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DIFFERENTIAL GEOMETRY OF SURFACES

ALols Svec, Brno

(Received May 5, 1987)

In the recent years, there has been new interest in the study of submanifolds of
affine spaces; see [1]. Nevertheless, only some invariants in the equiaffine theory
have been considered and there are few papers in the general affine and projective
geometries. The present paper is devoted to the systematic study of invariants of
surfaces in 3-dimensional spaces. There is just one global theorem which is very ge-
neral; one may, of course, prove better results under more special suppositions —
see [5]—[9].

1. Hyperbolic surfaces in qu. Consider a hyperbolic surface 7 in the equiaffine
3-space AZ,. To each point men (in a neighborhood of a fixed point m, € )
let us associate a frame {m; vy, v,, v3} such that

(1.1) [v1,v5,05] =1

v, U, determine the asymptotic directions and we may write

(1.2) dm = t'v; + %0, ; do, = tiv, + v, + 205,
do, = 130, + T30, + vy, dvy = T30, + T30, + TI05.

From (1.1) we get

(1.3) 4+ +13=0,

and we have the usual integrability conditions

(1.4) dit =t A ti, dif=1f A1
with

(1.5) B¥=0; =12, 1}=1".

Let {m; &, D,, #3} be another such field of associated frames; we have
(1.6) Uy = oy 0y, Uy = 030y, U3 = 03105 + 3305 + 033033
(1.7) Ay 0033 = 1.

Here we suppose 7 to be oriented; otherwise, we have to consider also the changes
(1.6") 3} = ay505, By = a0y, etc. From (1.2,) and (1.2,) we get

dm = t'v, + 1?0, = ¥, + %5,,
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ie.,
(18) Tl = allf1 > ‘[2 = azz"fz .
Further, using (1.2) and (1.2) we have
do, = doyq.v + 0‘11(‘5}”1 + v, + 1:21;3) =
~1 ~ o
= Fjoy,0; + T105,50, + T (at3,0; + 0350, + A3303),
db, = doty, .0, + apy(Th0y + T30, + tlos) =
= T3040y + Ty0a,0;5 + %1(013101 + o3,0, + 0‘33”3) s
ie.,
(1'9) dogy + oy7) = 0y, 8] + 038, ayy7) = oy,17 + 03,2, @17% = a5,
0y0T; = 0y Ty + oy E', dayy + 05,15 = 0T5 + a3fl, ay,tt = X337y -
From (1.8) and (1.95 ) We get ay,a,, = a33, i.c.,
(1.10) 010y, = 033 = &= +1.
The exterior differentiation of (1.5) yields
(L11) a4+ Ar=0, (p+) At +ia?=0,
and we have the existence of functions 4y, ..., 4, such that
(1.12) 77 = A7 + Ayt®, 1 + 15 = Aytt + Ayt 1) = Ayt + AR
From (1.9, 4), let us calculate 77 and 7}, respectively; inserting them into (1.12, 3)
and using (1.12) and (1.8), we get
ariayy (A + A7) + aflas,®® = Ao T+ Ayun,t?,
0‘2_210511(/13'31 + ‘21%2) + ayyasy ! = Ao # + Aqoy,7
and
(1~13) Ay = ajla A, Ay =il A, + aq s o,
A3 = oc2_21133 + O‘1—110‘2—21‘7‘31 , Ay = OC11"‘2_22154 .
Thus we see that we may specialize the frames in such a way that (1.12) reduce
simply to :
(1.14) 2 =Aitt, i+ =0, 1) =A%,

and-the admissible changes of the frames reduce to
(1.15) Uy = o0y, Uy = 0p50,, U3 =835 o0y =¢&= +1.
The differential consequences of (1.14) are
(1.16) (d4, =34 t) At + 13 A TP =0,
Zatt+yAa?=0,

13 AT+ (ddy + 34411) A2 =0,
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and, using Cartan’s lemma once again, we get
(1.17) dA4; — 34,7} = B;t' + B,7*, 15 = B,t' + B31?,
13 = Byt! 4+ B,1%, dA, + 34,41 = B! + Bst?.
The equations (1.9, , 4 5) reduce to
(1.18) doyy + ay7) = 0%, T = 0,8t
22Ty = oy ¥y, dagy + #3075 = 0583 ;
fro dis; we get 73 = 0 and
(1.19) oy, %5 = 03373, UpaT3 = 03373
Inserting into (1.17) and using (1.17), we have
(1.20) By = a;’03,B,, B, =a;B,, By=¢B;, B,=u;;B,,
Bs = a;,0;5; Bs .
Lemma 1.1. Consider a hyperbolic surface n < qu. Locally, we may associate
to it frames {m; vy, v, v} such that we have (1.1) and (1.2) with (1.3) + (1.5) +

