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0. INTRODUCTION

In [2] (see also [6]), necessary and sufficient conditions on a CW-complex Y were
found in order that the canonical transformation
(0.1) [BX; Y] - [X; Y],
induced by the inclusion map of a completely regular space X into its Cech-Stone
compactification fX, be bijective for all completely regular spaces X satisfying the
condition dim BX < oo. By [16], the Cech-Stone compactification has an analog
in the category of completely regular G-spaces, where G is a compact Lie group.
It is therefore natural to ask whether a similar result holds for the canonical trans-
formation
(0.2) [BeX: Y] - [X; Y]
between the sets of G-homotopy classes of G-maps, where G is a compact Lie group,
BeX is the Cech-Stone G-compactification, in the sense of [16], of a completely
regular G-space X, and Y is a G-CW-complex in the sense of [11]. The aim of this
paper is to prove that (0.2) is bijective for all completely regular G-spaces X satisfying
the condition dim B(X/G) < o if and only if Y satisfies certain simple homotopy
conditions, which represent a very natural generalization of the conditions mentioned
above and reduce to them in the case of G a trivial group.

The paper is organized as follows. Our main result, Theorem 1.3, some simple
corollaries to it and its more compact equivalent formulation, Theorem 1.8, are
stated in Section 1. In Sections 2—4, necessary technical tools are developed, and
in Section 5, the proof of Theorem 1.3 is-accomplished. Finally, in Section 6, a result
from dimension theory is proved, which is needed in Section 4 and which we have
not been able to find in literature although it is likely to be well-known.

Our proof of Theorem 1.3 is based on some recent results of M. Murayama [15],
S. Warner [18] and the second author [9] but also on results of T. Matumoto [11]
and the first author [2]. It follows, however, [6] and [7] rather than [2] because
the more direct method of [2] proved to be less suitable for a translation into the
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category of G-spaces and G-maps than the method of A. Calder and J. Siegel based
on the notions of the relative compressibility property and the bounded lifting pro-
perty. Although the idea of the proof is the same as in the non-equivariant case, its
technical realization is far from being a straightforward copy of the proof of the
corresponding theorem on the transformation (0.1). Difficulties that one meets when
trying to carry over this proof into the category of G-spaces and G-maps are due to
the fact that some results and tools used in it fail to have obvious analogs in this
category if G is not finite. This concerns e.g. the bridge mapping theorem (see [1]
or [8, Appendix]) and the fact that a bridge of a map, i.e. the geometric nerve of
a suitable covering, has a canonical CW-complex structure, which both play an
important role in the proof of surjectivity of (0.1) for X satisfying dim fX < co.
The work of M. Murayama [15] suggested how to define a bridge and a bridge
mapping for a G-map, but still a difficulty has remained caused by the fact that
Murayama’s geometric nerve of a TN G-covering fails to have a canonical G-CW-
complex structure which behave reasonably with respect to its skeletons.

The first version of Theorem 1.3, dealing only with paracompact G-spaces,
was proved as early as in 1983. In the present form, the results of this paper were
announced at 4th International Conference “Topology and its Applications™,
Dubrovnik, Sept. 30 — Oct. 5, 1985 [3].

In terminology and notation we closely follow [16], [11] and [15]. All spaces
are supposed to be Hausdorff and G always denotes a compact Lie group.

1. MAIN RESULTS

1.1. Let #(G) denote the set of the conjugacy classes of all closed subgroups of G,
and let (H) denote the conjugacy class of a closed subgroup H.

For a subset & of #(G) we shall denote by &~ the set of all conjugacy classes of
the form (N{H; | i eI}) where {H, | i €I} is an arbitrary family of closed subgroups
of G such that (H;)e & for all iel. Clearly & < &~, and we shall say that & is
closed with respect to intersections if & = &

Since G is a compact Lie group, & is obviously closed with respect to intersections
if and only if it is closed with respect to finite intersections, i.e. if and only if
(N{H; | iel}) e for every finite family {H, | i eI} of closed subgroups of G such
that (H;)e & forall iel.

Moreover, using [4, Chap. VII, Theorems 1.1 and 2.1] one can easily show that
the finiteness of & implies the finiteness of &~. (The pfoof can be found e.g. in
[9, p. 542].)

Finally, given & < %(G) and a closed subgroup H of G contained in some closed
subgroup H' of G with (H')e ¥, we shall denote by H(¥) the intersection of all
such H'.
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1.2. By [16, Theorem. 1.5.4], for every completely regular G-space X there exists
a compact G-space X* with the following properties:

(a) X is a dense G-subspace of X*,

(b) every G-map of X into a compact G-space Y extends to a G-map of X* into Y.

Any such space X* is denoted by f;X and called the Cech-Stone G-compactifica-
tion of X. It is clear that BzX is uniquely determined by X up to a canonical G-
homeomorphism identical on X, and that ;X coincides, as a topological space,
with the usual Cech-Stone compactification of X if the group G is finite.

Now we are ready to state our main results on the canonical transformation

(1.1) Jx: [BeX; Y]e = [X; Y]e
induced by the inclusion map jx: X Q BsX.

1.3. Theorem. Let Y be a G-space having the G-homotopy type of a G-CW-
complex in the sense of [11]. Then the canonical transformation (1.1) is bijective
for all completely regular G-spaces X with dim B(X/G) < oo if and only if Y
satisfies the following two conditions:

(a) Theset no(Y™, yy) and the group n,(Y", yy) are finite and the groups n(Y", yy)
(i = 2,3,...) are finitely generated for each closed subgroup H of G with Y? % 0
and for each base point y, e Y.

(b) There exist finite subsets S, 1, P>, ... of F(G) closed with respect to
intersections and such that for each closed subgroup H of G with Y? %0 and for
each n = 0,1,2, ... the group H(¥,) is defined (see 1.1) and the inclusion map
Y* 3 Y? is an n-equivalence (in the usual sense, see [17, p. 404]).

The proof of this theorem will be given in Section 5.

1.4. Remarks. (a) By [16, Proposition 1.1.8], the orbit space X/G of a completely
regular G-space X is also completely regular, and so it makes sense to speak of the
Cech-Stone compactification B(X/G).

