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LOCAL SPECTRAL RADIUS FORMULA FOR OPERATORS
IN BANACH SPACES

VLADIMIR MULLER, Praha

(Received December 10, 1986)

Let T be a bounded operator acting on a complex Banach space X and let x € X.
The local spectrum o4(x) and the local spectral radius ry(x) = lim sup || T"x| "/

were introduced and studied in connection with the theory of decomposable and
spectral operators, see e.g. [3], [6].

According to [7] there is a large set Y = X (dense and of the second category)
of elements x € X with maximal local spectra or(x) = o(T). Also rg(x) = r(T)
for x € Y, see also [4]. In particular,

sup r(x) = sup lim sup | T"x||*/" = r(T)
xeX ”:]EI)iI n—o
(see also [3] p. 38).
We prove that there exists x € X, |x| = 1 such that |T"x|'/" is arbitrary close
to /(T) (n = 1,2, ...). As a corollary we obtain that
sup inf |Tx|'" = (T)
xeX n=1,2,...
Ix]=1
so that the supremum and the infimum in the well-known spectral radius formula
r(T) = inf | T*|*/" = inf sup |T"x|"/" can be interchanged.
N

1. Theorem. Let T be a bounded operator on a Banach space X and let r denote
its spectral radius. Let {a;}; be a sequence of positive numbers satisfying
sup {a;,i =1,2,...} <1 and lima; = 0. Then

1. there exists xe€ X, |x| = 1 such that | T’x|| 2 /a; (j = 1,2,...);
2. there exists a subset Y = X dense in X such that for every y € Ythere is a positive
integer j(y) with |T'y|| = ria; (j Z j(y)).
In particular, lim inf (| T/y|[r/a; = 1 for every ye Y.
j= o

Proof. We may assume without loss of generality |T| = 1. Denote by ¢,(T)
and r, the essential spectrum and the essential spectral radius of T, respectively.
We distinguish two cases:
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A) Suppose r > r,. The set {1 € o(T), |A| > r.} is at most countable [2], consists
of isolated eigenvalues and the corresponding Riesz subspaces are finite-dimensional.
Choose Aeo(T), || = r. Let x be an eigenvector corresponding to 4, ||x| = 1.
Then |T'x|| =1 (j = 1,2,...).

Let X, and P, be the spectral subspace corresponding to A and the Riesz projection
onto X, respectively. Put Y = {y e X, P,y * 0}. Then Y is a dense subset of the
second category in X. Let y € Y. Denote z = P,y, u = (I — P,l) y. Then

T'y = T’z + T'u, P,Ty = Tz, ie.
) o) 2 IR T = 1,20,
Further, (T — /1)|x,1 is a finite-dimensional nilpotent operator. Let k = 1 be the
integer such that (T — A)*z = 0 and (T — A)*" ' z & 0. Let Q: X, — X, be a pro-
jection such that Qz =z, QKer(T—1)"'=0. Then Q(T— AT 'z=0
(j=1,2,...), ie. QT'z = 2QT'" 'z, and by induction QT'z = A/Qz = J/z. Thus
o) el 2 el el = 1,2,
Together with (1) this gives -
. Py ,
Iy 2 TP (1o, ),
Il P4
hence | TVy| = r/a; for all j sufficiently large.
B) Suppose r = r,. Fix A€ 6,(T), || = r. Then by [1], inf |(T — 2) x| = 0 for
xeY

lIxlI=1
every closed subspace Y < X of finite codimension. We need the following two
lemmas:

2. Lemma. (see Proposition 3 of [5]). Let Te B(X), Ae 6(T), || = r.. Let E = X
be a finite-dimensional subspace of X and let ¢,,&, > 0. Then there exists ze X,
lz| =1 such that
D |(T- 2] S o
2) |x + az|| = max {|x]| (1 — &), %|o| (1 — &,)} for every xeE and for every

complex number o.