+ (1.14) + (L.17). If {m; &,,3,, B3} is another field of frames with the same pro-
perties, we have (1.15) and

(1.21) I:= A A, = ed,4,,
(122) I,:=By=¢B;, I,:=B,B,=B,B,, I;:=B,
I, := BB} =¢B,B2, I5:= B2Bs = ¢B?

Bs = ElES ’
Es .

For the form

(1.23) ds? := 2772
we have
(1.24) ds? = £d52.

This lemma determines a set of equiaffine invariants of the 4th order of our
surfaces. The form dS? from (1.23) induces an invariant (up to the sign) hyperbolic
metric on 7. Let us calculate its Gauss curvature. We are going to use the following
assertion: let d~? be a hyperbolic 2-dimensional metric, and let us write d2* = g'¢?;
then there is exactly one 1-form ¢ such that de' = ¢! A @, do? = ¢ A 02, and the
Gauss curvature » is given by do = ixe! A g% In our case o' = ./2.7!, 0% =

=./2.7%, ¢ = 1!, and we get
(1.25) %=A1A4'—B3=I‘—Il.
This equation may be called the theorema egregium.

2. Comparison with Blaschke’s notation. Let our surface be given (locally) by
m = m(u, v), u and v being asymptotic parameters. According to [2], equation (119)
on p. 122, we have
(2.1) F? = (m,, m,, m,,);
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we take F > 0 (here we write m instead of x). Then the equations [2] (2) on p.
132 read

(22) Fm,, = F,m, + Am,, Fm,, = Dm, + F,m,.
Take the frames

(2.3) vy =F "Pm,, v, =F '?m,, vy=F'm,.
Then we have (1.1) and

(2.4) dm = 'y, + t%v,,

dv, = 3F 32 (F ' — Fa?) v, + F32 A7, + 20y,

dv, = F732Dt%p; — $F732(F ' — F,2%)0, + t'os,

dv; = F~*{(AD + FF,, — F,F,)t' + FD,*} v, +
+ F~3{FAz' + (AD + FF,, — F,F,) 1} v,

with

(2.5) . et =FY2du, *=FY*dv.

Comparing with (1.14) and (1.17), we get

(2.6) Ay =F 34, A, =F32D;

(27) By = F-3(FA, — 3F,A) = F(F"*4),, B, = F%4,,

By = FXAD + FF,,— F,F,), By=F?D,,
Bs = F~3FD, — 3F,D) = F(F™3D),.

Thus the Pick invariant I (1.21) equals to

(2.8) ' I =F34D;

compare with [2] (4) on p. 132 or [2] (c3,) on p. 164. Blaschke’s curvatures H and K
are then
(2.9) H= —Bs, K =B} — B,B;;
see [2] (c33), p. 164. The invariant form [2] (1), p. 131, is exactly our form (1.23).
Notice: the theorema egregium (1.25) is 2 = I + H (writing x instead of Blaschke’s
S; see [2] (5), p. 132).

Let us determine the equation of the Lie quadric. In the local coordinates
(X',Y',Z') given by P=m + X'm, + Y'm, + Z'F " 'm,, (see [2] (48) on p. 222
and (2,) on p. 132), the equation of the Lie quadric is

(2.10) HZ'* - 2Z' + 2FX'Y' = 0;
see [2] (49) on p. 223. From (2.3) we have
(2.11) P=m+ X'F'v, + Y'F'2p, + Z'v,.

Thus we easily get

Lemma 2.1. To the hyperbolic surface n < qu let us associate a field of frames:
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{m; vy, v,, 05} as described in Lemma 1.1. At a fixed point m, introduce the local
coordinates (X, Y, Z) by

(2.12) P =my+ Xv, + Yo, + Zvs; v; = vym,).
Then the Lie quadric is the quadric given by
(2.13) 2(Z — XY) + B;Z* = 0.