(b) If X is a completely regular space then dim X coincides with the “normal
covering dimension” dimy X defined by means of finite normal coverings of X,
which was studied by K. Morita in [14]. We recall that by one of his results [14,
Theorem 1.3] dimy X < n if and only if every normal covering of X has a normal
refinement of dimension at most n. (We will make use of this result in Section 2.)

We now show that in many interesting cases the conditions (a) and (b) of Theorem
1.3 can be considerably simplified.

1.5. Corollary. Let us suppose that Y is as in Theorem 1.3. If Y has only finitely
many orbit types then the transformation (1.1) is bijective for every completely
regular G-space X with dimy X|G < oo if and only if Y satisfies the condition (a)
of Theorem 1.3.

Proof. It suffices to show that Y satisfies the condition (b) of Theorem 1.3. Let &
denote the set of the conjugacy classes of all isotropy groups G, y € Y. & is finite
by our assumption, and if H is any closed subgroup of G then clearly Y# = Y#*) =
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= YA provided Y¥ + 0. Since &~ is finite by 1.1 and closed with respect to
intersections, we see that the required condition is trivially satisfied for &, =
=% =..=9".

In the next corollary we shall need the notion of a G-CW-complex of G-finite
type. We recall that a G-CW-complex Y is said to be of G-finite type if all its skeletons
Y, Y', Y2, ... are G-finite G-CW-complexes in the sense of [11, Definition (1.4)].
Clearly, Y is of G-finite type if and only if the CW-complex Y/G is of finite type in
the usual sense.

1.6. Corollary. Let us suppose that a G-space Y satisfies one of the following two
conditions:

(a) Y is G-homotopy equivalent to a G-CW-complex of G-finite type;

(b) Y is compact and G-homotopy equivalent to a G-CW-complex.

Then (1.1) is bijective for every completely regular G-space X with dimy X|/G < oo
if and only if the group n,(Y¥, yy) is finite for all closed subgroups H of G with
Y? %+ 0 and for all base points yy e YH.

Proof. We nced to show that in both cases Y satisfies the conditions (a) and (b)
of Theorem 1.3. Let H denote a closed subgroup of G such that Y# % 0, and let n
be a natural number.

First let us consider the case (a). We may clearly suppose that Y itself is a G-CW-
complex of G-finite type. Let us denote by &, the set of the conjugacy classes of all
isotropy groups G, for y belonging to the n-skeleton Y of Y. We shall show that the
sets 5, F1, &5, ... have the properties required in the condition (b) of Theorem
1.3. This is, however, easy. The finiteness of &, follows immediately from the G-
finiteness of Y” and from 1.1, and the assertion that the inclusion map Y#¢») Q) Y#
is an n-equivalence follows from the observation that @ # (Y")¥ = (Y")H» =
= (Y™ and from [11, Proposition (4.3)], which implies that the inclusion maps
(Y)Y QYR (YD QYR are n-equivalences. It remains to prove that the
sets mo(Y", yy) are finite and the groups n,(Y”, yy) (i = 2, 3, ...) are finitely generated
for all y; € Y. Since the inclusion map (Y")* G Y" is an n-equivalence, it suffices
to prove instead that the sets mo((Y")H, yy) are finite and the groups m,((Y")¥, yy)
(i = 2,3,...) are finitely generated for all y;e(Y")" and all n > 2. This follows,
however, from the compactness of (Y") and from [2, Proposition 2.1], because by
[18, Corollary 4.13] each space (Y")" is homotopy equivalent to a CW-complex.

In the case (b) there is a diagram

YKLy,
where Y’ is a G-CW-complex, K is a G-finite G-CW-subcomplex of Y’, h is a G-map,

g is the inclusion map, and the composition f = g o h is a G-homotopy equivalence.
The induced diagram

H gH
YH R KH R (Y/)H
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has similar properties: the space K is compact, the composition f# = g# o h is
a homotopy equivalence, and [18, Corollary 4.13] implies that K" and (Y')" are
homotopy equivalent to CW-complexes. These properties clearly imply that the set
no(Y", yy) is finite. Moreover, they mean that we may apply [2, Proposition 2.1]
to (Y')H, which immediately yields that the groups n(Y", y,) = n((Y')", f(yn))
(i =2,3,...) are finitzly generated for all y, e Y”. In order to verify that Y
satisfies also the condition (b) of Theorem 1.3, let us denote by & the set of the
conjugacy classes of all isotropy groups G, (y € K) and consider the diagtam

_pHE™) B
yreo L gty
n
D hH 9 gH R
YH KH (YI)H
Since the compositions fH ™) = g™ pHEI™) and 1 = gH . h¥ are homotopy

equivalences and,obviously, K" = KH this diagram implies that the inclusion map
YHY ™ ) YH is a weak homotopy equivalence. Since &~ is finite by the G-finiteness
of K and by 1.1, we are done.

1.7. Remark. In fact, if G and Y are as in Theorem 1.3 and Y satisfies both its
conditions (a) and (b), then conversely, Y is G-homotopy equivalent to a G-CW-
complex of G-finite type. This follows immediately from [9, Theorem 2.3] and from
the equivariant version of J. H. C. Whitehead’s theorem [11, Theorem (5.3)], and
will be used in the proof of Theorem 1.3 in Section 5.

It follows from Corollary 1.6 and Remark 1.7 that Theorem 1.3 can be reformulated
in the following equivalent way.

1.8. Theorem. (An equivalent version of 1.3). Let Y be a G-space which is G-
homotopy equivalent to a G-CW-complex. Then (1.1) is bijective for every completely
regular G-space X satisfying the condition dimy X|/G < oo if and only if Y has
the G-homotopy typz of a G-CW-complex of G-finite type and the group n,(Y", Vi)
is finite for each clrsed subgroup H of G and for each point yy e Y™

1.9. Corollary. If Y is a compact differentiable G-space in the sense of [16,
Definition 1.1.19], then (l.l) is bijective for all completely regular G-spaces X
with dimy X/G < oo if and only if the group =,(Y", y,) is finite for each closed
subgroup H of G and for each point y, e Y

Proof. This is a special case of 1.6 because it is known, see e.g. [ 10, Proposition
(4.4)], that Y has a G-CW-complex structure.

