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1. Introduction. The asymptotic behavior of solutions of the second order dif-
ferential equation

) Y+ p()y =0

assuming either

(2 peC'la,©), p(f)=20 and limp(f) =
t— 0

or

(3) peC'la, ), p(1)<0 and limp(t) =0
t—= 0

has been widely studied. (Reference [2] gives a history of the study of (1) with con-
dition (2)). It is known, for example, that assuming condition (2), (1) has at least
one non-trivial solution which tends to zero as ¢ tends to infinity [3]. It need not be
the case, however, that all solutions of (l) tend to zero [3] Similarly, assuming con-
dition (3), (1) has at least one non-trivial solution y such that lim sup |y(t)| = oo.
Again, however, it need not be the case that lim sup |y(f)| = o for every non-trivial
solution of (1).
We call a non-trivial solution y(t) of the fourth order differential equation

(4) YW (=D)p(t)y=0 i=1,2

oscillatory if the set of zeros of y(t) is not bounded above.

Assuming condition (2), Hastings and Lazer [1] show that unlike (1), every
oscillatory solution of (4,) tends to zero.

The purpose of this note is to study asymptotic behavior of solutions of (4,)
under condition (3) and (4,) under conditions (2) and (3). In each case we show
that stronger conclusions can be made for (4;) than for (1).

2. Preliminary results. In this section we will give some simple results for (4;)
i = 1, 2 that will be used to prove our main theorems.
We define, for y € C3[a, o) and i = 1,2

(5:) GLy(0] = (@Y [(= D" p(0) = 25(1) y()) + (1),

578



(6:) Hi[y(0)] = (= 1) p(t) y*(1) = 25'() y"(1) + y"*(1) ,
and
0 Fly(1)] = y'(1) y"(1) = »(1) y" (1) -
Lemma. Let y(t) be a solution of (4;) for i = 1,2.
a) Assuming (3)
1. G,[y,(t)] is increasing and H[y(t)] is decreasing, while
2. G,[y,(1)] is decreasing and H,[y,(t)] is increasing.
b) Assuming (2), G,[y(t)] is increasing, H,[y,(t)] is decreasing and F[y,(1)]
is increasing.
Proof. The proof of each statement of the Lemma follows from the facts that
fori=1,2
(8) Gily(0] = (=1 P'(1) O (@)/p(1)* .
(%) Hilyi(t)] = (=1)""" p'(1) yi(0)
and
(10) F'yy(0] = (53()* + (1) y3(1) -

3. In this section we consider (4,) assuming (3).

Theorem 1. If pe C'[a, x0), p'(t) < 0 and lim p(t) = 0, then every oscillatory
solution of y'Y — p(t)y = 0 is unbounded. '~

Proof. Suppose y(t) is an oscillatory solution of (4,) that is bounded. Let {b,}
be the divergent sequence along which y” assumes its relative maximum or relative
minimum values. Then by the Lemma and (6,)

(11) ("(ba))* = p(ba) ¥*(b,) + (3'(b))* = HLy(b,)] = H[y(a)].

Hence y” is bounded. Let {c,} be the divergent sequence along which y” assumes its
relative maximum or a relative minimum values. If n is such that b, > ¢, then by
(5;) and the Lemma

(12) 0 < Gi[y(c))] < Gi[¥(b,)] = =2 y(b,) y"(b) + (¥'(b))
< 2 9(b,) '(By)| + (¥(Ba))? -

Assuming that y’ is bounded, then from the monotone property of G[y(f)] we
conclude that G[ y(¢)] is also bounded. Now

(" (en)*plea) = (v"(en))*[p(ea) + (¥'(en)* = Ga[¥(en)] -

Since G[y(t)] is bounded and

IA

(13) lim p(r) = 0
t—=
we conclude that
(14) lim y”(t) = 0.
t—=

Let {d,} be the divergent sequence along which y’ assumes its relative maximum or
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relative minimum values. Then

Hl[y(dn)] = P(dn) yz(d“) -2 y’(dn) ym(dn) .
From the monotone property of Hl[y(t)], the assumptions that y and y’" are bounded,
(13) and (14), we conclude

(15) lim H[y(1)] = 0.
t— 0
It now follows from (11) and (15) that
(16) lim y"(t) = 0.
t—

If n is large enough so that b, > ¢, by the Lemma we have

(17) 0= Gufy(ey)] < Gi[¥(ea)] < Gu[y(ba)] = =2 y(b,) y'(by) + y'*(bn) -
Hence from (17) and (16) we have

(18) limsup |y'(f) = 4.+ 0.