3. Hyperbolic surfaces in 43. To each point men = A3 let us associate a frame
{m; vy, v, v} such that we have (1.2). Of course, (1.1) does not hold, and we cannot
use (1.3). Thus we use the equations (1.5) as our starting point; let us write them once
again:

(3.1) ¥ =0; 13=12, 13 =1'.
The differential consequences are
(3-2) At +il + 3 -3)At=0,

i+ —)Aatt+A12=0,
and we get the existence of functions 44, ..., A4 such that
(3.3) 1} = At 4 A7, 1)+ 15 — 13 = 24yt + 4577),
' 1y = Ast! + AT

The admissible changes of the frames are

(3.4) Byo= oy qUy, Dy = 0oy, B3 = 30 + Uzp0; + 03305 .
We have
(3.5) dm = tlv; + 7?0, = a0, + Poy,, ,

dd, = doyy.0; + oy4(Tivy + TI0, + T205) =
= Tlog vy + Tiap,0, + (03104 + A3g¥; + 03303),

db, = doy,.0, + 0p5(Tivy + T30, + Tioy) =
= T3y 30y + T30p50; + T(03101 + @350, + a3303),

d¥; = dotay. 0y + datzy. 0, + dogy.03 + aay(tiv, + Tiv, + T703) +

+ o532(“-’51’1 + 130, + tlv;) + o33(T30y + T30, + T303) =
= T3ay10y + F3050; + F(a310s + s3a0; + a3303) .
From (3.5) and the terms at v; in (3.5, ;) we obtain

(3.6) =0, 7, 1% = a,,TR

and a1 = 03372, ay,T! = o357, This implies

(3.7) 033 = Gy1%z2 -
Using (3.3) and (3.3), we get
(3.8) Ay = aifaynd;, Ay = aiid, + aiagy e,

-1 -1,-1 _ -2
Az =0y A3 +ogpay,05y, Ay = 053055 14 -
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We see that we may choose the frames in such a way that
(3.9) =At, - =0, 1= A0,
and the admissible changes of the frames are then
(3-10) Uy = o310y, Uy = 0pp0;, U3 = 033035 033 = 0yyUy; .

The differential consequences of (3.9) are
(3.11) {dd; + A (x5 — 2t} ATt + 13 A2 =0,

' At +3A=0,

1y AT+ {dd, + A,(t] — 283} AP =0,
and we have
(3.12) dA; + A,(t} — 21}) = B;7' + B,7?,
\ 12 = Byt' 4 Byt?, 11 = Byt + B,i?,
, dA, + At} — 213) = Byt' + Bst®.
Because of a3; = a5, = 0, the equations (3.5) yield
(3.13) 1y = a8, 1 = a'4?,
o= 8 -y dogy, 13 = i - o5; dagy ;
using (3.12) and (3.12) we get
(3.19) B, = a;0,,B,, B, =a;’B,, B;=a3B,;,
B, = a3;B,, Bs=o0y,4;;Bs,
and we have
(3.15) th? = 05,87 I =051, I, = o3I, ,
L =a3l, Iy =031, I=0a3ll,, Iy =031

for the definition of I, I, see (1.21) + (1.22).

Thus we get the following

Lemma 3.1. Consider a hyperbolic surface n = A3. Locally, we may associate
to it frames {m;vy,v,,v5} such that we have (1.2) with (3.1) + (3.9) + (3.12).
If {m; ¥y, D,, 03} is another set of frames with the same properties, we have (3.10)
and (3.8,,4) + (3.14).

Eliminating oy, o, from (3.8, 4) + (3.14), we get all affine invariants up to
order 4 of our surface. In particular, we obtain

Proposition 3.1. The forms
(3.16) 1dS?, I, dS?, I,(dS?)?, I3(dS?)?, 1,(dS?)?, I5(ds?)?

are not only equiaffine but also affine invariants of our surface =.

4. Hyperbolic surfaces in P3, In the projective space, our frames consist from four
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analytic points {mo = m, my, m,, m;} such that

(4.1) [mo, my, my, m3] =1,

and we have

(4.2) dm, =m,; o,f...=0,...,3;
with the integrability conditions

(4.3) dif =1 A 1.