2. A WEAK EQUIVARIANT VERSION OF THE BRIDGE-MAPPING THEOREM

We start with a brief review of some definitions and results of M. Murayama
concerning TN G-coverings and their nerves. If not otherwise stated, we use the ter-
minology of [15, Ssctions 1 and 2].
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2.1. Let Y be a G-space and O = Gy = Y a G-orbit. A G-tube about O is defined
to be a pair T = (T, r) consisting of an open G-neighbourhood T of O and a G-
retraction r: T — O. The orbit O is then called the central orbit of T.

When V'is an open subset of O, the open subset S = r~ (V) of Yis called the open
tube segment of T generated by V. Then, for each g € G, ¢S is an open tube segment
of T generated by gV, and gSn 0 = gV.

Clearly, any open G-neighbourhood T’ of O in Tis also a tube about O with the
G-retraction r’ = r| T'. If Y is completely regular, then by the Mostow theorem
(see [5, Chap. II, Theorem 5.4] or [16, Corollary 1.7.19]) the open tube segments
form an open base for the topology of Y.

Modifying slightly the original definition of Murayama, we now define an open
tube-segmental G-covering of Y as a pair

(2.1) & = ({S;| Ae 4}, {(T,. 1o, O,)| 2 € 4]G})

where {S,| 2 € A} is an open G-covering of Y, T, = U{S,| A€ a}, (T, r,) is a G-tube
with the central orbit O, and S, is an open tube segment of T, for all x e A/G and
Aea. If, moreover, there exists a G-invariant locally finite partition of unity
{p.] x€ 4]G} on Y such that p;'((0,1]) = T, for all ae A/G, then & is called
a TN G-covering (tubular numerable G-covering).

2.2. Lemma ([ 15, Proposition 2.3]). For every open G-covering ¥~ of a para-
compact G-space Y there exists a TN G-covering (2.1) of Y with {S,| A€ A} a star-
refinement of V.

2.3. We shall now modify M. Murayama’s definition of the simplicial G-nerve
and the (geometric) G-nerve of a TN G-covering.

Let f: X — Y be a G-map, (2.1) an open tube-segmental G-covering of Y and
U = {U,| « € A|G} an open G-invariant covering of X such that f(U,) < T, for all
ae A[G. Let us denote by N = N(%) the nerve of % and by N, = N,(%) the set
of n-simplexes of N, and assume that A/G is partially ordered in such a way that the
induced order on the set of the vertices of each simplex of N is linear.

For each n-simplex ¢ of N with vertices oy < ... <o, let K, = K (%, f, %)
denote the open G-subspace of O,, ... x O, defined by

K,=U{0; x...x 0, | ljea;, i=0,....,n, NS, + 0}
i=0

where O; denotes the open subset r,(S;) = S, n 0, of O, for each 2 e o« and « € A/G.
We now define a simplicial G-space (without degeneracy operators) K, =
= K.(%, f, %) as follows: The n-th space K, of K, (n = 0) is given by
K, =[]k,

geNy

where ]| denotes disjoint union, and the i-th face operator 9;: K, » K,_, (n =
=1,2,3,..;i=0,1, ..., n) acts by omitting the i-th term.
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The geometric realization |K (%, f, &)| = ]_[K,,(% £, &) x A"/~ of the simplicial
G-space K(%, f, &) is denoted by K(%, f, 5”) The image of I_[ K. f, %) x Alin

K(%,f, &) is denoted by K'(%, f, ) and called the n- skeleton of K(%,f,%). If
dim N(%) £ n, then clearly K%, f, &) = K(, f, ) for i 2 n.

Since K*(%,f, 9) has no degeneracy operators, the inclusions K"(”Zl, f, .7) QG
QK" (U, f, &) are G-cofibrations and K(%, f, &) is a Hausdorff G-space.

The image of (x,7)eK, x A" in K(%, f,#) is denoted by |x, t| and also by
[Xagn -+ os Xas Tos o o] i X = (Xg5 -0» X5,) €Ky © Opy X ... X O, and to, ..., 1,
are the barycentric coordinates of t € A".

2.4. It is easy to see that the construction just described in 2.3 has the following
property: If g: X' > X is a G-map and %’ = {U,| a € A[G} an open G-invariant
covering of X' such that g(U,) = U, for all « € 4/G, then the obvious canonical map

K, fog,%) - K, f, )

is a G-homeomorphism onto a closed G-subspace of K(%, f, &) and a G-cofibration.

Consequently, we can identify K(”ll’, fog, &) with a G-subspace of the G-space
K(#,f,%), and, in particular, K(%, f, #) can be regarded as a G-subspace of the
G-nerve K(&) of & in the sense of M. Murayama.

Using this identification and denoting the covering {T| a€ A/G} by T, one can
also easily show that K(%, f, &) coincides with p~'(|N(%)|), where p: K(SF)
— |N(7)| is the canonical projection and |[N(%)| is identified in a canonical way
with a subspace of |N(7)|.

2.5. Lemma. Let f,X,Y,% and % be as in 2.3, and let us suppose that % is
numerable.

(a) If {p.| @ € A|G} is a G-invariant locally finite partition of unity on X, which
is strictly subordinated to % in the sense that p; '((0,1]) = U, for all o€ A|G,
then the formula

P(x) = [rag(f(x)), -+ T (/X)) Pao()s > Pa(¥)] »

where x € X, {0y, ..., ,} = {0 € A[G| p(x) % 0} and «y < ... < a,, defines a G-map
P:X - K(,f, %) such that P(X') = K(%', f', &) for every G-subspace X' of X,
U =UNX ={U,nX|aeAlG} and f' = f|X".

We shall say that P is a canonical G-map associated to {p,| a € A|G}.

