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Czechoslovak Mathematical Journal, 39 (114) 1989, Praha 

OSCILLATION OF DIFFERENTIAL EQUATIONS 

AND u-DERIVATIVES 

JÁN OHRISKA, Košice 

(Received May 12, 1986) 

The aim of this paper is to present results concerning oscillatory and asymptotic 
properties of solutions of n-th order (n > 1) differential equations of the form 

(i) (r(t)...(r(t)(r(t)y(t))y...y + К0/Ш0)) = 0 ' 
where r, p, g are real-valued and continuous functions on an interval [ř0, oo), 
r(t) > 0, g(t) -* oo as t ^ oo, and / is a real-valued and continuous function on 
(— oo, oo). The technique used in the paper is based on the notion ofthe y-derivative 
of a function. The main tool in establishing the results is the following assertion, 
which is a special case of Theorem 2.1. 

Theorem. Let the above conditions on r,p,g,f be satisfied. Afunction y(t) is 
a solution of the equation 

y<->(r) + г(Ф(О)К<КО)/Мя(0(ф(О)))) = o 
on [ř l9 oo) if and only if thefunction u{t) = y(R{t)) is a solution of the equation 
(l) on [ř2, oo), where 

Г ds 
R(f) = — f°r ř = řo > я ( 0 ^ °° as t ~+ °° > 

JeoK*) 
Ф is the inversefunction to R, and ^ ( ^ 0 ) is such that g($(t)) è t0 if t ^ ř ls ř 2 ( ž *o) 
is such that R(t) ^ tx if t ^ t2. 

As we shall see, this theorem permits to obtain information about oscillatory and 
asymptotic properties of solutions of differential equations of the form (l) from the 
results of this kind known for differential equations of the form 

/")(i) + a(t)/(X40)) = 0. 
Examples of such applications of our theorem are presented in Section 3 of this 
paper. 
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1. THE ^-DERIVATIVE OF A FUNCTION 

Suppose throughout this section tha.tf,g,v,vu... are real-valued functions of 
one real variable. Let the interval (— oo, oo) be denoted by R. 

Definition 1.1. Let functions/and v be defined on а neighborhood O(f) of а point 
t e R and let the conditions x e O(i), x Ф t imply v{x) ф v(l). If the limit 

iimmzM 
x^t v(x) — v[t) 

is finite, then it is called the v-derivative of thefunctionfa,t the point t and is denoted 
byfXt)ordf(t)|dv. 

Remark 1.1. It follows from Definition 1.1 that/}(ř) = 1 for every t such t h a t / 
is defined on 0(t) and the conditions x є 0{t), x Ф t imply/(x) Ф / ( i ) . 

Using the above definition we can build the t;-difTerential calculus similar to the 
ordinary differential calculus. Here we introduce two results that we shall need later. 

Theorem 1.1. Let thefollowing conditions be satisfied: 
(i) afunction v is continuous at a point t, 

(ii) afunction g has the v-derivative at the point t, 
(iii) afunctionfhas the ordinary derivative at thepoint g[t). 

Then the compositefunctionf(g) has the v-derivative at the point t and 

(f(g)%(t)=fb(t))g'Xt)-
Theorem 1.2. Let there exist v'(t) ф 0 on an intervalI. Then for t e I the v-deriva-

tivefv(t) exists ifand only ifthe derivativef'(t) exists. Moreover, 

/ * > = ^ . 
v'{t) 

The proofs ofthe above two theorems are simple and therefore omitted. 
Now we introduce ^-derivatives of higher orders. 

( * - i ) 
V2,..-,Vn-l Definition 1.2. Let n > 1 be a natural number. Let functions vn and /£* 

be defined on a neighborhood 0(t) of a point t є R and let the conditions x є 0(t), 
x Ф t imply vn(x) Ф vJf). If the limit 

f("-D AA_f<""1) (A 
l i m 2 > , , ü n " Jvi>v2 ѵп~і\Ч 

Vn(x) - vn(t) x^t 

is finite, then it is called the n-th v-derivative of the function f at the point t and 
denoted by 

d"/(0 A,...,J0 or dvn... dv2 àvx 
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In the case v1 = ... = vm = v and vm+1 = ... = vn = u we shall write 

d"/(0 jTym,M"-m^*y ОГ 
dun"mdť 

For instance, if we put n = 2 and i e I in Definition 1.2, then by Theorem 1.2 
we have 

d2flY) d f'(i) 
—^*- = — ^ { whenever i^(i) Ф 0 on / , 
dr2 dvt dv2 v\yt) 

^ L = 4тт -fvti) whenever *'2(f) Ф 0 on / , 
dv2 dvl v2(t) dt 

І Ж = 4 - A f f l whenever t^(i) Ф 0 (i = 1, 2) on I , 
dv2 dvt v2[t) dt v[[t) 

d2f(t) f4t)vUt)-f'(t)v'[(t) t , / л A ,. 4 o4 
Jyj = 7 w 1 V /—- w 1V -̂ whenever v'i(t) Ф 0 (i = 1,2) 

àv2àvx (*i(0)**i(0 } V 

on J and there exist/"(i) and u'i(r) on I. 

2. THE ^-TRANSFORMATION OF A DIFFERENTIAL EQUATION 

In the sequel we shall use the term "u-differential equation" for a differential 
equation (may be with deviating arguments) in which all derivatives of the unknown 
function have been replaced by its ü-derivatives. Specifically, a u-differential equation 
will be refered to as a lu-differential equation if all the derivatives of the unknown 
function in this equation are ^-derivatives with respect to the same function v. Thus 
a lu-differential equation with deviating arguments is an equation of the form 

(1) G(t, y(t), y'v(t),..., yft>(*), y(K(t)), y'v(hx(t)),..., y^(K(t)),... 

