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Boundary value problems play an important role in the theory of differential
equations, both ordinary and ordinary with delay. There are many papers devoted
to their study (see e.g. [2], [10], [15] and references therein). Boundary value
problems for ordinary linear differential equations are closely related to the study of
their disconjugacy. There are many papers devoted to this topic (see [ 1] and references
theirein). However, the corresponding theory for differential equations with delay
has not yet been built up. The purpose of this paper is to give a generalization of the
notion of a disconjugate linear differential equation for linear differential equations
with delay and then to give the relation between the new notion and multipoint
boundary value problems. This will enable us to treat multipoint boundary value
problems by methods analogous to those known from the theory of ordinary dif-
ferential equations.

I

Consider the following n-th order linear homogeneous differential equation with
(for simplicity) a single delay

(E) x() +:g:ak(t) £0() +:§:)bk(¢) *®(t — A(f)) =0

having continuous (in the interval ¢, £ t < T < +o0) coefficients a,(t), by(t) and
a delay A4(t) 2 0.

The underlying initial value problem (IVP) for the equation (E,) is defined as
follows: On the initial set

E,, = {t — A(t): t — A(t) < to, tety, T)} U {to}
let a continuous initial vector function ¢(t) = (¢do(t), ¢;(1), ..., d,—4(t)) be given.
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We have to find the solution x(t) e C'({to, T)) of (E,) satisfying
(Iv) x®(to) = dyfte), k=0,1,...n—1,
xO(t — At)) = ¢t — A1) if t— A1) <to.

Under the above assumptions, the initial value problem (E,), (IV) has exactly one
solution on the interval {t,, T).

Definition 1. The set of solutions x(t) of (E,) satisfying
(1) x(to) = 0,
x(t —A(t) =0 if t— A1) <t
is called a band of solutions (or shortly a band) at the point t,.

Definition 2. The set of solutions x(t) of (E,) which, in addition to the condition
(1), satisfy also

2 x®(to) = dylte), k=1,2,..,n—1,
xO(t — A1) = it — A1) = ulto) if t— A1) < to
is called the principal band of solutions of (E,) at t,. It will be denoted by B(E,, t,).

Theorem 1. B(E,, t,) is an (n — 1)-dimensional vector space.

Proof. It is easy to see that B(E,, t,) is a vector space. We shall show that its
dimension is (n — 1). Denote by x(t, to) the solution in B(E,, t,) which satisfies (2)
with the initial function ¢ = (P, @y, ..., P,—,) defined by

(3) oty =1, teE,, i=12,...,n-1,
¢t)=0, teE,, j+i.
Then every solution x(t) in B(E,, t,) has the form -
x(t) = ay x4(t, to) + otz X5(t, to) + ... + gy Xu—q(t, 1) -
The proof of Theorem 1 is complete.

Let x(t) € B(E,, t,), x(t) & 0. The n-th consecutive zero (including multiplicity)
of x(t) to the right of t, will be denoted by n(x, t,).

Definition 3. Let a € {to, T). By the adjoint point to the point a (with respect to
(E,)) we mean the point

«(a) = inf {n(x, a): x(t) € B(E,, a), x(t) % 0} .
Definition 4. The equation (E,) is said to be disconjugate in an interval I, iff
ael=aa)¢l.

Theorem 2. Let I = {a, ) be a compact interval. Then for some § > 0, (E,,) is
disconjugate on every subinterval J of I whose length is less than d.
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Proof. We prove this theorem by contradiction. Let

M = max max (la;(t)l + lbi(t)l)

0LiZn—1 tel

6 = min (1, —1—> .
nM

Assume that J < I, the length of J is less than 6 > 0, and (E,,) is not disconjugate
in J. Then there exists a point t, € J and a solution x(t) e B(E,, t,) which has at
least n zeros (including multiplicity) in J; = {t,, + ) J. Thus x®(t) has at
least (n — k) zeros in J; (k = 1,2,...,n — 1). Denote

and

e = max |x®(1)| .
teJ
From (2) we have 1
max |x®(1)| = max |x®(t — A(1))] .
teJy teJy

From this fact and from the existence of zeros in J; we obtain by the Mean-Value
Theorem