Let the frames be chosen in such a way that the straight lines {mg, m}, {mg, m,}
are the asymptotic tangents. Writing, as usual,

(4.4 =1, tri=15,
(4.1) implies

(4.5) o+t ++13=0
and we have the equations

(4.6) =0; =12, =1

as our starting point.
The differential consequences are
1

47) At +@Ei+)AP=0, (f+)Att+13A2=0,
and it is possible to show that we may choose the frames in such a way that
(4.8) 1 =Att, 11 4+13=0, 1= A,
The exterior differentiation yields the relations '
(4.9) {d4, + A(xy =3t At +(7F— ) A2 =0,
B-DAt+(—1) AP=0,
(13 — 19) A T+ {dAy + Ay(1) + 3t} A2 =0
and the existence of functions By, ..., Bs such that
(4.10) d4, + A4(t§ — 3t}) = Byt' + B,i?,
73 — 1) = Byt! + By, 1} — 13 = Byt' + Byi?,
dAy + Ay(1) + 311) = Byt' + Bst?.
Let {1, 1y, 1ii,, 13} be another frame satisfying the equations (4.6) + (4.8) +
+ (4.10). Then
(4.11) 1ty = agomg, My = Oyomg + @y my, Ty =yl + Ayam, ,

3 = d3oMg + 0331y + A33My + 033
with

(4.12) Uooli11Uaztiaz = 1.
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From
M 0
drity = dagg.mg + ago(tgme + t'my + ¥m,) =

~0 ~1 52
To0tomo + T (agoMmo + oty3my) + T (a30mg + tz,m;)

we get
(4'13) T = "‘5010511%1 , = 0‘501‘122‘?2 5

0 ~ ~ ~
(4.14) dagy + 0ooTo = GgoTo + ayot! + pot? .
Further,

drity = doyg.mg + daygy.my + ago(tgme + ttmy + Pmy) +
+ ayy(tmy + Timy + Tim, + Pm;) =
= Wagomo + F1(x1oMe + ag1my) + T1(2z0mo + A2my) +
+ Hazomg + a3ymy + dyam, + az3m3),
drit, = doyg.mg + doyy.my + 0y0(tomg + t'my + 2my) +
+ 0y5(Tymy + Tymy + T3my + t'ms) =
= FJagomy + 3(ayomo + agymy) + T(0z0m + azmy) +
+ THazomg + a3 my + azm, + a33ms),
drity = dozg.my + dogy.my + dozy.m, + dogy.ms +
+ azo(tomg + t'my + Pmy) + agy(time + Timy + Timy + TPmy) +
+ azy(thme + Tymy + 3my + timy) +
+ az3(13mg + T3my + im, + im;) =
= T0gomo + T3(xy0me + ayymy) + F3(ez0me + dz2m;) +
+ T3(0tz0mo + 0t3ymy + Gzam, + 033m3) .

Comparing the terms at m; in dri; and di,, we get

(4.15) . otu‘l.'z = azzfz N 062211 = 0(33’f1 ;
(4.15)-and (4.13) imply o33 = 04;0,, and, because of (4.12),
(4'16) a00“33 = allaZZ =& = il .

Comparing the terms at m, in drii, and at m, in drt,, we get (using (4.13) and (4.8))
%yo0g0 #22® + 0f 1 A;050 " = 0y AT + 03,87,

-1, ~1 2 4 —1x2 _ 7 a2 ~1
00000 %11 + 0544050 7% = 00y A4T° + 3T,

ie.,
N . -2 ~ -2
(4‘17) Ay = ago0yy 0a0Ay, As = toe0ty 1055 As;
— ] -1
(4'18) 033 = Qoo X11020, *32 = Kgg X22010 -

Comparing the remaining coefficients in dri,, drit,, drii; we get
(4.19) agott + doyy + oy yTh = g F 4 a7,
p07” + dtgy + 05575 = 05575 + a3,

1 1 1 1 _ 2 ~3
dogy + 0307 + 0317] + 35Ty + 33Ty = g%y + 0y T3, *
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dityy + 3072 + 0337] + 3375 + %3373 = ap,T3 + %3273,
dogy + 03,72 + a3, 4 43375 = 05573,
dayg + o) + oy 4Ty = agofy + dioff + Aoty + A3of’,
dagg + 0307 + 23,75 = Ggofy + %10Ts + Apots + Aaef’ .
Using these relations and taking into account (4.18) and (4.17), we get
(4-20) B, = “30“1—13“2251 + dogo0i tp00504, , By = “(2)0“1_1252 - ~205000‘1_120‘20"11,
By = 030057 By — 2ag0u57030A,, Bs = 3oy 1055 Bs + dagotty 10550504,

from (4.10, ,) and (4.10, 4). Introduce the functions

(4.21) C,:= A4B, + 2AB,, C,:= A Bs + 2A4,B, ;
then
(4.22) C, = 0‘(3)0“1—12“2—;61 , Cy= “30“1_11“2_2262 »

and we have eliminated o, @, from (4.20).