• - -, y(K(t)), y'Mt))> -... ̂ W 0 ) ) = 0 , 

where G: Rm ^> R\ y: R ^ Rp, v: R ^ R, ht: R ^ R (i = 1, 2, . . . , fc); m, n, p, k and rij 
(j = 0 ,1 , . . . , k) are nonnegative integers. 

Now suppose that the following conditions are satisfied: 

a) к ^ 0, n ^ 1, p ^ 1 are integers, 
k 

b) nt ^ 0 (i = 0 ,1 , . . . , k) are integers, £ ni = N ^ 1, 
»=o 

c) / and I± are intervals in R, 

d) gt e C(I) (i = 0 ,1 , . . . , fc), g0(t) = t and gt: I ^ I2 c J, 
e) v e C(I^, v is a strictly monotonous function, и: /x ^ /, 
f) ф is the inverse function to u, 
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?/-k"»-.^ 
h)F:I x A<*+*+i ) ,_^_ 

Consider the differential equation 
(2) ^ , y(t), y'{t),..., y^(t), y{g,(t)), y'(g,(t)),... 

•-->у{п%9хШ...,у(дШуЬШ---,у<ЛкЫт = o, tei. 
If, in the equation (2), the independent variable t is replaced by the function v{i) and 

H*X0).J^A0)."-.j^M*)) 
are replaced by 

*WaW0))). у'МФ(<)Ѣ-, уШФШ 
for j = 0 , 1 , . . . , k in the sense that v(t) replaces even the independent variable as an 
argument of the function with respect to which the derivatives of the unknown 
function are calculated, then (2) is transformed into the equation 

(3) F(v(t), y(t), y'Jt),..., jUf(f), МвіШ)))9 уМвШ))> • • • 
..., уІЇМвШ))* • • •> уШШ уМФ№> • ••> у^МФШ)) = о, 

ř e J i . 

In the sequel we shall call the above mentioned process of obtaining (3) from (2) 
a v-transformation of a differential equation. It is readily evident that a u-trans-
formation preserves the (non-)linearity and the order of equations. Note that (3) is 
a lu-difTerential equation since it is always possible to write (3) in the form (1). 

It is also useful to note that a ф-transformation of (3) leads again to (2). 
It is easy to see that, for example, if v is an increasing function and for some 

j є {1, 2 , . . . , k] we have gs{t) й t (flf/i) ^ t), t e I then q>(gj(v(t))) й t (<K^(40)) ^ 
^ í), teIv Thus it is clear that if v is increasing, then the u-transformation of 
a retarded (advanced) differential equation gives a retarded(advanced) lt>differential 
equation. 

Finally, we note that the equation (2) (the equation (3)) inciudes an ordinary 
aifferential (a lu-differential) equation without deviating argument as well as a dif
ferential (a lü-differential) equation with one or several deviating arguments and 
also a system of differential (lt;-differential) equations without or with deviating 
arguments. 

Now we can establish the following result. 

Theorem 2.1. Let the conditions a ) - h ) be satisfied. Thefunction u(t) is a solution 
of the equation (2) on I if and only if thefunction u(v(t)) is a solution of the equation 
(3)onI^ 

Proof. We put v(t) = s, v(a) = x and u(v(t)) = z(t) for i, oel^. Then, according 
to Definition 1.1 or according to Theorem 1.1 and Remark 1.1, for the components 
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of the functions u and z we have 

(4) ^(<p(gj(v(t)))) = u,(gj(^, 

(z,%(<p(gj(v(t)))) = (u,)'(gj(s)), 

(z^(^WO))) = ("0"(^))> 
(zW(<p(gj(v(t)))) = (ud'"4ej(s)) 

for teIu s = v(t)eI; i = l,2,...,p;j = 0 ,1, ...,k-
From (4) we see that 

z(<p(gj{v(t)))) = u(gj(s)), 

ФЬШ)) = »Ы*))> 
fM0A<t))))='<9A*))> 

z < ^ / ^ ) ) ) ) = V " % ( s ) ) 

for t e Jl9 s є J, j — 0, 1,..., k. Therefore 

F(v{t), z(t), z;(i),..., z<#(i), z foM*)) ) ) , 4(<?ЫФ)))), -

.... z^>(<p(^(<0))),-> <<pbM))))> zMeM)% ••• 
..., zW(<p(0*W)))) = ít», «(»). "'00-> "("°H « f o Ä « Ф А -

..., u<"'>(<h(s)),..., u(g,(s)), u'(gJs))> • ••> " ( " к ) Ы # 

for t e Ix and s = v(t) e I. 
Thus we see that u is a solution of (2) on I if and only if z = u(v) is a solution of (3) 

on It and the proof is completed. 

R e m a r k 2.1. It is easy to see from the proof of Theorem 2.1 that if (2) and (3) 
are scalar equations, then we can write 

F(t,y(t),...,y^\gk{t)))uO (£0) 
instead of (2) and 

F(v{t),y(t),...,у^МаШ)) á o (ž0) 
instead of (3), and Theorem 2.1 remains valid. 

Note that the t>-transformation of an ordinary differential equation may be used 
to extend the set of differential equations with known solutions. Indeed, if we put 
k = 0, n = 1, p = 1 in condition a) and require that v e Cn\l^ with v\t) Ф 0 then 
the ^-derivatives yv{t), y'u2(t),..., yi^(t) m a y be expressed in terms of ordinary de
rivatives, e.g. 

w(n-na ѵ*м-у"('К(Р-/('К(о W _ ^Тл ' ^»*W ~ï7\ > • • • • V'{t) V'%t) 
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Thus , in the case k = 0, n = 1, p = 1 and ve Cn°(lx), v'(t) Ф 0, the equation (3) 
becomes an ordinary differential equation, e.g. 