We S 106, k=0,1,...,n—1.
Now, if p, > 0, then p; < py416. Since py > 0 we get
0< <6 *u,, k=0,1,....n—1.
On the other hand, from (E,) we get

b 5 3,(0] + 0 5 M <

<M(8" + 6"t + ...+ 8) u, £ nMdy,
ie.
1 <nM
which is a contradiction.
Let us now define an n-point boundary value problem (BVP) for (E,).
Let
Tos Tar ooy Tm €L = (20, T), To <73 £ ... STy, m+1

IIA

n,
rosTy, o0 Tm€N, 1o +ry+...+r1,=n,
B, ... B, BV, .. BSm e R,
and let @o(t), ¢41(t), ..., dro—1(f) be continuous functions defined on E,, such that
¢i—1(70) =B, i=1,2,..,79.

The problem is to find the solution x(f) of the equation (E,) which satisfies the
conditions

(BV) X(""—l)(‘fj) - ﬁ.(ivj) , v = 1,2, e Ty j=0,1,...,m,
x0TIt — A1) = ¢t — A1), v=1,2,...,70 if t—A(F)<T1,.
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Definition 5. The principal band of solutions for the boundary value problem
(E,), (BV) is the set of solutions from the principal band of solutions at 7, which
satisfy
(4) XU - A(t) =0 if t—A()<Tt. v=1,2....1r.

We shall denote this band by B(E,, 7o, r').
It is easy to prove .
Theorem 3. B(E,, 7y, 1) is an (n — ry) dimensional vector space.

Finally, we shall define the adjoint boundary value problem (ABVP) to the
boundary value problem (BVP).

Let

TosTisoros Tms T0sTiseees P
B(Il): s ﬁ(lrl), B(ZrZ)’ AR ﬁ:;m)

be such as in (BVP).

The problem is to find a solution x(t) of the equation (E,) which is from B(E,, o, ro)
and satisfies the conditions

XDy =B, vy =11, j=1, 0, m.
Theorem 4. The equation (E,,) is disconjugate on an interval I iff the adjoint

boundary value problem (ABVP) to each boundary value problem (BVP) has
exactly one solution.

Proof. Each solution x(t) € B(E,, 7o, o) can be written in the form

(5) x(t) = oy X,(t, To) + 0 Xpou1(t, To) F oov F Onry Xu— (1, To) -
Let
xro(Tla To) cee xn—l(Tl’ To) oy ﬂ(11)
............................ oy i :
(rx 1)(.[ T ) x(n— 1)(1 T ) : ﬂ(”)
A= 0 n—1 15 ‘o o = : , - 1
xru('fz» 130) cee Xp—1\T2, To) ’ : 4 ﬁ(zl)
x(rm— 1)(Tms TO) . ('m 1)(1',,,, TO)_ an'—ru X Bér:'")

Then we have to choose o such that

Ao = f.
This, however, is possible for each f if and only if the corresponding homogeneous
equation
(6) Ae =0
has only the trivial solution. This occurs if and only if the differential equation (E,)
is disconjugate in I (since if (E,) is disconjugate on I, then the trivial solution is the
only solution x(t) € B(E,, to) Which has n zeros (including multiplicity) in I).
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Definition 6. Let a continuous initial vector function ¢(t) = (¢o(2), ¢4(2), ...
<ees @a-4(t)) be defined on an initial set E,. Then we define

Hypo = {(@0(t), - bro—1(t); €1 + Prolt)s -oes Cacro + Pazi)t)): ;€ R} .

Theorem 5. Let the coefficients a;, b; (i = 0,1,...,n — 1) of the equation (E,) be
continuous on an interval I. Then the equation (E,) is disconjugate on I if and only
if every boundary value problem (E,), (BV) has exactly.one solution x(t) such that
x(t — A(t)) e Hy,,, provided t — A(t) < 1,.

Proof. Denote by x(t; 7o, ¢o, ..., P,—1) a solution of (E,) satisfying (IV). Now,
Theorem 5 follows from the uniqueness of the solution of the initial value problem
(IVP), from Theorem 4 and from

x(t; T, oy - s Pu—y) =
= x(t; Tos Pos <> Pros Pro+1 — ¢r0+1(T0)’ cois Gumg — ¢n—1("70)) +
+ x(t; 70, 0, ..+, 0, Ppo s 1(T0)s - - > Pu—1(T0)) »
¢;=¢ft), i=01,..,n—1.