Suppose, without loss of generality, that lim sup y'(f) = A. Let {x,} be a divergent
sequence such that y'(x,) = A/2 and {1,} be a divergent sequence such that on

[ts x,), ¥'(x) = 4[4 with y'(t,) = A[4. Then by the Mean Value Theorem there is
an s, € [, x,] so that

(19) (A/4)/(xn - tn) = [y’(x,,) - y/(t,,)]/(X,, - tn) = .VN(S") .
Because of (16), it follows from (19) that
(20) , lim(x, — t,) = .

Hence, since

y(xn) - y(tn) = j)rc: yl(t) dr =2 (A/4) (x,, — b
either y is not bounded or y’ is not bounded. Assume y’ is not bounded and without
loss of generality that lim sup )’ = co. Let {s,} be a divergent sequence on which y’
assumes a relative maximum and where
(21) lim y'(s,) = o
and y'(s,) > 1 for all n. Let {t,} be a divergent sequence so that y'(t,) = 1, 1, <'s,
and y'(t) 2 1 for t e [t,,s,]. By (11) y" is bounded. Let B > 0 be such that |y"(f)| <
< B. Then

V(s = 1] = |y'(s2) = v (1)
fny/(t)ydi] < fin|y(0)] dr < B(s, — 1,).

Thus by (21)
(22) lim(s, — t,) = .

n— o

Hence
|v(ss) = ¥(t.)| =

As a consequence of (22), y is not bounded.

my(eyde] 2 findt =5, — t,,.

tn
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4. Tt is known that either all or none of the solutions of (4,) oscillate. Assuming
(2) or (3) we get information about pairs of oscillatory solutions.

Theorem 2. If pe C'[a, ), p'(t) <0, lim p(t) =0 and y" + py =0 s
t—= 0

oscillatory, then there is a pair of linearly independent solutions that are un-
bounded.
Proof. Let y be a solution of (4,) such that y(a) = y'(a) = 0. From the Lemma,
(5,) and (6,) H,[y(t)] is positive and G,[y(t)] is negative. If y is bounded then
(23) lim p(f) y*(1) = 0.
t— 0

Integrating (9,) shows H,[y()] to be bounded. As in Theorem 1, we let {b,} be the
divergent sequence along which y” assumes its relative maximum or relative
minimum values. Then

(24) H;[y(b,)] = —p(bs) y*(ba) + y"*(bs) -
Since H,[y(t)] is bounded and (23),
(25) 0 <limsup|y’|=4< .

Letting {d,} be the divergent sequence along which y’ assumes its relative maximum
or relative minimum values, then

(26) HZ[y(dn)] = _P(dn) yz(d,,) -2 yl(dn) yw(dn) :
Again using the boundedness of H,[y(t)] and (23),
(27) 0 <limsup|y'y”| =B < .
Suppose y” does not go to zero. If
(28) lim G,[y(1)] = —©
t—
then G,[y(b,)] = —2 y(b,) y"(b,) + y"*(b,) yields
(29) limsup |y y'| = .

Since we are assuming y is bounded (29) implies y” is not bounded contrary to (25).
Let {c,} be the divergent sequence along which y” assumes its relative maximum
or relative minimum values. Then

(30) Galy(e)] = y"*(e)l(=plen) + y*(c) -

"

Since we are assuming y” does not go zero, lim sup y”*(c,)/p(c,) = 0. Thus if
G,[»(#)] is bounded (30) implies lim sup y*(c,) = oo, Hence

(31) lim sup |y'(c,) y"(c,)| = o .
Now
(32) Hy[y(e)] = =2 y'(e) y"(en) + y"*(ca) -

Thus by (31) and (25), H,[y(c,)] is unbounded which is a contradiction. Hence
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either

(33) lim y"(f) = 0

or y is unbounded. Assuming (33), since H,[y(t)] is increasing, it follows from (26)
and (23) that —2 y'(d,) y"(d,) is bounded away from zero. Hence from (33)

(34) lim sup |y'(f)] = + 0.
Let {a,} be a divergent sequence such that
(35) lim y'(a,) = + .

By (25) y" is bounded. Assume |y"(f)| < C. Then for x € [a,, a, + 1]
y(x) = y(a) = f5,y"(f)dt > =C

or

(36) y'(x) > y'(a,) -C.