(5) F , ( l , . , ; ( r ) , y ' ( f ) , . . . , r ( r ) ) = 0 , teI,. 

Since (3) and (5) are merely two ways of writing the same equation, they have 
the same solutions. Thus (2) has been transformed to (5). Moreover, we know that 
according to Theorem 2.1, u is a solution of (2) if and only if the composite function 
u(v) is a solutionof (5). Therefore, for example, if y^t) and y2(t) are linearly in
dependent solutions of 

(6) y"(t) + p(t)y'(t) + q(t)y(t) = 0, tel 

and v є C*(li), v' + 0 and v. It ^> I, then 

y,(v(t)) and y2(v{t)) 

are linearly independent solutions of 

<7) y"(t) + [v'(t) p(v(t)) - "Ш y'(t) + v'>(t) q(v(t)) y(t) = 0 , t el, . 

Conversely, if v is such that u^t) and u2(t) are linearly independent solutions of (7), 
then 

Ui(<p(i)) and м2(ф(0) 

are linearly independent solutions of (6). 
Recently, there has been increasing interest in studying the oscillatory character 

and the asymptotic behaviour of solutions of n-th order differential equations with 
or without deviating arguments involving the so-called quasi-derivatives of the 
unknown function. In the following sections of this paper we shall be concerned 
with osciilatory and asymptotic properties of solutions of some special cases of such 
equations. 

In the sequel we shall restrict our attention to those solutions of the equations 
considered which exist 011 some ray [T, co) and are non-trivial in any neighborhood 
of infinity. Such a solution is called oscillatory if it has arbitrarily large zeros, and 
nonoscillatory otherwise. An equation is said to be oscillatory if all of its solutions 
are oscillatory; otherwise it is said to be nonoscillatory. 

3. OSCILLATION OF THE и-ТН ORDER b-DIFFERENTIAL EQUATIONS 

Consider the n-th order differential equation with deviating argument of the form 

(1) (r(t) ... (r(t) (r(t) y'(t))')'...)' + p(t)f(y(g(t))) = 0 

for t ^ f0, where r є C([ř0, co)), r(i) > 0. We shall state the conditions on the functions 
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p,f, g later. It is evident that the above equation is a special case of the equation 

(2) (r^(t)...(r,(t) (n(t) /(*))')' - ) ' + К0/Ш0)) = 0 , 
where t ^ i0, r ,eC([ro , oo)), r,(i) > 0 (i = 1, 2 , . . . , n - 1). 

Now, if we define 

ад-Г^. <**• 
itor№ 

, і = 1, 2 , . . . . , n — 1 

then we can introduce the well-known properties (A) and (B) of the equation (2) 
in the following form: 

Definition 3.1. The equation (2) is said to have the property (A) if, for n even, the 
equation (2) is oscillatory, and for n odd, every solution y(t) of (2) is either oscillatory 
or 

d'XQ (3) 
àRi...àR2dR1 

-^ 0 as t -> oo (i = 0, 1 , . . . , n — 1) . 

Definition 3.2. The equation (2) is said to have the property (B) if, for n even, 
every solution y(t) of (2) is oscillatory or satisfies the condition (3) or satisfies the 
condition 

a'y(t) 
(4) 

d i ^ . . . d # 2 d K i 
oo as t ~> oo (i = 0, 1 , . . . , n — 1), 

and for n odd, every solution y(t) of (2) is either oscillatory or satisfies the condition 

(4). 
Without mentioning it again, the following notation will be used throughout this 

paper: 
о/ч Ґ às 
R(t) = — , t è t0 , 

Jro KS ) 
Ф is the inverse function to R . 

Remark 3.1. It is easy to see that in the case 

r.(f) = r(t), i = 1,2, . . . ,n - 1 

the conditions (3) and (4) assume the form 

d*y(t) 
(3i) 

and 

(40 

dK' 

d'X0 
dR' 

0 as f ^ oo (i = 0, 1, . . . , n — 1) 

as í ^ oo (i = 0, 1, . . . , n — 1) , 

and in the case r(t) = 1 the conditions (3j) and (4 t) assume the form 

(32) y^(t)^0 as i ^ c o (i = 0 , l , . . . , n - l ) 
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and 

(42) | / ' ' * ( 0 | " * 0 0 a s ' ^ 0 0 (i = 0 , l , . . . , n - l ) . 
In the sequel we shall use the terms "the property (A)", "the property (B)" for the 

equation of the form (l) or of the form y{"\t) + p(t)f(y(g(t))) = 0 in the sense of 
Remark 3.1. 

Lemma 3.1. Let R(t) ~> oo as t ^- oo. 
a) If a function y(t) is oscillatory on an interval [ i l s oo), then the function 

u(t) = y(R(t)) is oscillatory on the interval [ i2 , oo), where t2 is such that R(t2) = tx. 
b) If y(t) satisfies the condition (32) ((42)), then u(t) = y(R(t)) satisfies the con

dition (3 t) ((4i)). 
Proof. Since R(t) ^ co as ř ^ oo, the assertion a) is evident. Now, because (by 

Theorem 1.1 and Remark 1.1) 

u(t) = y(R(t)), MO = y(*(i)), 
aR 

d2u(t) „/„/44 dn_1u(ř) f .-n/n/чч ^ A J e / ( j t ( i ) ) , . . . , _ _ A J = ^ i W ) ) , 

we see that the assertion b) holds and the proof is complete. 
First we consider the n-th order linear ordinary differential equation 

(5) (r(t) ... (r(t) (r(i) y'(t))')'...)' + p(t) y{t) = 0 , ( > t0 , 

where r, p e C([ř0, °o)), r(i) > 0. 
According to Theorem 1.2 we know that the equation (5) may be written in the 

form 

(5i) ^ + r{t)p(t)y(t) = 0, í ž í e . 