Corollary 1. The differential equation

x(")(t) +".§,ai(t) x(i)(t) + bo(t) x(t - A(t)) =0

is disconjugate on I if and only if the boundary value problem (E,,), (BV) has
exactly one solution,

Corollary 2. The differential equation (E,) is disconjugate on I if and only if
every boundary value problem (E,), (BV) has exactly one solution x(t) such that
xO(t — A1), ..., x" "t — A(1)) are constant for t — A(t) < 1,.

Now we will show two examples which will clarify and illustrate the new notions.
For this purpose let us consider the following differential equation

(E,) x"(t) + N(t) x(t) + M(2) x(t — 4(z)) = 0,

N(1), M(t), A(t) € C((to, T), R)
which is a special case of (E,). By Sturm’s Theorem we have that in the case 4(f) = 0
the function «(t) (which assigns to t e (ty, T) its adjoint point «(¢) if such a point

exists, otherwise we put «(t) = T) is an increasing function. However, this is not
valid if 4(t) = 0 as the following example shows.

Example 1. Let the functions N(t), M(t) and A4(t) be defined by the following

formulas
<0, t<O0,
t, t=0,

1, te(—o, +0),

A1)
N(1)

I

I
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and
_/ -1, t<0,
M() N—=(t+1), 120,
Then (E,) becomes

(7) X(f)=0, t<0,

x(t)+ x(t) = (t + 1)x(0) =0, t=0.
It is easy to see that B(7, —1) is the one-dimensional vector space with the basis
xo(t, =1) =t + 1. Thus a(—1) = +o0. On the other hand, B(7,0) is the one-
dimensional vector space with the basis x,(t, 0) = sin ¢ and thus a(O) =T.

Example 2. It is easy to see that if the coefficients N(t) and M(z) in (E,) are
nonnegative functions, then (E,) is disconjugate on (¢, T).

11

In the condition (BV) we have ro € N, i.e. 1y = 1. If rq in (BV) is equal to zero we
have an other boundary value problem:
Let
Ty TaseenTwe€l = (16, T), 1<, £...51,, m=<n,
TysTgs s TW€N, Py + ¥+ .. +T,=n
and
ﬂgl)’ B(IZ)’ M ﬁ(n:'") € R .

The problem is to find the solution of the equation (E,) which satisfies the conditions

(BV,) Xy = Y, vy =12,

i J=1,2,...,m.
Now the question arises: is there any relation between the zeros of some subset of
solutions of (E,,) and the existence and uniqueness of solution of the problem (E,),
(BV,)?

To give an answer to this question, we shall proceed as in the first part of this
paper.

For 7, €1 let us denote by B'(E,, 1) the set of all solutions of (E,) with constant
initial vector functions which are defined on the initial set E,,. It is easy to see that
B'(E,, 7o) is an n-dimensional vector space and

(8) B(E,, 7o) = B'(E,, 7o) -

Let x(f) € B'(E,, 7o), x(t) % 0. The n-th consecutive zero (including multiplicity)
of x(t) to the right of 7, will be denoted by 7(x, ty).

Definition 7. Let a € I. By the first adjoint point to the point a (with respect to (E,))
we mean the point

a,(a) = inf {n(x, a): x e B(E,, a), x % 0} .
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Corollary 3. o,(a) < «(a).

Definition 8. The equation (E,) is said to be strictly disconjugate on an interval I iff
ael=oy(a)¢l.

Corollary 4. If the equation (E,) is strictly disconjugate on I, then it is disconjugate
onl.

Now we can prove the following theorems (the proofs are analogous to those
of the corresponding theorems in the first part of the paper):

Theorem 6. Let 1 = (o, B> be a compact interval. Then for some 6 > 0, (E,) is
strictly disconjugate on every subinterval J of I whose length is less than 6.

Theorem 7. The equation (E,) is strictly disconjugate on an interval I iff for each
t9 €1, 1y < 1y, the boundary value problem (E,), (BV,) has exactly one solution
in B'(E,, o).

Theorem 8. The equation (E,,) is strictly disconjugate on an interval I iff for each
to€l, 19 < T4, and for each continuous vector function ¢(t) defined on the initial
set E,,, the boundary value problem (E,), (BV,) has exactly one solution x(t) such
that

x(t — A(t))e Hy o provided t— A1) < 14 .
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