(b) If {p.| x € A|G} is another G-invariant locally finite partition of unity on X
strictly subordinated to U and if P' is the canonical G-map associated to it, then the
formula

H(x, 1) = [ra(/(x)); -+ 1, f(x); (1 = ‘) PaoX) + 1 Pl(); -
(1 - t) Pa, i
where x and ay, ..., a, are as in (a) and t€ [0, 1], defines a G-homotopy H: X x
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x [0,1] = K(#%, f, &) from P to P' such that H(X' x [0,1]) = K(%, f', %) for
every G-subspace X' of X, U' = U n X' and f' =f| X'.

Proof. See the proof of Proposition 2.4 in [15].

2.6. Definition. Let f, X, Y, and % be as in 2.3. The G-space K(%, f, ) is
called a G-bridge for f if the covering % is numerable and there exists a G-map
F:K(%,f,¥)— Y such that the G-maps f and F . P are G-homotopic for any
canonical G-map P: X — K(%, f, ). Every G-map F with this property is called
a G-bridge mapping for f.

2.7. Proposition. Let f: X — Y be a G-map, let X' =« X and Y' < Y be G-sub-
spaces such that f(X') < Y', and let us suppose that Y and Y' are G-ANR’s
and that Y' is closed in Y. Then there exist a G-bridge K(, f, &), where & is of
the form (2.1) and % = {U, | a. € A|G}, and a G-bridge mapping F:K(U, f, %) - Y
for f with the following properties:

(@ Ifu' =X ={UnX|acA|G}andf" =f| X', then FK(%', [, &)) =
Y.

(b) If P is any canonical G-map from X into K(%, f, &), then P(X') is contained
in K(',f', &) and there is a G-homotopy H: X x [0,1] - Y from t to F o P such
that HX' x [0,1]) = Y".

(c) If v ={V,|aeA|G} is any numerable G-invariant open covering of X
such that V, < U, for all ae A|G, then the space K(V,f, &) and the map
F|K(7,f, &) also have the properties (a) and (b).

Proof. By the equivariant version [ 15, Theorem 6.2] of the Wojdystawski theorem,
we may suppose that Y is a G-invariant closed subspace of a G-invariant convex
subspace C of a Banach G-space. Since Y is a G-ANR, it follows that there exists
a G-retraction r: W— Y, where Wis a G-invariant open neighbourhood of Y in C.

Since Y and Y’ are ANR’s and Y’ is closed in Y, there exist a G-homotopy h: Y X
x [0, 1] - Yand a G-invariant open neighbourhood V of Y’ in Y such that h(y, 0) =
=y forall yeY, h{y',1) =y for all y’eY and te[0,1], and h(V x 1) = Y".
W being an open G-invariant subset of a convex set C, there exists a G-covering
W = {m, ] ueM} of W consisting of open convex subsets of C and refining the
covering {r '(V), W — r*(Y’)}. By Lemma 2.2, there exists a TN G-covering &
of Y of the form (2.1) such that {&,| 2 € A} is a star-refinement of # N Y, and we
can clearly find a numerable G-invariant open covering % = {U, | a € A4/G} of X
such that f(U,) = T, for all « € A/G.

Let o be an n-simplex of N(%) with vertices o < ... < a,, x€ K, = K (%, f, &)
and t € A" Let x = (X,,. ..., X,,) and let ,, ..., t, be the barycentric coordinates of t.
By the definition of KU, there are A, ..., 4, €, such that x,,€ 0,, = r,(S,,) for

i=0,1,...,n and ﬂS; + 0. Since {S,|Ae A} is a star-refinement of W A Y,
this implies that S,10 -V S;, © W, for some pe M. Consequently, th eW,

i=0
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and we can put
F(|x, t|) = h(r( éot,.ya‘), 1).

It is easily verified that this formula defines a G-map F: K(%, f, &) - Y.

Similarly, if P: X — K(%, f, &) is the canonical G-map associated to a G-invariant
locally finite partition of unity {p, |« € A/G} on X, the formulae

H(x, 5) = h(f(x),2s), 0<s<4%.

H(x,9) = W02 = 297() + (25 = DT pu@) ralf6DL ). 5551,

where x € X, {ag,...,0,} = {ae /G l P(x) %0} and «, < ... < a,, define a G-
homotopy H: X x [0,1] - Y from f to F o P.

It remains to verify that K(%, f, &), F and H have the required properties. This is,
however, not difficult and may be left to the reader.

2.8. Definition. Let f, X, Y, ¥ and % be as in 2.3, and let F:K(%,f, &)—-L
be a G-map, where L is a G-CW-complex. We shall say that F is quasi-cellular
if F((K"(%,f, %)) = L™ forn = 0,1,2, ..., where o(n) = n + (n + 1) dim G and
L" denotes the m-skeleton of L.

2.9. Lemma. Let f, X, Y, and % be as in 2.3, let X' < X be a G-subspace,
U =UnX,f =f|X and let (L, L) a G-CW-pair. Let us put K = K, f,%)
and K' = K(@l’,f’,é/’), and let F: K — L be a G-map such that F(K’) < L. Then
there exist a quasi-cellular G-map ®: K — Land a G-homotopy H: K x [0,1] —» L
from F to @ such that ®(K') = L and H(K' x [0,1]) = L.

Proof. Let 6 € N = N(%). By definition, K, is an open G-invariant subspace
of the differentiable G-manifold O,, x ... x O, , where oy < ... < a, are all the
vertices of g, and thus also a differentiable G-manifold. Applying [10, Proposition
(4.4)] we obtain that K, has a G-CW-complex structure, and it is obvious that the
dimension of K, is at most (n + 1)dim G. Consequently, each of the G-pairs
(II K, x A", [TK, x Aand( [[ K, x A", [] K, x A") has a G-CW-
oeNy,’ oeN,’ 6eN,—Ny' ageN,—N,’
pair structure of dimension at most n + (n + 1) dim G.

It follows from the construction of the space K that the G-pairs (K,’,, K,_1) and

(K, K,-1 U K}) can be identified with the G-pairs
(Kn—1 v, ] K, x A", K,_;) and

ageN,’

(Ky-yvK,u, I K, xA“K,.,UK,),
oeNp—N,’

respectively, where ¢": [[ K, x A" > K,_; and ¢: || K, x A">K,_ UK,
oeN,’ 6eNp—Ny'

are obvious canonical G-maps. In view of the preceding observation this clearly
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implies that each of the G-pairs (K}, K;_;) and (K,, K, v K,) has the structure of
a relative G-CW-complex of dimension at most n + (n + 1) dim G.