The ü-transformation оґ(5х) with t; = Ф leads to the equation 

(6) /">(i) + r(<P(t)) p(<P(t)) y(t) = 0 , t e [0, *(oo)) . 

Before proving our first result we introduce the following comparison results due 
to V. A. Kondratev [4] and T. A. Čanturija [2]. 

Theorem A. Let n ^ 3. Letfunctions a and b be integrable on everyfinite and 
closed subinterval of the interval [0, oo). 

At) If a(t) ^ b(t) ^ 0for t є [0, oo) and the equation 

(7) u^(t) + b(t) u(t) = 0 

has the property (A), then the equation 

(8) uin\t) + a(t) u(t) = 0 
has the property (A). 
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A2) If a(t) S b(t) S Ofor t e [0, oo) and the equation (7) has the property (B), 
then the equation (8) has the property (B). 

Also, it will be useful to observe the following well-known fact. 
A system of fundamental solutions of the equation 

(9) y(n)(t) + a y(t) = 0 , a є R , a * 0 

is formed by real and imaginary parts of complex functions of one real variable of 
the form 
(10) y(t) = e" , 
where 
/ n \ і /«/і i \ / arg(-oe) + 2s7U . . a rg ( -o )+2s f lA 
(11) k = ( V ~ a ) cos + l s m —^ Ь 

\ n n / 
s = 0 , 1 , . . . , n — 1 and a r g ( - a ) means the principal value of the argument of the 
number — a. 

Theorem 3.1. Let n ^ 3. Let r, p e C([i0, oo)), r(t) > 0 and R(t) ^ oo as t -^ oo. 
77ien 

a) the equation (5) fras the property (A) i/ lim infr(i) p(t) > 0, 
i^oo 

b) the equation (5) ftas the property (B) i/ lim sup r(i) p(i) < 0. 
i^oo 

Proof. It follows from (10) and (11) that the equation (9) has the property (A) 
if a > 0. 

Now suppose that lim inf r(t) p(t) = a > 0. Since R(t) ~* oo ifand only if t ~+ oo", 
so 

lim inf r^(i)) Р(ф(0) = lim inf K0 K0 = a 

ř^oo ř^oo 

and then for any ос є (0, a) there exists Ta ^ 0 such that 

r(<P(t)) p(<P(t)) è a for t ^ Ta . 

Applying Theorem A to the equations (6) and (9) (with a > 0) we see that the equation 
(6) has the property (A). But the ^-transformation of (6) with v = R leads to the 
equation (5), and thus according to Theorem2.1 and Lemma 3.1 we know tha t the 
equation (5) has the property (A). 

In the case a < 0 the equation (9) has the property (B) and the second part of the 
theorem can be proved analogously. This completes the proof. 

T. A. Čanturija [ l ] has presented the following results (Theorem 2.1 to 2.4 in [ l ] ) . 

Theorem B. Let n ^ 3 and a є C([0, oo)). 

B j Let a(t) ^ 0 and 
M* 

timmff-4f>a(s)ds > ~ ^ ~ , 
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where M* is the maximum of all local maxima of the polynomial 

p*(x) = _x(x - l) . . . (x - n + 1) . 

Then the equation (8) has the property (A). 

B2) Let a(t) й 0 and 

l im1nf f -4 r | a ( s ) | d s> *n 

И - Г 
where M*n is the maximum of all local maxima of the polynomial 

P*n(x) = x(x - l ) . . . ( x - n + 1) . 

Then the equation (8) has the property (B). 

B3) Let a(t) ^ 0 and 
lim sup t fř°° sn~2 a(s) às > (n - 1)!. 

f ^ 0 0 

Then the equation (8) has the property (A). 
B4) Let a(t) ^ 0. Let n be odd (n even) and 

lim sup t J* s"~2|a(s)| ds > (n - 1)! (>2(n - 2)!). 
ř^oo 

Then the equation (8) has the property (B). 

As we shall see, Theorem 2.1 enables us to extend the above results to the equation 
(5). 

Theorem 3.2. Let n ^ 3. Let r, p e C([i0, oo)), r(i) > 0 and R(t) -+ oo as t ~> co. 
a) Suppose that p(t) ^ 0 and 

lim inf [R(tJ]"-1 J,00 K 5 ) d s > ^ - » 
i^oo n — 1 

where M is the maximum ofall local maxima cf the polynomial 

p(r) = -t{t - l ) ' . . . ( i - n + 1). 

Then řhe equation (5) has řhe property (A). 
b) Suppose that p(t) ^ 0 arcd 

l iminf[R(i ) ]""Mi* |p( 5 ) !^ > 
K 

И - Г 

whereK is the maximum ofall local maxima ofthe polynomial 
Q(i) = ř(ř - l ) . . . ( i - n + 1). 

ТЪеи řhe equation (5) has the property (B). 
c) Suppose that p(i) ^ 0 аиа 

lim sup R(t) \? [R(s)y-2 p(s) às > (n - 1)!. 
f^oo 

Then the equation (5) has the property (A). 
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d)Supposethatp(t)^Q.Letnbeodd(neven)and 

lim sup R(t) j r [K(s)]" - 2 \p(s)\ ds > (n - 1)! (>2[n - 2)!) . 
ř^oo 

Then the equation (5) has the property (B). 

