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INTRODUCTION 

Let CmX„ be the linear space of complex matrices of order m x n. Let Cn be the 
linear space of complex w-tuples. The vectors in C„ are denoted by lower case letters 
x, y, z etc. Matrices are denoted by capital letters such as A, B, etc. For A є CmXn, 
let A*,A + ,N(Ä) and R(A) denote conjugate transpose, Moore Penrose inverse, 
null space and rangespace respectively. A matrix AeCnXn is said to be almost 
definite (a.d [4]) if for x є C„, x*Ax = 0 => Ax = 0. A is positive semi definite 
[4, 7] if Re (x*Ax) ^ 0. A matrix is said to be almost positive definite (a.p.d) if it 
is both a.d and p.s.d. Recently, Mitra and Puri [9] have introduced the notion of 
quasi positive definite matrix (q.p.d). A is said to be q.p.d if A is p.s.d and 
Re(x*Ax) = 0 => Ax = 0. A q.p.d matrix is always a.p.d [9]. These special types 
of matrices are widely used in the study of electrical networks and in linear electro
mechanical systems [4, 9] . For properties of a.d, a.p.d and q.p.d matrices one may 
refer [4, 9,10]. It was pointed out by Duffin and Morley [4] that the unique transfer 
impedance in a general linear electromechanical system exists for every structure 
operator if and only if the constitutive operator is a.d. For terminology and repre
sentation of a general linear electromechanical system by a pair of equations, one may 
refer [4]. 

We are concerned with the hermitian positive semi definite partial ordering on 
complex matrices. For A, B e CnXrn A ^ B o A — B ^ 0 <=> (A — B) is hermitian 
positive semi definite (h.p.s.d). It is well known [2, p. 59] that for non-singular 
matrices A, B if A ^ B ^ 0 then B " 1 ^ A'1 ^ 0. This was extended to generalized 
inverses of certain types of pairs of singular matrices A ^ B ^ 0 by Hans J. Werner 
[5] and independently by Hartwig [6]. Here we have extended their results for a wider 
class of a.p.d matrices. Further, some well known [3] matrix inequalities ona pair 
of h.p.s.d matrices have been extended to a pair of a.p.d matrices. As an application, 
it is shown that under certain conditions the monotonicity of the constitutive 
operators in linear electromechanical systems having the same structure operator is 
preserved for the corresponding transfer impedances. 

*) This work was done when the author visited Indian Statistical Institute, New Delhi, India. 
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RESULTS 

First we shall prove certain lemmas which will simplify the proof of the main 
result. 

Lemma 1. Let A,Be CnXn such that A ^ B. If B is a.p.d (q.p.d)then A is 
a.p.d(q.p.d). 

Proof. Since A ^ Б, A — B = P is h.p.s.d. => x*Px is real and x*Px ^ 0 for 
all x e Cn => Re (x*Ax) ^ Re (x*Bx) and lm(x*Ax) = Im (x*Bx). For x є Cn, 
x*Ax = 0 => Im (х*Лх) = 0 and Re (x*Ax) = 0 => Im (х*Бх) = 0 and Re(x*Bx) + 
+ x*Px = 0. 

Since # and P are p.s.d, Re (x*Bx) ^ 0 and x*Px ^ 0. Hence x*Ax = 0 => 
=> Im (x*J3x) = 0, Re (x*Bx) = 0 and x*Px = 0 => x*Bx = 0 and x*Px = 0. 

On account of B a.d and P h.p.s.d, х*Бх = 0 => Bx = 0 and x*Px = 0 => Px = 
= 0. Therefore, Ax = £x + Px = 0. Thus for x є C„ if x*Ax = 0 then Ax = 0, 
and hence A is a.d. Since J5 and P are p.s.d. Л is also p.s.d. Thus A is a.p.d. Similarly 
we can prove that A is q.p.d whenever B is q.p.d. Hence the Lemma. 

Lemma 2. Let A, B e CnXn such that A ^ B. If B is a.p.d then R(B) c R(A) or 
equivalently N(A) £ N(B). 

