¢*(¢)). In view

of (38), we can let t; » oo in (45) to obtain (44). This completes the proof of
Theorem 1.

3. THE SECOND CONVERSE THEOREM

Theorem 2. Let y and v be as in the first sentence of Theorem B, including (9).
If (1) has n solutions x; (0 < j < n — 1) satisfying (14) and (10) holds, then the
functions p, satisfy (11) and, if v < n, also (12).

Proof of Theorem 2. We will show that Theorem 2 is a consequence of Theorem
1. We introduce new variables y and 7 by

(46) t=1logt, y(r)=x(1).
Then

(47) x("’(t) — e_'“Qk(D) y('t) (D = (—Sr-, Qk()“) =jl=__i ()u - _]) , 12k = H)
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and therefore, (1) is transformed into

(49) 0.0)y + L ae) D"y = 0.
where
(49) w) =G . Pt Z 0U(0) pule) ™, 1Sk n.

Now we verify that (48) satisfies the conditions of Theorem 1 with ¢ replaced by ,
0=v,14;=j—1(=j=n)and ¢(r) = y(c’). Namely, we show that (48) has n
solutions y; (0 < j < n — 1) satisfying

() D@ -[F e a@) e OSksa-1),
(51) 12 la:1(n)] (r) dr = o(¢(2)) ,

and that ¢ obeys

(52) |2 @*(r)dr = O(p(r)) if v=0.

Indeed, if we put x = x; in (46), where x; are solutions of (1) as in (14), we obtain n
solutions y; of (48) satisfying

(53) F(D) yj(r) = [F(j) + o(e™" y(e"))] &

for any polynomial F of degree <n. The last relation holds, because (14), (46) and
(47) imply (53) with F = 1, Q,, ..., Q,_; (note that (#)® = Q,(j) ). Thus (50)
is proved. To verify (51) and (52), we substitute s = € in the integrals on their left
hand sides. Since g,(t) = ¢°p,(e°) (see (49)), we obtain

12 1a:(0)] o(r) dr = @(c) [ [pa(s)] ds

[ -] 8.

where ¢ = ¢ (see (46)). Consequently, (51) and (52) follow from (10) and (9),
respectively.
Applying Theorem 1 to (48), we conclude that

and

(54) 2 adr)dr = o(e™p(z)) (1 <k <n)
and, if v < n,
(55) [¢ X adr)emdr = ofp(z) (v=j=n-1).

Using (49) and substituting s = ¢", we find that

0 | = j 3 00 puf9) a5 (15 k £ )
and

(57) j‘?’k;lj"”k qk(r) e dr = j’:zo ZlQn_m(j) pm(s) sm+v-l ds.

— k)
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Since QU7X(0) = (n — k)! * 0, (11) follows from (54), (56) by induction. Finally,

(55) and (57) imply (12), because
ZlQn—m(j) Pm(S) sl = gj(s) ghitv-1

(see (13)). This completes the proof of Theorem 2.

4. APPENDIX

Proof of Lemma 1. First we note that (18) follows immediately from (16) and
(17). Routine manipulations with (17) show that

(58) by = heoy — A — hhy — 2hy (1S k<n-—1).
Now (18) and (58) imply (19). Further, (16) and (17) imply
|2 hy(s)ds = — log[e * x(1)] .

Since exp (—Af) x(t) = 1 + o(e %¢(t)) (see (16)), the first relation in (20) holds.
Integrating (58) we obtain

Jit b a(s) ds = h(s)|it + Ji* (A hi(s) + 2X hy(s) + hi(s) hy(s)) ds,

for k = 1,2,...,n — 1. Consequently, (20) is proved by induction, because, as we
now verify,
(59) §7 [ls) hu(s)] ds = ofe™ (1)) -

Indeed, if ¢ = 0, then (59) follows from (4) and (18). If ¢ > 0, then (59) follows
from (18) and the inequality

J2 e p%(s)ds < (1) [ e7 2 ds = (20) 7! @*(t) e~ 2.
This completes the proof of Lemma 1.
Proof of Lemma 2. We put u = exp (4,1) v to transform (21) into
(60) v® + b + L+ b,_ 0 + by = f(t)e™
with constant coefficients b;. Let u(f) be a solution of (21) as in (22). Then the solution
u(t) = exp (—Ant) u(t) of (60) obeys
(61) () = ofp()) (0 ksn-1)

because Re 4,, = B. Since 4,, is a root of (3), we have b, = 0 in (60). Consequently,
integrating (60) with v = (t), we obtain

("7 9(s) + by I (s) + ... + by_y vs))|it = [t f(s) e Fds .

This together with ¢, — co and (61) implies (23), which completes the proof of
Lemma 2.

Acknowledgement.. The author is indebted to Professor W. F. Trench for his
helpful suggestions and comments on this work.

1432



References

[1] P. Hartman: Ordinary Differential Equations, John Wiley, New York, 1964.

[2] J. Sim$a: Asymptotic integration of perturbed linear differential equations under conditions
involving ordinary integral convergence, SIAM J. Math. Anal. 15 (1984), 116—123.

[3] J. Sim$a: The second order differential equation with oscillatory coefficient, Arch. Math.
(Brno) I8 (1982) 95—100.

[4] J. Sim$a: The condition of ordinary integral convergence in the asymptotic theory of linear
differential equations with almost constant coefficients, SIAM J. Math. Anal. 16 (1985)
757—1769.

[5]1 W. F. Trench: Asymptotic integration of linear differential equations subject to mild integral
conditions, STAM J. Math. Anal. 15 (1984) 932—942.

[6] W. F. Trench: Linear perturbations of a constant coefficient differential equation subject
to mild integral smallness conditions, submitted for publication.

Author’s address: 662 95 Brno, Jana¢kovo nam. 2a, Czechoslovakia. (P¥irodovédeckd fakulta
UJEP.)

433



		webmaster@dml.cz
	2020-07-03T06:19:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