Proof. Since 
lim inf [R(t)Y~l í r p(s) ás = lim inf ř""1 $? r(<P(s)) p{0(s)) ás , 

t^ 00 t^ 00 

so according to TheoremB (part B^), the assumptions of our theorem (part a) 
ensure that the equation (6) has the property (A). By Theorem 2.1 and Lemma 3.1 
we see that the equation (5) has the property (A), and part a) of Theorem 3.2 is 
proved. 

It is evident that the other parts of Theorem 3.2 may be proved similarly and thus 
the proof is complete. 

Now we consider the n-th order linear differential equation with retarded argument 

(12) (r(t)... (r(t) (r(t) y'(t))y ...)' + p(t) y(g(t)) = 0 , t è ío 

where the following conditions will be assumed to be fulfilled. 

(i1) n is even, 
(i2) re C([i0, oo)), r(t) > 0, R(t) ^> oo as t ^ oo, 
(i3) peC([io,oo)) , p(t)>0, 
(i4) g e C'([to, oo)), g(t) й U g'{t) > 0, lim g(t) = oo. 

t ^ O 0 

Similarly as before we can write (12) in the form 

(13) £ $ + r(t)p(t)y(g(t)) = 0, t i t 0 . 

By the u-transformation of (13) with v = Ф we obtain the retarded differential 
equation 

(i4) /->(i) + K<*>(0) р(Щ) y(R(e(4t)))) = o 
which we shall study for t є [fls oo), where tx ( ^0 ) is such that 

g(<P(t)) ^ t0 if t ^ tx . 

Recently M. Naito [7] has established the following results (Theorems 2,4 and 5 
in [7]). 

Theorem C. Let (ij), (i3), (i4) be satisfied. 

Ci) (i) The equation 
(15) >(t) + p{t)x(g(t)) = 0 

is oscillatory if 
(16) l"[g(s)y-*p{s)ds = <x>. 
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(ii) Suppose that (16)/fli/s to hold. Then the equation (15) is oscillatory if 

lim sup g(t) fr [»(s)]""2 p(s) d 5 > (n - 1)!, 
i-*oo 

orif 

lim inf0(i) j r U ( s ) ] ' - 2 p(s) ds > ^ Ü ! . 
Í^OO 4 

C2) Suppose that 
^sn~2p(s)ds < 00 . 

Гпеи the equation (15) /5 nonoscillatory if 

lim sup í fř°° sn~2 p(s) ds < (n ~ 2^! . 
i^oo 4 

C3) Assume that 

iim inf ^ > 0 . 
ř^oo t 

(і) ХЪе equation (15) /s strongly oscillatory ifand only ifeither 

^s*-*p(s)ds = 00 
0Г 

lim sup ґ Jř°° s""2 p(s) ds = 00 . 
ř^-oo 

(ii) 77ze equation (15) is strongly nonoscillatory ifand only if 

^sn~2p(s)ds < 00 
and 

l imíJ ř°°s""2p(s)ds = 0 . 
í^oo 

The above mentioned notions of strong oscillation and strong nonoscillation are 
defined as follows: An equation of the form (12) is said to be strongly oscillatory 
if the related equation 

(17) (r(f). . . (r(t) (r(t) y'(t))J ...)' + Я p(t) y{g{t)) = 0 , t è t0 

is oscillatory for all positive values of A. An equation of the form (12) is said to be 
strongly nonoscillatory if (17) is nonoscillatory for all positive A's. 

The purpose ofthe following theorem is to extend Theorem C to the equation (12). 

Theorem 3.3. Let (i i)~(i4) be satisfied. 
a) (i) The euqation (l.2) is oscillatory if 

(18) S"[R{g(t))y->p{t)dt=<x>. 

(ii) Suppose that (i8)fails to hold. Then the equation (12) is oscillatory if 

lira sup R(g(t)) [? [R(g(s))]"-2 p{s) ds > (n - 1)!, 
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or if 

lim MR{g{t)) If [R(g{s))l"-2 p{s) ds > & ^ 1 . 
t^oo 4 

b) Suppose that 

J-[Ä(i)]"-2riOd'<«>-
Then the equation (12) is nonoscillatory if 

lim sup R(t) lf [R(s)f-2 p{s) ds < ^ ~ ^ . 
t^-cO 4 

c) Assume that 

l i m i n f A O ) > o . 
Í-00 R(t) 

(i) The equation (12) is strongly oscillatory if and only if either 

í » [ R ( í ) ] - 2 K O d í = * 
or 

lim sup R(t) J* [#(s)]" -2 p(s) ds = oo . 
f^oo 

(ii) The equation (12) is strongly nonoscillatory if and only if 

$°°[R(t)]n-2p(t)dt < oo 
and 

lim R(t) f* [#(s)]""2 p(s) ds = 0 . 
í^oO 

Proof. As we can see, 

(i9) ітт)У = ^ШгМЩ)>о for řas». 
Ke(*(0)) 

if#'(i) > 0 for t ^ ř0. Moreover, 
(20) f- [ % ( i ) ) ] - 2 KOàt = f- [%(Ф(0)) ] - 2 r(<P(t))p(<P(t)) dt, 

lim sup R{g{t)) Jf [K(<7(s))]"-2 p(s) ds = 
ř^-оэ 

= lim sup A(e(*(0)) í." [*(K<Ka)))]""2 <ф(5)) Кф(5))d s . 
í^oo 

and the same is true when we write lim inf instead of lim sup. Therefore, according 
to TheoremC, part C j , the assumptions of our theorem, part a), ensure that the 
equation (14) is oscillatory. By Theorem 2.1 and Lemma 3.1 we see that the equation 
(12) is oscillatory and the assertion a) of Theorem 3.3 is proved. It is clear that the 
assertions b) and c) ofTheorem 3.3 can be proved similarly. To prove the assertion c), 
we note that 

ШыЩ&-ШЫ*№Ш. 
f̂ 00 ^ ( 0 ř~>0° í 

The proof is complete. 
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Note that part a) of Theorem 3.3 covers Theorem 1 in [9] and, of course, also all 
results which are covered by this theorem. 