Proof. Since B is a.p.d, by Lemma 1, A is a.p.d. On account of Lemma (2.1) of 
[9] both A and B are EP matrices. Therefore R(B) c R(A) is equivalent to N(A) s 
с ЛГ(Б). Now we shall prove that JV(A) £ N(B) as follows: 

x є N(A) => Ax = 0 => х*Лх = 0 => х*Бх + x*Px = 0. Since B is p.s.d and P 
is h.p.s.d. as in the proof of Lemma 1, we get, x*#x = 0 and x*Px = 0. Since B 
is a.d, х*Ях = 0 => Бх = 0. => x є N(B). Thus N(A) Ç N(ß). Hence the Lemma. 

Remark 1. We note that the condition on B cannot be relaxed. For example, let 

A = Г0 2l and B = Г - 1 2 
[ooJ L o - i 

Both A and B are neither a.d nor p.s.d. Hence A and B are not a.p.d. 
A - B = Гі 0l ^ 0 M 

but R(B) ф Р(Л). 
Thus Lemma 2 fails. 

Lemma 3. Lei A,BeCnXn such that A ^ B. If B is a.p.d then R(A) = R(B) o 
o rank A = rank B. 

Proof. (=>) is trivial and (<=) is a direct consequence of Lemma 2. 

Theorem 1. Lei Л, Б e СиХ„ swch ífoaí Л ^ В and В Ъе a.p.d. Then B+ ^ А+ => 
=> R(A) = Р(Б). 

Proof. Since A ^ J3 and В is a.p.d, by Lemma 1, Л is a.p.d and by Lemma 2, 
Я(Б) £ R(A). Since v4 and £ are a.p.d, on account of Lemma 2.5 of [9], A+ and B+ 

. 
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are a.p.d with B+ ^ A+; another application of Lemma 2, yields R(A+) £ R(B+) => 
=> R(A*) Ç R(B*) => R(A) Я R(B). Thus R(A) = R(B). Hence the Theorem. 

For a complex matrix V, let i ( F + F*) be denoted by Sym V. It is knownthat Fis 
q.p.d <=> Sym V is h.p.s.d and rank (Sym V) = rank (V). [refer Lemma (2.8) in 9] 

Theorem 2. Leř Л, B e CnXn such that A ^ B and B be q.p.d. Then thefollowing 
are equivalent. 

i) R(A) « R(B); 
ii) rank (A) = rank (Б); 

iii) (SymB)+ ^ (Sym^) + . 

Proof, (i) o ( i i ) . Since B is q.p.d, Б is also a.p.d. Hence by Lemma 3, this equi
valence is clear. 

(ii) => (iii): Since A and B are q.p.d, by Lemma(2.8) of [9] , Sym A ^ 0; Sym B ^ 0 
and rank (Sym A) = rank (A); rank (Sym Б) = rank (B). Further A ^ B => A* ^ 
^ Б* => Л + A* ^ Б + Б* => Sym Л ^ Sym В. Thus (Sym Л) ^ (Sym В) ^ 0 and 
by (ii) rank (Sym A) = rank (Sym B). Now by Theorem 1 of [5], (Sym B)+ ^ 
è (Sym A)+. Thus (iii) holds. 

Conversely, A and Б are q.p.d with A ^ Б => Sym A ^ Sym Б í> 0 and by (iii) 
(SymB)+ ^ ( S y m ^ ) + . Now by Theorem 1 of [5], rank (Sym^) = rank(Sym5) 
which implies rank (A) = rank (Б). Thus (ii) holds. Hence the Theorem. 

R e m a r k 2. We note that the condition on Б cannot be relaxed. This is illustrated 
in the following. 

A = [2 + i 1 + i l is q.p.d by Lemma (2.8) of [9] , 
[l + i 1 + iJ 

Б = Гі + і П is a.p.d but not q.p.d . ['t'i] 
A and Б are nonsingular, hence R(A) = R(B) and rank A = rank Б. 

" - [ ! ! ] ' • • 
Sym B = П 0~| = (Sym B)+ , 

[ooJ 
Sym A = Г2 l l , (Sym A)+ = (Sym A)'1 = Г 1 - l l , 

M L-1 2J 
(Sym By - (Sym A)+ = Го i l ^ 0 . 

Ll - 2 j 
Thus the Theorem fails. 

Remark 3. In particular if A ^ Б ^ 0, then Sym Л = A and Sym Б = Б; and 
the above Theorem reduces to the following known results. 
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Corollary 1 (Theorem 1 in [6]). Let А,ВєСпхп such that A ^ B ^ 0 then 
B+ ^A+oR(A) = R(B). 