The conclusion of the lemma now follows from an obvious generalization of [11,
Proposition (3.3)] and from [11, Proposition (4.3)] in a similar way as the G-cellular
approximation theorem.

Combining Proposition 2.7 and Lemma 2.9 we easily obtain the following pro-
position, which is the main result of this section and plays an important role in
Section 4.

2.10. Proposition. Let f: X — Y be a G-map, let X' < X and Y' < Y be G-sub-
spaces such that f(X') = Y', and let n = dimy X/G (see Remark 1.4 (b)). If (Y, Y’)
is a G-CW-pair and Y is a G-ANR (so that, by [15, Theorem 6.4 and Theorem 12.5],
Y’ is a G-ANR, t00) then there exists a G-homotopy H: X x [0, 1] - Y such that
H(—,0) = f, H(X' x [0,1]) =« Y and H(X x {1}) = Y*, where w(n) =n +
+(n + 1)dim G.

3. LOCALLY G-HOMOTOPICALLY TRIVIAL G-FIBRATIONS

By a G-fibration or, equivalently, a G-space over a G-space B we simply mean
a G-map p: E - B.

3.1. Definition. Let p: E — B be a G-fibration.

(a) We shall say that p is G-homotopically trivial (with a fibre (F, H)) if H is
a closed subgroup of G, F is an H-space and there is an H-slice S in B (in the sense
of [16, Definition 1.7.1]) such that B = GS and p is G-homotopy equivalent over B
to the G-fibration ¢: G X ,,(S x F) — B defined in the obvious canonical way.

(b) We shall say that p is G-homotopically trivial (with a fibre (F, H)) over
a G-subspace B' < Bif the induced G-fibration py.: p~'(B’) » B’ is G-homotopically
trivial (with a fibre (F, H)).

(c) We shall say that p is locally G-homotopically trivial (with a family of fibres
{(Fi. H,)| i eI}) if there is a G-invariant open covering {U, | i e I} of B such that p
is G-homotopically trivial (with a fibre (F;, H;)) over U, for each i e I.

3.2. Remark. If, in the situation of Definition 3.1 (a), S’ is an H'-slice in S, then S’
is also an H'-slice in B, so that B’ = GS’ is an open G-subspace of B, and pjg. is
easily seen to be G-homotopy equivalent over B’ to the G-fibration G x . (S’ x F) —
- B

This observation and the Mostow theorem on the existence of slices (see e.g. [5,
Chap. II, Theorem 5.4]) further imply that a G-fibration p over a completely regular
G-space B is locally G-homotopically trivial if and only if for each point b € B there
exists a G-tube T = (T, r) about an orbit O = G . b such that the G-fibration py:
p~(T) - Tis G-homotopy equivalent over B to the G-fibration G x (S x F)y-»T
where H = G,, S = r™'(b) and F = p~!(b).
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The following useful lemma, which can also serve as a motivation for Definition
3.1, is an easy consequence of [16, Corollary 1.7.8 and Theorem 1.7.10].

3.3. Lemma. Let p;: E; - B (i = 1, 2) be G-fibrations, H = G a closed subgroup
and S = B an H-slice in B such that B = GS.

(a) There is a one-to-one correspondence between the G-maps E, — E, over B
and the H-maps pfl(S) - pz"l(S) over S, which is given by the operation of
restriction.

(b) A G-map ¢: E; —» E, over Bis a G-homotopy equivalence over B if and only
if its restriction ¢gs: py '(S) — p3 '(S) is an H-homotopy equivalence over S.

3.4. Proposition. Let Y be a G-ANR, E = Y'°'1 qnd B =Y x Y. Then the
G-map p: E - B defined by p(w) = (0(0), (1)) is a locally G-homotopically trivial
G-fibration.

Proof. Let b = (by, b,) be any point of B and O = G . b. Applying successively
[15, Proposition 6.8, Theorem 8.8 and Proposition 9.6] we obtain that (B, O) is
a G-NDR-pair, which means among others that there are an open G-neighbour-
hood T of O and a G-homotopy h: B x [0, 1] — B such that h(y, t) = y for (y,t)e
€B x {0} U 0 x [0,1] and h(T x {1}) = O. Consequently, the formula r(y) =
= h(y, 1) defines a G-retraction r: T— O, and T = (T, r) is a G-tube about O.

Let S = r~'(b), F = p~'(b) and H = G, and let us define G,-maps

v:p (S)=>F, y:p ! (S)>SxF, y:SxF-pS)

by the formulae

py o h(p(w), 1 = 3t) for 0=t =
xw) (1) =3t = 1) for 1/3<1t
P2 o h(p(w), 3t — 2) for 23 <t

() = (p(@), x(@)) ,
‘p,oh(y,?)t) for 0<t<1
¥'(y, o) (t) = {o(3t - 1) for 1/3=1<2[3,
Ipz oh(y,3—3t) for 2[3<t<

in which p, and p, denote the canonical projections of B = Y x Y onto the first
and second factor, respectively. The maps  and ¥’ are easily verified to be H-
homotopy equivalences over S, which in view of Lemma 3.3 completes the proof.

4. RELATIVE BOUNDED G-LIFTING PROPERTY

In this section, some definitions and results of [7] are carried over (with slight
modifications and generalizations) to the category of G-spaces and G-maps.

4.1. Definition. Let Y be a G-space. We shall say that Y has the relative G-com-
pressibility property with respect to a G-space X (briefly RCPG(X)) if, for every
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G-subspace 4 = X and for every G-map f: X — Y such that, for some halo (= func-
tional neighbourhood) U around 4, f(U) is compact, there exists a G-map g: X — Y
with g(X) compact, which is G-homotopic to f relative to 4.

4.2. Remark. It is easy to show that, for two G-spaces Y and Y’ of the same
G-homotopy type, Y has RCP4(X) if and only if Y’ has RCP(x).