Lemma 4.1. Consider a hyperbolic surface n = P3. Locally, we may associate
to it frames {m = mgy, my, m,, my} such that we have (4.1) and (4.2) with (4.5) +
+ (4.6) + (4.8). The admissible changes of the frames are then (4.11) with (4.16) +
+ (4.18).

Proposition 4.1. The forms
(4.23) 1dS*, Cy(d')*7*, C,7'(z?)?
are not only affine but also projective invariants of our surface. We get the projective
scalar invariants up to order 4 by eliminating oy, ayy from
(4.24) A, = eago; Ay, Ay = agq0i 1y, Cp = exgoa!Cy, C, = adoay,C,.

It is known that the area element It! A 72

p. 174, Aufgabe 8.

is a projective invariant; see [2],

5. Canonical lines. Consider a hyperbolic surface @ = 42, and consider the

equations (1.5) + (1.14) + (1.17). Let m = m(u, v), u and v being the asymptotic
parameters, and take (locally)

(5.1) tt=rdu, ?=sdo; r=r(u,v)>0, s=s(u0v)>0.
From

(5.2) dit =t Agf, di?= -1 Al

we get

(5.3) 1) = s71s,du — r7tr,do.

From (5.1) we obtain

(5.4) m, =rv;, m,= S0,
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and .
(5.5 My, = (r, + rs7s,) vy + A%,

My, = Aus?vy + (s, + 17 1s1,) 0y, my, = rsv;.
Consequently,
(5.6) My, = (r-tr, + s 's,)m, + A;r’s'm,,

My, = Agr™'s?m, + (r"'r, + s7's,)m,.

3

2> We have the fundamental equations (5.6)

Working in the projective extension of A
in the form

(57) my, = Bumu + ﬂmv + pPyym, my, =7ym, + gvmv + Paoom

compare with [4] (Iy;) on p. 90. Thus, in our case,

(5.8) "0 =logrs, B=r>""Ay, y =r"'s’4,, py; =P =0.
From [4] (105) on p. 93 we have
(5.9 a;, =1rs.

According to [4], § 27 on p. 155, the canonical line with the parameter A (in the case
By + 0!) is the straight line through the points m and

. -1 -1
(5.10) m,, + 1 (dlog a, fy m, + dlogay, py m,) +
2 ov Jdu
2 2
4 (loe by, Olog B N
ov Ju

by 0 log f|ou we simply mean f~f,, etc. Using (5.8) + (5.9), we easily prove

Lemma 5.1. Let n = qu be a hyperbolic surface. Then its canonical line n, with
the parameter A (if it exists!) is determined by the point m and the vector

(5.11) v, :=Ivy + 3{(41Bs + A4B,) vy + (A1B, + A4By) v} + A Cavy + Cyvy).
The line n, is a projective invariant of our surface.

From (1.17),
(5.12) dI = (A;B, + A4B,) 1" + (41Bs + A4B,)7*.
Thus the line n, is determined by the vector v; if and only if dJ = 0. Because v;
determines the direction of the (equijaffine normal of 7, we have re-proved the known
assertion: the (equi)affine normal coincides with the projective Fubini normal at
each point of 7 if and only if I = const. on z. See also [3], p. 111, Aufgabe 3.

Let us suppose I = 0 on 7. Then, see (4.24),
(5.13) Ky := A7’A7*C}, K,:= A7*A;°C

are the fundamental projective invariants of the 4th order of our surface. Using
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Blaschke’s notation (2.2) and (2.8), we easily see that

F3 ADZ 3 F3 AZD 3
5.14 K, = Io , K, = lo .
o w g {w)f e )
In the Fubini-Cech notation (5.7) we have
(5.15) Ky =72y {(log By).}*, Kz = B~y {(log B*7)}* ,

and we see that K, and K, are even invariants with respect to the projective deforma-
tions of our surface.

6. Elliptic surfaces in 47,. Let = = A2, be an elliptic surface. To each point me n
let us associate a frame {m; e,, e,, e3} such that

(6.1) [91, €z, es] =1,
and we have the fundamental equations
(6.2) dm = o'v; + 0%v,, de; = wle,

with the usual integrability conditions and the condition
(6.3) o] + o + 03 =0;
compare with (1.1)—(1.4). It is easy to see to see that the frames may be chosen in

such a way that
(6.4) 0 =0; o =o', 0=0’.