Corollary 2. (Theorem 1 in [5]); For A, B e С„хи, any two of thefollowing three 
conditions imply the other one. 

1) A Ž B ^ 0; 
2) гапк(Л) - гапк(Б); 
3) B+ ^ Л + ^ 0. 
Proof. (1) and (2) => (3), (l) and (3) => (2) follow from Theorem 2, using Sym A = 

= Л; and Sym B = B. 
The proof for (2) and (3) => (l) runs as follows: Since rank A = rank A+ and 

rank B = rank Б + ; Б + ^ Л + £ 0 and rank Л + = rank B+ => (A+)+ ^ (B + ) + ^ 
^ 0 => A ^ Б ^ 0. Thus (1) holds. Hence the corollary. 

Corollary 3. Let A9BeCnXn such that A ^ Б and B be q.p.d. Then B+ ^ A + 
imply thefollowing equivalent statements. 

i) R(A) = R(B); 
ii) rank (Л) = rank (Б); 

iii) (Sym5) + ^ (Sym^)+. 
Proof. The equivalence of these statements follows from Theorem 2. Now by 

Theorem 1, A ^ Б and Б + ^ Л + => Я(Л) = R(B) holds for any a.p.d matrix Б. 
Since Б is q.p.d, Б is also a.p.d. Thus, A ^ Б and B+ ^ Л + =s> R(A) = R(B). Hence 
the corollary. 

Remark 4. In particular for A ^ Б ^ 0, the converse holds. However in general 
the converse need not be true can be seen from the following example. 

Let 
A 

both A and Б are q.p.d. 
A - Б = 

Sym A = 

[ii]^'-[i'0 
[1 0~| ̂  0 . M 

Г2 0 l and Sym B = Гі 0 І , 

L° 2J L° и 
(Sym A)+ = Гі/2 0 1 and (Sym B)+ = Гі 0*|, 

L o i/2j L° и 
(Sym B)+ ê (Sym A)+ . 

Since Л and B are nonsingular, Д(Л) = R{B). rank Л = rank B. Thus statement 
(i), (ii) and (iii) hold. 

B+ = Г 1 = і Г l - i * ] and A+=A~1=\V 2 - i 1 , 
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1 0 ( В + - Л + ) = Г 1 - З Л ^ О = > В + £ Л + 

Thus the converse is not true. 
For a partitioned matrix 

M 

Г 1 - 3 i ] ^ 0 
L-зі i j 

[cl] 
the matrix D — CA+B is called generalized Schur complement of A in M and is 
denoted by M|A. Now we shall generalize the results found in [3] in the following 
way. 

Lemma 4. Let H and K be a.p.d matrices of order n such that H ^ —K. Let X 
and Ybe n x m matrices satisfying 
(1.1) N(H) <= N(X*) ; N(K) <= JV(Y*) 
and 
(1.2) Х*Я+ = (Я+Х)* ; Y*K + = (K+Y)* . 
Then the m x m Hermitian matrix 

Q = X*H+X + Y*K+Y- (X + Y)* (Я + K)+ (X + Y) ^ 0 . 
Proof. Let us consider 

L = ГЯ X and M = ГК У 1 
[x* х*я+х] LY* y*£+YJ 

Since Я is a.p.d, by Lemma (2.1) of [9], Я is EP. Hence #(Я*) = N(H) s iV(JT*). 
Further the generalized Schur complement of Я in L, L/Я = 0. Hence by corollary 
under Theorem 1 of [3], rank L = rank Я. By applying Theorem 3 of [8] and using 
X*H+ = (Я+Х)*; Я is a.p.d. implies Lis a.p.d. Hence Lis p.s.d. Similarly we can 
see that M is p.s.d. Hence L + M is p.s.d. Since Я ^ —K, H + X ^ 0, which 
implies Я + K is hermitian. By (1.2) X*H+X + Y*K+Yis hermitian. Hence, 

L + M = Г Я + K X + Y 1 is hermitian . Г Я + K X + У 
[(jf + y)* х*я+х + y*x+yJ 

Thus L + M ^ 0. Now, by a result of Albert [1], 
Q = X*H+X + У*К + У- (X + 7)*(Я + X)+ (Jí + У) = L + M|H + K ^ 0 . 