By The Mean Value Theorem

(37) y(a, + 1) = y(a,) = y'(e,) for a,<e, <a,+1.

From (37), (36) and (35) it follows that y is not bounded. Since y, and y, satis-
fying y,(a) = yi(a) = yi(a) = 0, y"(a) = 1 and y,(a) = y3(a) = y5(a) = 0 and
y5(a) = 1 are independent, the theorem follows.

Theorem 3. If peC'[a, ), p'(t) = 0 and lim p(t) = oo, then y" + py =0
t—= 0

has a pair of oscillatory solutions that go to zero.

Proof. We first show that the conclusion of the Theorem holds for any solution y
of (4,) for which

(38) G,[y()] <0 te[a, ),
(39) Hy[y(1)] >0 tela, o) and
(40) F[y(1)] <0 tela, o).

Later we will show the existence of two such solutions which are linearly independent.
Suppose y is a solution of (4,) that satisfies (38), (39) and (40). Suppose

(41) lim y(t) + 0 .

t— o0

Let {t,} be the divergent sequence along which y assumes its relative maximum
or relative minimum values. Then from (41) follows

(42) lim sup p(t,) y*(t,) = .
From (6,)

Ha[y(t)] = = p(ta) y*(ta) + »"(t) -
Hence since H,[y(t)] is positive and decreasing, (42) implies
(43) lim sup y"*(t,) = +o0.
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Hence

(44) lim sup |(t,) y"(t,)| = + 0.

But

(45) GaLy(t)] = =y (t)1p(t) — 2 ¥(t) ¥'(t) -
Since G,[)(t,)] is negative and increasing, (44) implies

(46) lim sup y"2(t,)/p(t,) = o,

which in turn implies

(47) lim sup |y"(t,)| = o .

But

(48) Fy(t,)] = —y(t,) y"(t,) -

Since F[y(t)] is negative and increasing, F[y(t,)] is bounded, while (47) implies

(49) lim sup |y(t,) y"(t,)| = o .
Hence lim y(r) = 0.
t—
To show the existence of two linearly independent solutions of (4,) that satisfy
(38), (39) and (40), we use standard compactness arguments in the following way.

Let Z; for i = 0, 1,2, 3 be solutions of (4,) defined by the initial conditions
Zgj)(a) =6,;=0, i%j,

=1, i=j.
For each integer n > a, let by, by, bans Cips Cans €3, DE NUMbers such that
(50) b + b3, + b3, =1, iy + 3y + 3, =1
and
(51) bon Z§(n) + by, Z9(n) + by, Z§(n) =0 for i=0,1,
cin Z9(n) + 30 Z9(n) + 3, Z§(n) =0 for i=0,1.
Let

U, (t) = bon Zo(t) + by Z,(1) + b, Zs(2),

V(1) = c1n Zi(t) + €20 Z,(1) + 3, Z5(1) .
By (50), there exists a sequence of integers {n;} such that the sequences {b,,} and
{¢ia,} converge to numbers b; and c; respectively. Let u and v be solutions of (4,)
defined by
(52) u(t) = by Zo(t) + by Zy(t) + by Zs(1)

o(t) = ¢y Zy(t) + ¢y Zy(t) + ¢35 Zy(1).
From (50) it follows that neither u(f) nor v(t) are identically zero. Clearly the sequences

{U, ()} and {V¥, (1)} converge uniformly on compact intervals to u(t) and v(r)
respectively. From (50) and the monotone properties of G,, H, and F it follows that

(53) Gy[y(x)] £0, H,[y(x)] 20 and F[y,(x)] <0 on [a,n]

for y,=u, or v,.
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Thus
(54) Gy[y(x)] £0, H,[y(x)]20 and F[y(x)] <0 on [a, )
for y=u or v.

If u and v are linearly dependent then by (52)
u(t) = ko(t) = a, z,(t) + a; z5(1) .

In that case by the Lemma and (7) F[u(f)] > 0 for ¢ > a contrary to (54). Hence u
and v are linearly independent.

Added in proof. M. Svec, Sur le comportement asymptotique des intégrales de
I'équation différentielle y* + Q(x)y = 0, Czech. Math. J. 8(83) (1958), pp. 230—245,
gets the conclusion of Theorem 3 assuming only that p(x) = m > 0. The author has
been able to prove a theorem with the same conclusion as Theorem 2 assuming only
that 0 < p(x) < M.
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