The differential consequences are
(6.5) (2wi — 03) A 0! + (0] + @) A 0* =0,

(07 + @) A @ + (20] — w3) A 0* =0,
and we get the existence of functions ay, ..., a, such that
(6.6) 20} — @) = a0 + a,0%, 0} + 0} = a,0' + a;0%,

203 — 03 = a;0* + a,0?.
Let {m; é,, &,,&;} be another field of frames associated to our surface, let us

suppose that it satisfies the equations (6.1)—(6.4) and

(6.7) &, = ajseq + ajze,, & = aze; + axey, & = azie; + ase; + azse;
with

(6 8) (‘111422 — ay5a51) a33 = 1.

We have

(6.9) dm = o'e; + w’e, = @' (a e, + agze;) + @*(ayie; + azze;),
. ie.,

(6.10) ol = a, (@ + a3 @, ©F = a0 + a,,d*.

Further,

(6.11) dé, = (a,0! + a,,0%) e3 = @'azze;,

il

dé, = (a,,0" + a,,0%) e5 = @*asze; (mod ey, e,)

313



and, by virtue of (6.10),
(6.12) ajy + al, = a3, + a3, = az3, a4y + agdy =0.

Thus a3 > 0, and there is a function ¢ such that

(6.13) a1 = Ja33.C08¢, a;, = —.Jas;.sing,

Gy, = &+Jazz.sin@, a,, = &/asz.cos¢; &= %1,
Inserting into (6.8) we get ea3; = 1, i.e.,
(6.14) e=1, az;3=1.

After elementary calculations (comparing the terms at e; in de”,-), we get
(6.15) cos® ¢.w] — sin ¢ cos ¢.(w; + w]) + sin? p.w] =
= @} + (as; cos ¢ — as, sin @) &',
« —de + sin ¢ cos ¢.(w; — @3) — sin® p.w} + cos? .0 =
= @; + (as; sin ¢ + az, cos ) @',
de 4+ sin ¢ cos ¢.(w] — w3) + cos® p.w) — sin? .0} =
= @} + (as; cos ¢ — as, sin @) @*,
sin? @.w} + sin ¢ cos @.(w; + @?) + cos? 9.w} =
= @ + (azy sin @ + as; cos @) d*,
as4(cos ¢.@' + sin ¢.@?) + as,(—sin @.@' + cos (p'.cbz) + o} =a3.
Considering the analogous equations (6.6), we finally get
(6.16) @, + a; = cos ¢(a; + as) — sinp(a, + a,) — 4(as; cos ¢ — as, sin @),
sin (a; + as) + cos @(a, + ay) — 4(as; sin @ + as, cos @) .

It

Hence we have

Lemma 6.1. Let n < Az’q be an elliptic surface. Locally, we may associate to it
frames {m; e, e,, e;} such that we have (6.1) and (6.2) with (6.3,) (6.4) and

(6.17) 20} — 03 = —a;0' + 4,0, ! + 0} = a,0' + az0?,

20} — @} = az0! — a,0”.
If {m; &, &, &} is another field of frames with the same properties, we have
(6.18) & =cosg@.e; —sing.e,, & =sin@.e; +cosp.ey, & =e;.

Thus the straight line n = {m + te;; te R} is an equiaffine invariant of our
surface; let us call it the equiaffine normal of n. Further, the equations (6.10) read

2

(6.19) ! = cos . @' + sin ¢.®?, w? = —sin@.®' + cos ¢.H?,

and the form
(6.20) ds? 1= (0')? + (0?)?

is the invariant equiaffine metric of n. Using (6.18), i.e., az; = as, = 0, the equa-
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tions (6.25) yield

{6.21) d, = cos 3¢p.a, — sin3¢.a;, &y =sin3¢@.a, + cos3¢.a;z,
ie.,
(6.22) @+ at=ai+a3.
‘The equiaffine invariant
(6.23) J :=4(a} + a3)
is called the Pick invariant.
Define
(6.24) o= Yo — });
the equations (6.17) and (6.3) yield
{6.25) o] = 3(a,0" + a;0%) + 0, 0 = Ha,0' + a;0%) - 0,
o] = —0) = —}(a;0' — a,0?), 0} =0.