4.3. Proposition. Let Y be a G-CW-complex of G-finite type. Then Y has RCPy(X)
Jfor every G-space X with dimy X/G < oo.

Proof. Let us consider the G-CW-complex
0
tel (Y)=UY" x [n,n+1] =Y x [0, +0),
n=0

which is sometimes called the telescope of Y. It is well known (and can be easily
derived e.g. from the results of [11]) that the canonical projection tel (Y) — Y is
a G-homotopy equivalence. Consequently, by Remark 4.2 we may assume that Y
is G-locally finite and therefore a G-ANR by [15, Theorem 12.5].

Now let f, A and U be as in Definition 4.1. There is a G-finite G-CW-subcomplex B
of Y containing f(U). Since f(G.U) = B and B is also a G-ANR, we may apply
Proposition 2.10 and obtain a G-homotopy H: X x [0, 1] — Ysuch that H(—, 0) =
=f, HU x [0,1]) = B and H(X x {1}) = Y*™. Let ¢:X — [0,1] be any
G-invariant continuous function such that ¢(4) = {0} and ¢(X — U) = {1}, and
let us define a G-map g: X — Y by g(x) = H(x, ¢(x)). Then g(x) = f(x) for x € 4,
g(x) is contained in the compact subspace B U Y™ for each x € X, and (x, t) >
— H(x, ¢(x) t) is a G-homotopy from f to g relative to A, which proves the propo-
sition.

4.4. Definition. A G-map p: E — B is said to have the relative bounded G-lifting
property with respect to a G-space X (briefly RBLP(X)) if, for every G-subspace
A < X and for every G-map f: X — E such that, for some halo U around 4, the

spaces f(U) and po f(X) are compact, there exists a G-map g: X — E with the fol-

lowing properties: g is G-homotopic to f over B relatively to 4, and g(X) is compact.

4.5. Remark. Similarly to Remark 4.2, for G-fibrations p;: E; > B (i =1,2) of
the same G-homotopy type over B it is true that p, has RBLPG(X) if and only if p,
has RBLPy(X).

It follows from the definitions that if B is a one-point space then a G-map p: E - B
has RBLPy(X) if and only if E has RCPy(X). This suggests that there could be
a connection between the RBLP; of E and the RCPg, of the fibers of p, and the aim
of the rest of this section is to show that under certain additional conditions such
a connection really exists.

We start with two simple lemmas, the proofs of which are left to the reader. For
the basic properties of slices that are needed in the first (and also in the proof of
Proposition 4.9 below), see e.g. [16, Section 1.7].
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4.6. Lemma. Let p: E — B be a G-fibration, H a closed subgroup of G, S an
H-slice in B such that GS = B, and X a G-space. Then p has RBLP(X) if and only
if, for every H-slice S" in X such that GS’ = X, the induced H-fibration ps: p"‘(S) -
— S has RBLP4(S').

4.7. Lemma. Let E = B x F be the direct product of G-spaces B and F, and let
p: E > B be the canonical projection. If F has RCPg(X), then p has RBLPg(X).

4.8. Remark. If there exists at least one G-map from X to B, then the sufficient
condition in Lemma 4.7 is clearly also necessary. A G-map from X to B exists e.g.
when G = G, for some b € B.

4.9. Proposition. Let p: E — B be a locally G-homotopically trivial G-fibration
with a family of fibres {(F;, H;)| i €I} and let X be a G-space. If, for each i€l
the fibre F; has RCPy (S) for every H-slice S in X such that GS is a cozero set in X,
then p has RBLP(X). <

Proof. (Compare with the proof of [7, Lemma 1].)

I. By Definition 3.1, for each i e I there is an H-slice S; in B such that {B; | ie I},
where B; = GS,, is an open G-invariant covering of B, and each induced G-fibration
pi: p~'(B;) = B; is G-homotopy equivalent over B, to the canonical G-fibration
G Xy, (S,- x F;) - B;. By Remark 4.5, Lemma 4.6 and Lemma 4.7, each G-fibra-
tion p; has RBLPG(GS) for every H;-slice S in X such that GS is a cozero set in X.

II. Now let 4, U and f be as in Definition 4.4. We may clearly suppose without
loss of generality that U is G-invariant. Since the space B’ = pof(X) is compact,

there are finitely many indices iy, ..., i, €l such that B’ = J B;,. To simplify the
k=1

notation, let us write from now on H,, S;, B, and p, instead of H,, S, , B; and p;,
for k=1,2,..., n. .

Since B’ is normal, the group G is compact and the subsets B; are G-invariant,
there are G-invariant continuous functions ¢;: B — [0, 1], i = 1, ..., n, such that
n
the support of ¢; is contained in B; and Y, ¢; = 1. For i = 1,2,..., n let us put

i=1

i=

X, ={xeX|gopof(x)>0},
CA;={xeX|@iopof(x)=1/n},
S; ={xeX;|p-f(x)eS;}.

Then S; is an Hslice in X and X; = GS; is a cozero set in X, so that, by part I of

the proof, p; has RBLP4(X,) for each i = 1,2, ..., n. Moreover, X, is an open G-

invériant halo around A4;, and U 4; = X.

. i=1 .
III. We shall now prove that there are G-maps g4, ..., g,: X = E and G-invariant