We finish our investigation ofthe retarded equation (12) with a result which extends 
the following one due to R. Oláh [8]. 

Theorem D (Theorem2in [8]). Let n ^ 3. Suppose that p є C([í0, oo)), p(t) à 0, 
g є C^([io, oo)), g(t) й t, g(t) ^ oo as t ^ oo and 0 <; g'(t) g 1. If 

lim sup g{t) lf [g(s)]n-2 p(s) ás > (n - 1)!, 
ř^oo 

then the equation (15) has the property (A). 

Theorem 3.4. Let n ^ 3. Suppose that r є C([ř0, oo)), r(t) > 0, r(í) is non
increasing, p є C([*o> oo)), p(t) ^ 0, g є C*([fo> oo))-, g(t) S t, g(t) ^ oo as t -+ oo 
andO S g'(t) S l.If 

lim sup R{g{t)) |? [R(g(s))Y~2 p(s) ás > (n - 1)!, 
ř^oo 

then the equation (12) has the property (A). 
Proof. If we take into account (19) and (20) and notice that 

[A(^(#(0))]' = 7 ^ r ^ W ) ) a l for t ž í i 
r(g(<P{t))) 

provided g\i) S 1 for t ^ ř0 and r(í) is nonincreasing, we conclude from Theorem D 
that the equation (14) has the property (A). By Theorem 2.1 and Lemma 3.1 we 
know that the equation (12) has the property (A) and the proof is complete. 

Now we shall proceed in the investigation of the equation (12) with an advanced 
argument, i.e., the following conditions will be assumed to be fulfilled. 

(ii±) n is even, 
(ii2) re C([ř0, oo)), r(i) > 0, R(t) ~» oo as t ^ oo, 
(ii3) p є C([i0, oo)), p(t) > 0, 
(ii4) g e Cl([t0, oo)), g'{i) > 0, g(t) ^ t. 
Note that the condition g(t) ^ t allows us to deal with (14) on the interval [0, oo) 

if necessary. 
Recently, T. Kusano [5] has proved the following theorems (Theorem 2, 3 and 4 

in [5]). 

Theorem E. Let (ii^, (ii3), (ii4) be satisfied. 
Et) Suppose that 

g(t) 
hm sup ^~7 < oo . 

f^oo t 

The equation (15) is strongly oscillatory if and only if 

lim sup t J* sn~2 p(s) ds = oo , 
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and the equation (15) is strongly nonoscillatory if and only if 

limttfs"-*p(s)ds = 0 . 

E2) The equation (15) is oscillatory if 

(22) ^f-*p(t)dt = oo 

or if(22)fails to hold but one of thefollowing inequalities holds: 

lim sup t fJ0 5й"2 p(s) ás > (n - 1)! , 
ř^oo 

lim inf í J?0 s" - 2 K s) d s > - - — • 
ř^oo 4 

E3) Tfte equation (15) is nonoscillatory if 

lim sup 0(t) J? s"~2 p(s) ds < (П - 2У' . 
t^>oo 4 

In a similar way as before, using Theorem E, we obtain the following three results. 

Theorem 3.5. Let (ii1) — (ii4) be satisfied. 
a) Suppose that 

^Ш) lim sup v v '1 < oo . 
t - 00 j R ( í ) 

The equation (12) is strongly oscillatory if and only if 

lim sup R(t) ff [#(s)]""2 jp(s) ds = oo , 
ř^-oo 

and the equation (12) is strongly nonoscillatory if and only if 

lim R(t) Jt°° [R(s)]"-2 p(s) ds = 0 . 
f^oo 

b) The equation (12) is oscillatory if 
(23) f ° [ A ( í ) r 2 p ( í ) d í = oo 

or i /(23)/at /s <o fto/d bui one o/ thefollowing inequalities does: 

lim sup tf(i) J?5 [K(s)]"-2 p(s) ds > (n - 1)!, 
Í^OO 

liminfK(i) lf> [R(s)f-2 p(s)as > (" ~ ^ ' . 
ř^QO 4 

c) Гйе equation (12) is nonoscillatory if 

lim sup *(ff(i)) í r [ « ( i ) ] - 2 K») d s < ( j L ^ • 
í^oo 4 

For the class of nonlinear differential equations we have several remarkable papers 
concerning oscillation and asymptotic behavior of solutions of differential equations 
of the form 
(24) /"Xt) + p(t)f(y(g(t))) = 0. 
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Here we extend some results from the equation (24) to the n-th order equation 

of the form 

(25) (r(t)...(r(t)(r(t)y'(t))')'...y + p(t)f(y{g(t))) = 0 , t ^ t0. 

For the sake of brevity we shall say that the equation (25) ((24)) has the property 
(C) if every solution y(t) of (25) ((24)) is either oscillatory or such that 

Ri(t)^Jvl^o as i ^ o o ( i * 0 , l , . . . , n - l ) 
W <LR* 

(fyW(t)^0 as t^ 00 (i = 0 , l , . . . , n - l ) ) . 