The differential consequences of (6.17) are
{6.26) —(daz + 3a,0 — 3w}) A 0 + (da, — 3a;0 + @) A @* =0,
 (day — 3a30 + 03) A 0! + (da; + 30,0 + 03) A 0 =0,
(das + 3a,0 + @3) A @' — (da, — 3az0 — 3w}) A 0 =0,
and we get the existence of functions by, ..., bs such that
{6.27) —da; — 3a,0 + 303 = b,o' + b,w?,
da, — 3a;0 + ©} = b,o' + byo?,
das + 3a,0 + @) = byo' + byw?,
—da, + 3a;0 + 302 = byo! + bso?,
ie.,
(6.28) oy = 3(b; + by) ' + (b, + by) 0,
3 = Hb, + by) 0" + Hbs + bs) @*,
da, — 3a;0 = }(3b, — by) ' + 3(3b; — bs) @,
da; + 3a,0 = 3(3b; — by) ' + (3b, — b,) ©*.

Using these formulas, we reduce the system (6.26) to

(6.29)  (da, — 3a;0) A o' + (daz + 3a,0) A ©* = 4(bs - b)) o' A @?,

(daz + 3a,0) A 0" — (da, — 3a;0) A ©* = —4(b, + by) ©' A ©*.

The exterior differentiation of (6.28) yields

{6.30) (Db, + Db;) A @' + (Db, + Db,) A @ =
= {1ay(by — bs) + as(by + by)} @' A @?,
(Db, + Dby) A @' + (Db; + Dbs) A @ =
= {3a;(b; — bs) — ay(b, + by} ©' A @,
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(3Db, — Dby) A @' + (3Dby — Dbs) A 0 =  12azx0! A ?,
(3Db; — Dby) A @' + (3Db,y — Db,) A 0 = —12a,x0' A w?
with
(6.31) Db, = db; — 4b,0, Db, = db, + (b; — 3b;) @,
Db, = db; + 2(b, — by)w, Db, =db, + (3b3 — bs5) @,
Dbs = dbs + 4b,00,
(6.32) % = 3(aj + a3) — 3(by + 2bs + bs).
It is easy to see that
(6.33) do'= —0* A0, do®* =o' Ao,
(6.34) do = —xw' A ©?.
Thus % is the Gauss curvature of the equiaffine metric ds? from (6.20). Because of
(6.32) and (6.32),
(6.35) . H :=§(b; + 2bs + bs)
is an equiaffine invariant of 7; let us call it the equiaffine mean curvature. Under
this notation, the equation (6.32) reads
(6.36) . x=J+H,
and it may be called the theorema egregium.
7. Invariants of elliptic surfaces. There are many ways how to obtain the invariants<
(of order 4) of our surface. One of them is to continue the calculations of the beginning

of the last section and to follow the procedure as indicated in the first section. In

what follows, I am going to explain other possibilities.
Given an elliptic surface = = A3, let a field of frames {m; ey, e,, e} be chosen

as indicated in Lemma 6.1. Let “A3, be the complexification of A3, and let us consider

the frames

(7.9) vy = ofe; —iey), vy =ofe; + ie)), vy = fes
with

(1.2) . B=2a%, B*= —i.

Then

(7.3) [v,v5,05] = 1.

From (7.1), we have

(7.4) e; =3a vy +vy), ey =73 (v; —v,), es=p lv;.
Further,

(7.5) dm = tlv; + 70,

with ,

(7.6) ! = to  o! +ie?), 1 =ia (0! - iw?). ©
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It is easy to see that
(7.7) do, = tjvy + 1iv, + P05, dv, = Tyv, + T30, + Tlo,,
doy = 130, + T30, + 1303
with
(7.8) 7} = o] + ©3) + }i(w} — 0}) =13,
17 = }(0] — 03) — di(w] + 0}) =7, 13 =0,
o= g o +i03), = da B} — o).
Using (6.25), we obtain
(7.9) 1} = —afa; + iay) 7', 13 = —afa; — iay) 7%,
1 =iw, 1= —-iw, ©3=0.
Thus we see that the frames {m;v;, v,,v5} satisfy (1.2) + (1.3) + (L.5) + (1.14)
with

(7.10) Ay = —ofas +ia,), As = —oa; — iay).
From (1.17) we get
(7.11) B, = %ﬁ(bl — 6bs + bs) — 3ip(b, — bs), Bs = B,