3. Lemma. Let Te B(X), |T|| =1, r, = r, xe X and let {a,}7>, be a sequence
of positive numbers satisfying sup{a;, i =1,2,..} <1 and lima; = 0. Let
0 < my<my; <m, be integers and let 5 >0 satisfy aj <36 (j = my + 1).
Suppose |T’x| > ria; (j = mo + 1,...,m,). Then there exists yeX such that
lx = y| £ 6and |Ty| > rla; (j = mg + 1,...,m,).

Proof. Fix Aea (T), M| =r. Let E=V{T'x, j.=my + 1,...,m;}. Choose
€1,€;, > 0 such that |TVx| (1 — &) — m8e; > rla; (j=mo + 1,...,m;) and
&y < min {r'[6j, j = m; + 1,..., m,}. Let z be the vector from the previous lemma
and put y = x + 6z. Clearly, |x — y| = 8. Further, for j = mo + 1,...,my,
[T = [T + 5T52] = | Ths + o95] - 8|z - 2] 2 [T=] (1 - 1) -
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=T+ ATV + L+ WTY(T - 2)z 2 | Tx| (1 — &) — djey > 1a;.
Similarly, for j = m; + 1,..., m,,
|T7y| = |T/x + 6Tz|| = | T'x + 62%z|| — 8| T’z — X'z|| =2
=401 — Sje, 2361 — 361 =361 > rla;.
Proof of Theorem 1 (continued):
1.Put d=1-sup{a;, i=1,2,..} >0. Let aj=ayl +d) (i=1,2...).
Clearly, lima; =0 and sup{aj, i=1,2,..} (1 —-d)(1 +d)=1-d*><1.

i=ow

Denote by n; (i = 1, 1, ...) the smallest index satisfying

@, < 3_~2‘1_1 (n>n).
Fix 2€0(T), || = r. Let xo€ X, ||xo| = 1 be an approximative eigenvector cor-
responding to A and satisfying | T'x,| > r/a} (j = 1, ..., no). Using the previous
lemma repeatedly we construct a sequence {x,}%o, X, € X such that |x,4; — x| <
S d2°*" and |Txgsq| > 1a) (j = 1, ..omeyq) (We put x = X ¥ = Xpuq, 0 =
= d[2*"', mg = 0, my = ny, my = ny,, in the (k + 1)-st step).
Denote by z the limit of the Cauchy sequence {x;};%o, z = lim x,. Then
k

— 00

I72] = tim |Tix 2 Pa; (= 1,2,..).

Further, |[z]| < [xof + |x; — xof + %2 = x| + ... S1+3d + 3d + ... =
=1+4d.
Put x = z[|z| (clearly z % 0). Then x| = 1 and |T'x| = r'a; (j = 1,2, ...).
2. Let ze X and & > 0 be arbitrary. Denote by n; (i = 0,1,2,...) the smallest
index such that

a, <

(n>ny).

n

3. 2i+1
Put y, = z. Using Lemma 3 repeatedly we construct a sequence {y,};~, such that
”)’k+1 - J’k” < gf2"*! and

[T yiss] > ra; (j=no+1,..0,myy)

(Putx = yis ¥ = yii1, 8 = €2°*1 my = ng, my = my, my = nyy in the (k + 1)-st
step).
Let y = lim y,. Then

k- o
; HijH zrla; (j=ny+1,..)
an

ly—z]| <te+ide+..=c¢.
Hence the set Y of all y € X such that | TVy| = r'a; (j = j(»)) is dense in X.

Remark. The estimate in Theorem is the best possible. Let H be a separabie
complex Hilbert space with an orthonormal basis {e,, e;, ...} and let T be the back-
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ward shift defined by Te, = 0, Te; = ¢, (i = 1,2,...). Then r(T) = r(T) =1
and lim T'x = 0 for every x € H.
Jow

4. Corollary. Let Te B(X). Then
sup inf ||T"x|'" = inf sup |T"x|'/* = #(T).
X

xeX n=1,2,.. n=1,2,... X€
lIx]f=1 x|l =1
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