Consider the equation (25), where 

(iiii) n è 2, 
(iii2) r є C([i0, oo)), r(t) > 0, R(t) ^> oo as t •+ oo, 
( f f i 3 )p6C([ řo ,oo)) ,p( í )ŽO, 
(iii4) g e C([ř0, oo)), #(i) g í, #(i) ^ oo as t -^ oo, 
(iii5) fe C(R), x / (x ) > 0 if x Ф 0. 
As we already know the equation (25) is just another form of the equation 

(26) ^ + <OKOA*WO))-o. *fci. 

and the ^-transformation of (26) with v = Ф leads to the equation 

(27) /">(f) + r(*(i)) # ) ) / ( # » ) = 0 , 

which we shall consider for r e [fl5 oo), where tt ( ^0 ) si such that g{&(t)) ^ f0 

if t ^ řx. 
In the sequel we shall use the following notation: 
Ra = ( - o o , - a ] u [a, oo), a ^ 0; 
C*(^a) = {/ with the property (iii5) | / is of bounded variation on every [a, b] c 

czRa}. 

Lemma 3.2. (Lemma4in [6].) Suppose thatfhas the property (iii5). Thenfe C*(Ra) 
if and only iff{x) = q(x) h(x)for all x e Ra9 where q: Ra ^> (0, oo) is nondecreasing 
on ( - o o , —a] and nonincreasing on [a, oo), and h: Ra ^ R is nondecreasing in Ra. 

Definition 3.3. The function h in Lemma 3.2 will be called the nondecreasing 
component off while q will be called the positive component off. 

Following W. E. Mahfoud [6] we define 

Cj(Rz) = {fe C*(^ a ) | / has a positive component bounded away from zero} 
and 

Ca(Rc) = {fe C*(Ra)\f has a bounded nondecreasing component}. 

We are now in a position to introduce several results proved in [6] and then state 
their extension. 
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Theorem F. Let (iüi), (iii3) — (iii5) be satisfied. 
Fi) Let 

liminf|/(y)| > 0 . 
y^ ± 00 

/ / J°° p(t)dt = oo, then for n even (24) is oscillatory, while for n odd it has the 
property (C). 

F2) V í°° ť 1 p(t)dt = 00, then for n even every bounded solution of (24) is 
oscillatory, whilefor n odd either every bounded solution y(t) of(24) is oscillatory 
or tkyik\t)^0 as t^ 00, к = 0 , l , . . . ,n - 1. 

F3) Let fe Cj(Ra) for some a > 0. 
/ / 

r^KO/[i^^"'(0]di=+oo 
for every c > 0 and every і e {0,1, . . . , n — 2}, ífoen /or n eüen (24) is oscillatory, 
whilefor n odd it has the property (C). 

F4) Let fe Cj(^a) for some a > 0. For every solution y(t) of (24), either y(t) 
is oscillatory or y(n_1)(i) -+ 0 as t ^ 00 if and only if 

(28) J00 K*)/Dt<#""40] dt = ±°° / ö r ^ ^ c > ° • 
F5) Letfe Cj(Ra)for some a > 0 and letf be bounded above or below. 

For n even, (24) is oscillatory if and only i/(28) holds 
For n odd, (24) has the property (C) if and only if (28) holds. 

F6) Letfe Cj(R^for some a > 0 and 

l i m i n f ^ > O . 
t-+oo t 

For every solution y(t) of (24), either y(t) is oscillatory or j(r,~1}(ř) ^ 0 as t -^ 00 
if and only if 

J00 jp(i)/[ + c f" 1 ] di = ±00 for every c> 0 . 

F7) Letfe C*(Ra)for some a > 0. If 

ia>p{t)q{±cgn'\tJ]dt^co 

for every c > 0 and for some positive component q of f, then for n even (24) is 
oscillatory, whilefor n odd (24) has the property (C). 

F8) Let fe CD(Ra) for some a > 0. 
For n even, (24) is oscillatory if and only if (28) holds. 
For n odd, (24) has the property (C) if and only 1/ (28) holds. 

Theorem 3.6. Let (iii^)—(iii5) be satisfied. 
a) Let 

liminf|/(y)| > 0 . 
t ^ ± 0 0 
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If j 0 0 p(t) dt = 00 then for n even (25) is oscillatory, while for n odd it has the 
property (C). 

b)If 
J"R" _ 1 ( t )p ( t )d t = oo, 

then for n even every bounded solution of (25) is oscillatory, while for n odd every 
bounded solution u(i) of (25) is either oscillatory or 

кѵл±Ш^о as t^oo, fc = 0 , l , . . - , n - l . 
dRk 

c) Let f є Cj{R^) for some a > 0. If 

f- R%t) гіО/[±<*ШГ'"а]dí = ± œ 

/ ö r e^ery с > 0 tffld e^ery i e {0, 1 , . . . , n — 2} ífoen /o r n even (25) řs oscillatory 
whilefor n odd it has the property (C). 

d) Letfe Cj(R^for some a > 0. For every solution u[t) of (25), either u(t) is 
oscillatory or 

d"-*u(t) . 
— ^ 0 as ř ^ oo 

dR"-1 

ifand only if 
(29) J00 KO/[i^W^(0))""1] dř = ± °° f°r еѵегУ c > ° • 

e) Letfe Cj(R^for some a > 0 and letf be bounded above or below. 
For n even, (25) is oscillatory ifand only if{29) holds. 
For n odd, (25) has the property (C) if and only if (29) holds. 

f) Letfe Cj(R^for some a > 0 and 

l i m i n f M > o . 
f-oo R(t) 

For every solution u(t) of (25), either u(t) is oscillatory or 

d""4t) л 

— ~> 0 as t -+ oo 
dÄ""1 

i / and only if 
J00 jp(i)/( + cJR""'(i)) àt = ± oo /o r euery c > 0 . 

g) Letfe C*(Ra)for some a > 0. If 
^p(t)q[±c{R(g(t))f^]dt=œ 

for every c > 0 and for some positive component q of f, then for n even (25) is 
oscillatory, whilefor n odd it has the property (C). 

h) Letfe CD(Ra)for some a > 0. 