subsets Uy, ..., U, of X satisfying (with g = f, Uy = U), for each i = 1,2, ..., n:
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(i) g;is G-homotopic to g;_, over Brelatively to 4 u_flg U4 U (X - X)),
(ii) U; is a halo around 4 U ... U 4; and the space g;(U;) is compact.
This will prove the proposition because the map g = g, will clearly have all the
properties required in Definition 4.4.
The proof proceeds by induction. Let us suppose that, for some integer k satisfying
1 <k =n, we have constructed G-maps gy, ..., gx-1- X = E and G-invariant
subsets Uy, ..., Uy_; of X in such a way that the assertions (i) and (ii) are true for
i=1,2,...,k — 1, and consider the restriction g;_: X, » p~'(B,) of g,_,. Since
U,_, is a G-invariant halo around AU A, U ... U A4;_,, there is a G-invariant
open subset U;_, of U,_, such that U,_, is a halo around U;_; and U;_ is a halo
around AuA;u...UA4,_;. ThenU,_ ;n X,isa haloaround U, _; N X,,in X, and the
closure of g;_;(U,—; n X,) in p~'(B,) and the closure of p, o g;—1(X,) = p o f(X,)
in B, are easily verified to be compact. Since p, has RBLP4(X,), we conclude that
there exists a G-map g;: X, —» p~'(B,) such that the closure of gi(X,) in p~'(B,)
is compact, and a G-homotopy h:X, x [0,1] - p~!(B,) over B, relatively to
U,_, n X, from g;_, to g;. Since U, _, is a G-invariant halo around 4 U 4, U ...
... U A;_; and X, is a G-invariant halo around A4,, U,_; U X, is a G-invariant halo
around 4 U 4; U ... U A,. Consequently, there is a G-invariant continuous function
¢: X — [0, 1] such that the support of ¢ is contained in U;_, U X, and ¢(U,) = {1}
for some halo U, around A U 4; U ... U A,. Putting now

_ /h(x, o(x)) for xeX,,
gk(x) h <gk—1(x) for x¢X,,

we obtain a well-defined G-map g,: X — E which is easily verified to satisfy (1)

and (ii) for i = k. This completes the proof.
Now we can prove the main results of this section.

4.10. Proposition. Let p: E — B be a locally G-homotopically trivial G-fibration
over a completely regular G-space B. If for each b e B the fibre F, = p~*(b) has
the G,-homotopy type of a G,-CW-complex of Gfinite type, then p has RBLP(X)
for every G-space X such that dimy X/G < co.

Proof. It suffices to show that p satisfies the conditions of Proposition 4.9. By
Remark 3.2, p is a locally G-homotopically trivial G-fibration with a family of fibres
{(Fs» Gy) | b e B}, and by Remark 4.2 and Proposition 4.3 each fibre F, has RCP;,(X)
for every G-space X with dimy X/G < co. Finally, for each Gj-slice S in a G-space X
such that GS is a cozero set in X, GS/G is a cozero set in X/G, and thus by Proposition
6.1 we have dimy (GS/G) £ dimy X/G.

For an arbitrary space X and points x,, x; € X let P(X; x,, x,) denote the subspace
of X' consisting of all paths starting at x, and ending at x,.

4.11. Lemma. If X is a G-ANR, xo, x; € X and H = G, n G,,, then the H-space
P(X; Xg, X{) is an H-ANR and therefore has the H-homotopy type of an H-CW-
complex.
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Proof. The first assertion is an easy consequence of [15, Theorem 6.4 and Proposi-
tion 8.1] while the second follows from [15, Theorem 13.3].

4.12. Remark. Using [18, Proposition 3.8 and Corollary 4.13] one can prove
that P(X; x,, x;) is H-homotopy equivalent to an H-CW-complex also in the case
that X is a G-CW-complex.

4.13. Proposition. Let Y be a G-space and let p: E — B be the G-fibration con-
sidered in Proposition 3.4. If

(a) Yis a G-ANR satisfying the conditions (a) and (b) of Theorem 1.3, or

(b) Yis a G-locally finite G-CW-complex of G-finite type, and the set mo(Y", y)
and the group nl(YH, y) are finite for each closed subgroup H of G and for each
point ye Y,

then p has RBLP(X) for every G-space X with dimy X|/G < oo.

Proof.

It is sufficient to verify that p satisfies the assumptions of Proposition 4.10. By
[15, Theorem 12.5] and the proof of Corollary 1.6 the case (b) is a part of the case (a).
By Proposition 3.4 p is locally G-homotopicaliy trivial, and by Lemma 4.11 each
fibre F, (be B) has a G,-homotopy type of a G,-CW-complex. Let b = (o, y,) and
let H= G, = G, nG,. Clearly (F,) = P(Y; yo, y,)* = P(Y"; yo, ;) and the
last space is homotopy equivalent to the loop space Q(Y"; y,). The exact homotopy
sequence of the path fibration over Y¥ therefore implies that the fibre F, satisfies
the conditions of [9, Theorem 2.3]. Since we already know that F, is of a G,-CW-
homotopy type, this theorem and the equivariant version of the Whitehead theorem
[11, Theorem (5.3)] imply that F, is G,-homotopy equivalent to a G,-CW-complex
of G,-finite type.

5. PROOF OF THEOREM 1.3

5.1. Necessity of the condition (a). Let H be a closed subgroup of G such that
Y? 4 0 and let X be a completely regular space.

It is an easy consequence of the definition of the Cech-Stone G-compactification
that G/H x BX = B4(G/H x X). Consequently, we have the commutative diagtam

L%
[Be(GIH x X); Y]GM»

~ ~
~ ~

[8X; Y] — - [X; Y]
in which the vertical arrows denote the obvious canonical bijections. In view of the
identification (G/H x X)/G = X this diagram implies that the canonical transfor-

mation i} is bijective if dimy X < oo. Since by [18, Corollary 4.13] the space yH
is homotopy equivalent to a CW-complex, we may apply [2, Theorem 1.3] and obtain

[G/H x X; Y]

i
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that the set mo(Y", yj) and the group m,(Y”, y) are finite and the groups (Y™, yy)
(i = 2,3,...) are finitely generated for every point yy € Y".

5.2. Necessity of the condition (b). It is easy to see that we may suppose without
loss of generality that Yis a G-CW-complex. Let n be a natural number.

The surjectivity of the transformation jy. implies that the inclusion map ¢,: Y"Q Y
is G-homotopy equivalent to a G-map ¢,: Y" — Y, whose image is contained in
a G-finite G-CW-subcomplex K, of Y. The set &, of the conjugacy classes of the iso-
tropy groups of all points of K, is clearly finite, and therefore the set &, = &,
is finite as well. We now show that &, has the property described in the condition (b).

Let H be a closed subgroup of G such that Y# # (. One can easily show that each
path component of Y# intersects Y° (this fact represents a very special case of [11,
Proposition (4.3)]). This immediately implies that the group H(%,) is defined,
because for ye Y 1 Y" we have H = G, = G, and the conjugacy class of the
last subgroup belongs to &, by the definition of this set.