Hence the Lemma. 
Remark 5. In particular if Я and K are h.p.s.d then theconditions Я ^ —K and 

(1.2) hold automatically and the above Lemma 4, reduces to Theorem 5 of [3]. 

Theorem 3. Let H and K be a.p.d. matrices of order n such that H ^ —K\ 
partitioned in theform. 
(1.3) H = Г я п H12l and K . p K u K 1 2 l 

L^21 #22J LK21 ^ 2 2 j 
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with 
(1.4) H2lHU = (HtxH*21)* - (ЯГ,Я1 2)* 
and 
(1.5) K 2 1 KÍ, = (XiiX!i)* = (KÌ i^ ia)* . 

Гйеи, Я + Х / Я п + X n è Н / Я ц + X/X1]L ^ 0 . 
Proof. Since Я and X are a.p.d. by Lemmas (2.3) and (2.4) of [9], Hlt and Klt 

are a.p.d. and (1.1) hold for the matrices Я and X. Now, by definition of generalized 
Schur complement [3], we have 

Я + Х / Я п + Ktl = Я 2 2 + X 2 2 - (Я 2 1 + X2 1) (ЯХ1 + X n ) + (Я 1 2 + X1 2) . 

By using (1.4), (1.5) and applying Lemma 4, we get 

Я + K\HX1 + Klt ^ H22 + X 2 2 - (Н21Н^Н21 + X 2 1 XuX 2 1 ) = 

= Я 2 2 + K22 — H;>!HiiH^ — К21КгіКі2 = 

= (#22 - H21HitH12) + (X22 - X 2 1 X u X 1 2 ) = Я/Я1 Х + Х | Х И . 

Thus, Я + Х / Я п + X u ^ Я / Я п + K / X n . 
Since H2iHt1 = (HtiH12)* and K 2 1 K n = (X^X 1 2 )* by applying Theorem 1 

of [8] for the a.p.d. matrices Я and X, we see that HJHX1 and KJKtl are both 
a.p.d., hence p.s.d. Since Я ^ — X, Я + X is hermitian => Я 2 2 + X2 2 is hermitian. 
By using (l.4), Н21Н^Н12 is hermitian and using (1.5), Х 2 1 Х ^ Х 1 2 is hermitian. 
Hence H|H^ + X/XX1 = Я 2 2 + X 2 2 - H2^tiH^ - X 2 1 X u X 2 2 is hermitian. 
Since Я / Я п and X / X n are p.s.d. H|H^ + X / X n is also p.s.d. Thus H\HX1 + 
+ X/X1]L ^ 0. Hence the theorem. 

Remark 6. In a special case if Я and X are h.p.s.d. matrices of the form (l.3) 
then Я ^ —X, the conditions (1.4) and (l.5) automatically hold, and Theorem 3 
reduces to the following known result. 

Corollary. (Theorem 6 in [3]): Let H and X be h.p.s.d. matrices partitionedin 
theform (1.3) then H + Х / Я м + Ktl ^ H|H^ + X / X u . 

APPLICATION TO LINEAR ELECTROMECHANICAL SYSTEMS 

Let us consider two linear electromechanical systems with constitutive operators Я 
and X and having the same structure operator A. For terminology and notation the 
reader may refer Duffin and Morley [4]. If Я and X are a.d operators then their 
transfer impedances ф(Н) and ф(К) exist and both are a.d. ІЇН and X are partitioned 
in the form (1.3) then by Theorem 7 of [4], 

ф{Н) = (A + )*(H22 - Н21НиН12)А+ = {A + )*{H\HiX)A + 

ф(К) = (A + )*{K22 - K2lKt1K12)A+ = (А + )*{К\К^)А+ . 

If we assume that the constitutive operators Я and X satisfies (1.4) and (1.5) 
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respectively and H ^ —K, then by Theorem 3, 
H|H^ ^ -KJK11^(A+y(HlH11)A+ ^ -{A+)*(K\KU)A+ => 

=>Ф{н)г -ф(к). 
Thus the monotonicity ofthe constitutive operators is preserved for the corresponding 
transfer impedances. 

Acknowledgement. The author wishes to express her sincere thanks to Professor 
S. K. Mitra for valuable discussions. 
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