For n even, (25) is oscillatory if and only i/(29) holds. 

For n odd, (25) has the property (C) if and only i/(29) holds. 
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ProofofTheorem3.6,partc).Since 
^R'(t)p(t)f^c(R(g(t)))-^]at = 

= f- fV(*(f)) КФ(О)/[±с(Я(0(Ф(О))Г'-2] àt 
thus, according to Theorem F, part F3), we see that under the assumptions of 
Theorem 3.6, part c), for n even(27)is oscillatory while for n odd it has the property 
(C). We already know that if y(t) is an oscillatory solution of (27) then y(R(t)) is the 
oscillatory solution of (25) and if y(t) is a solution of (27) with the property 

tky(k\t)^0 as i ^ o o , fc = 0 , l , . . . , n - l , 
so u(t) = y(R(t)) is the solution of (25) with the property 

R^t)<^ = R*(t)y^(R(t))^0 as f ^ o o , f c = 0 , l , . . . , n - l . 
dR 

Thus, using Theorem 2.1 we prove Theorem 3.6, part c). The other parts of Theorem 
3.6 can be proved similarly. 

It is easy to see that many other results concerning the oscillatory and asymptotic 
behavior of solutions of differential equations of the type (24) can be generalized 
to the equation of the type (25). 

4. AN EXTENSION OF THE PREVIOUS RESULTS 

Here we shall show that the results obtained in Section 3 ofthis paper for equations 
of the form 

(r(t)...(r(t)(r(t)y'(t))y...y + p(t)f(y(g(t))) = 0 
may be extended to equations of the form 

(r^(t)...(r,(t)(rt(t)y'(t))y...y + p(t)f(y(g(t))) = o 
by using suitable comparison theorems. 

Thus, for instance, in [3] T. A. Čanturija has presented two comparison theorems 
which we can formulate as follows. 

Theorem G. Let n ^ 3; ph g,-eC([0,oo)), Pi(t) > 0, q{i) > 0;fe C([0, oo) x R), 
h є C([0, oo) x R). 

Gj) Let 
(1) Qt(t) ^ Pi{t) for t e [0, сю) , (і = 1,2,..., n ~ 1) , 

(2) r * L = ao ( i - l , 2 , . . . , n - l ) , 
jo -i*(0 

-f(t, u) sgn u ^ — h(t, и) sgn и ^ 0 for t e [0, oo) , и e R . 
Let thefunction -h(t, и) Ъе nondecreasing in и. Then the equation 
(3) (p,,.,(t)...(p,(t)(p,(t)u'(t))'y...y=f(t,u(ty) , ": 
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has the property (A) if theequation 

(4) (q^,(t)...(q,(t)(q,(t)v'(t))')'...)' = h(t,v(t)) 

has the property (A). 
G2) Let the conditions (l), (2) be satisfied and 

f(t, u) sgn u ^ h(t, u) sgn u ^ 0 for t є [0, oc) , u є R . 

Let thefunction h(t, u) be nondecreasing in u. Then the equation (3) has the property 
(В) if the equation (4) has the property (B). 

Now we are ready to introduce several examples of extensions of the previous 
results. 

Consider the equation 

(5) (r^(t)...(r,(t)(r,(t)y'(t))')'...y + p(t)y(t) = 0 , 
where 

(iVi) n ^ 3, 
(iv2) rt e C([*o, oo)), r{t) > 0 (i = 1, 2, ..., n - 1), 
(iv3) p є C([í0, co)). 

From Theorem 3.1 and Theorem G we have the following result. 

Theorem 4.1. Let (іѵх), (iv2), (iv3) be satisfied. Let 

(6) r є C([/0, oo) , r(r) ^ max rt(t) for t є [ř0 oo), 
i = l , 2 , . . . , w - l 

and 
jd5_ 

r(s) 
a) Suppose p(t) ^ 0 awd liminfr(r)p(i) > 0. Then the equation (5) ftas the 

property (A). ř~*°° 
b) Suppose p(t) ^ 0 a/id lim sup r(i) p(i) < 0. Then the equation (5) has the 

property(B). ř"°° 
In a similar way, using successively parts a), b)? c), d) ofTheorem 3.2 and Theorem 

G, we obtain the following results. 

Theorem 4.2. Let the conditions (іѵ^ — ̂ Ѵз), (6) and (7) be satisfied. 
a) Lei jp(r) ^ 0 and 

M 
lim inf [R(tj]"-1 J,00 p(s) ds > ~^~ , 

i^oo W — 1 

where M has the same meaning as in Theorem 3.2. Then the equation (5) has the 
property (A). 

b) Let p(t) ^ 0 and 

l i m i n f [ A ( O r M r | ^ ) | ^ > ^ T ^ 
i^oo n — 1 

(7) R(t)= ^ ~ ^ oo as í ~> oo 
J io 
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where K has the same meaning as in Theorem 3.2. Then the equation (5) has the 
property (B). 

c) Let p(t) ^ 0 and 
lim sup R(t) fJ0 [#(s)]""2 p{s) ds > (n - 1)! . 

i^oo 

Then the equation (5) has the property (A). 
d) Let p(t) g 0. Let n be odd (n even) and 

lim sup R(t) fř°° [K(s)]n~2 \p(s)\ ds > (n - 1)! (>2(n - 2)!) . 
i^oo 

Then the equation (5) has the property (B). 
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