It remains to prove that for H, = H(%,) the inclusion map Y Q Y is an n-
equivalence, i.e., for each y € Y the induced homomorphism n,(Y"", y) - n(Y", y)
is bijective for i = 0,1, ..., n — 1 and surjective for i = n. Since each path com-
ponent of Y intersects Y°, we may restrict ourselves to the case of y e Y~ Y.
Let t: Y x [0,1] - Y be any G-homotopy from ¢, to ¢,, and let us define a path
o: [0, 1] > Y by w{t) = 1(y, t). Then we have the diagram

T(Kai v') m(Ky )
in which ¢, is induced by t,, hy,;’s are induced by  in the usual way and all unnamed
homomorphisms are induced by inclusion maps. The diagram is easily seen to be
commutative, the bottom homomorphism is an identity for all i’s because KX» = KX
by the definition of H,, and (1)), and (1)), are bijective for i = 0,1,...,n — 1
and surjective for i = n by [11, Proposition (4.3)]. An easy diagram chasing using
these facts shows that the inclusion map Y#» (Q Y¥ is an n-equivalence.

5.3. Sufficiency of the conditions (a) and (b). Let X be a completely regular G-space
with dimy X/G < co. By [9, Theorem 2.3] and [11, Theorem (5.3)] (an equivariant
version of the Whitehead theorem) we may suppose that Y is a G-CW-complex of
G-finite type and therefore by Proposition 4.3 it has RCP¢(X). This, however, implies
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the surjectivity of jx because each G-map f: X — Y with f(X) compact can be extended
to a G-map from fsX to Y.

The injectivity of j§ follows in a similar way from Proposition 4.13 because as we
have shown in the proof of Proposition 4.3 we may in addition assume that Y is
G-locally finite.

6. APPENDIX: ON dimy OF COZERO SUBSETS

The aim of this section is to prove the following result from the dimension theory,
which we have not been able to find in the literature although it is probably well-
known. -

6.1. Proposition. If 4 is a cozero subset of a topological space X, then dimy A <
=< dimy X.

6.2. Lemma. Let B ¢ A = X and let us suppose that A is a halo around B. Then
for each normal covering U = {Ui | ieI} of the space A there exists a normal
covering ¥ =V;|iel} of A such that dim N(¥" A B) < dimy X and V, < U;
for each iel.

Proof. Let I, =1 v {a}, where a¢I, and let us define a covering #° =
={U}|iel,} of X by U} = U, for iel and U] = X — B. The covering %° is
clearly normal, and therefore there is a normal covering ¥® = {V |iel,} of X
such that dim N(¥™°) < dimy X and V) < U} for all iel,. Putting now V; =
=V u(U; — B) for iel, we obtain a covering ¥~ = {V;|iel} of A which is
easily checked to have all the required properties.

Let % be a normal covering of a space X and let p: X — ]N(%}] be a canonical
projection (canonical map). We shall say that p is locally finite if each point x € X
has a neighbourhood which is mapped by p into a finite subcomplex of |N(%)|.
Clearly, p is locally finite if and only if the corresponding partition of unity on X
is locally finite. Consequently, locally finite canonical projections exist for every
normal covering.

The following lemma is an immediate consequence of Lemma 6.2 and this remark.

6.3. Lemma. Let B <« A = X and let us suppose that A is a halo around B.
Then for each normal covering % of the space A there is a locally finite canonical
projection p: A — |[N(%)| such that p(B) = |N(%)|" where n = dimy X.

64. Lemma. Let Dc CcBc Ac X, let % ={U,|iel} be a normal
covering of A and let p: A — |N(”Il)| be locally finite canonical projection such that
p(C) = |[N(#)|" where n = dimy X. If C is a halo around D, B is a halo around C
and A is a halo around B then there exists a locally finite canonical projection
q: A > |N(%)| such that q(B) < |[N(%)|* and q|D = p| D. .

Proof. Let A = | Star (v;) x Star (v;) = |N(%)| x |[N(%)|, where v, is the vertex

iel

698



of |[N(%)| corresponding to an index i € I, and Star (v;) is the open star neighbourhood
of v;. By [13, Proof of Lemma 2] there exists a not necessarily continuous map
A: A x [0,1] - |[N(#)| having the following properties:

(i) 4 is continuous on each subspace of the form (K x K)n A) x [0, 1], where K
is a finite subcomplex of [N(%)|;

(ii) A(Star (v;) x Star (v;) x [0, 1]) = Star (v;) for each i€ I;

(i) A(((IN(@)|™ x [N(@)|") n A) x [0, 1]) = [N(@)|" for m = 0,1.2,...;

(iv) A(x,»,0) = x, Ax, y, 1) = y for all (x, y) e A.

The lemma is now proved as follows. By Lemma 6.3 there is a locally finite ca-
nonical projection g': A — |[N(%)| such that g'(B) = |[N(%)|". Let ¢:X — [0, 1]
be a continuous function such that ¢(D) = {0} and ¢(X — C) = {1}, and let us
define a map g: 4 — |N(%)| by the formula q(x) = A(p(x), ¢'(x), ¢(x)) for each
x € A. Then q is a locally finite canonical projection with the required properties.

6.5. Proof of Proposition 6.1. Let n = dimy X and let % = {U; | i eI} be a normal
covering of the space 4. Since A4 is a cozero subset of X, there is a sequence

Ay, Ay, A, ... of subsets of 4 such that 4 = |J 4, and A4, is a halo around A4,_,
k=0
fork =1,2,3,.... By Lemma 6.3 and Lemma 6.4 there are locally finite canonical
projections p,: A —> [N(#)| (k =1,2,3,...) such that p(4,) = |N(Z)|" and
P+t | Ax=y = pi| Aw—y for k=1,2,3,.... Let p = lim p,. Then p is a locally
k=

finite canonical projection and p(4) = |N(%)|". Consequently, if we put V; =
= p~!(Star (v;)), where Star (v;) has the same meaning as in the proof of Lemma 6.4,
we get a normal covering ¥ = {V; | i eI} of A4 such that V; = U, for each i eI and
dim N(77) < n, which completes the proof.
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