B, = §ﬁ(b1 - bs) - %iﬁ(bz + b4) , By=B,,

By = 4p(by + 2b; + bs).
Now, Lemma 1.1 determines the fundamental invariants of a hyperbolic surface.
We have, see (1.21) + (1.22) and (6.23) + (6.35),
(7.12) I=A,A, = BJ,
(7.13) I, =By = —fH,

I, =B,B,=—%iJ,, I,=BBs=

I, + 15 = 2176/3314’ I, —Is = ;—4iﬂ315

with

(7.14)
J2 = (bl - bs)z + 4(b2 + b4)2 N J3 = (bl - 6b3 + b5)2 + 16(b2 b b4)2 y

Jy = (by — 6bs + bs) {(by — bs)> — 4(b, + by)*} + 16(by — bs) (b3 — b2),
JS == (bl - 6b3 + b5)(b1 - b5)(b2 + b4) + (bz - b4) {4(b2 + b‘)2 - (bl - bs)z},
Blaschke’s curvature K from (2.9) is then

(7.15) K = —iK’
with

(7.16) K' = 3{(by + b3)(bs + bs) — (b, + bs)?}.
Let us remark that

(7.17) H> - K =24J,20.

Proposition 7.1. Let © = A}, be an elliptic surface, and let {m; e,, e,, es} be a field
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of associated frames as described in Lemma 6.1; the functions b, ..., bs let be
given by (6.28). Then J (6.23), H (6.35) and J,, ..., J5s (7.14) are equiaffine in-
variants of our surface.

The affine and projective invariants may be determined by using Propositions 3.1
and 4.1, respectively.

There is still another way to determine the invariants. Given a function

(7.18) F = F(ay, as, by, ..., bs),
then

5
(7.19) dF = oF (da, — 3a;m) + iaE(da3 + 3a,0) + Y a—FDbi + P
da, Oay i=1 0b;

with

(1200 . @& = 30398 30, 9 1 45, %X 4 (3b, - ) 2E .
aaZ aa3 abl 6b2
oF oF oF
4 2Aby — b)) T (bs — 3b3) Z — 4, O5 |
(b = b2) ab, (b5 ) oby = 0bs

the 1-forms Db; being defined by (6.31). Because of (6.29) + (6.30), the 1-forms
da, — 3a;w, da; + 3a,» and Db, are linear combinations of w!, w?. Thus we get

Proposition 7.2, The function F (7.18) is an equiaffine invariant of our surface
if and only if ® = 0, @ being defined by (7.20). The condition F = 0 has an equi-
affine signification if and only if ® = 0 is a consequence of F = 0.

Let us determine the projective invariants of our surface; the affine case is similar
and simpler. First of all, let us consider the hyperbolic case. To a surface 7 = P3,
associate frames as described in Lemma 4.1. Especially, we have the equations (4.10)..
After prelongation, we get

(7.21) DB, At + DB, A 1> = 34,(B; — A A,) ' A 1%,
DB, A 1! + DBy A 12 = —A,;B,7' A 1%, '
DB, At + DB, A 12 = A,B,tt A T2,
DB, A 1! 4+ DBs A 2 = 3A4,(4,4, — B3)t!' A 12

with

(7.22) DB, = dB, + 2By(tg — 2t1) + 44,17,

DB, = dB, + 2B,(1§ — t}) — 24,75,
DB, = dB; + 2Bjty — 213,
DB, = dB, + 2B,(1) + 1) — 24,7},

DB, = dBs + 2Bs(t) + 21}) + 44,15 .
Consider a function ,
(7.23) G = G(A,, A4, By, ..., B). *
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Then
1
(724) dG = 96 (dd; + A,(x§ — 3} + oG {dA, + A4(1g + 31))} +
04, 0A4

+.25:1 gg DB, + ¥,10 + ¥,7i + y,1) + Y15 + ¥s13
with : l )
(125) ¥, =- (A1 g—l + A“%i% +i=1Bi§B%) ,
w2=3(A1£_A4%)+z<23,%+32§§_2_34§%-235§%),
¥y = —2(2A1 56}% - A{I%), ¥, = 2(A1§§; - 2@%1), ¥ = 2%(:;,

and we easily get

Proposition 7.3. The function G from (7.23) is a projective invariant of
a hyperbolic surface if and only if ¥; =0;i=1,...,5.

It is just a simple exercise to obtain the elliptic version of this proposition. To do
that, we have to calculate b, ..., bs as functions of By, ..., Bs from (7.11) and a,, a3
from (7.10). Further, we define G(4,, 44, By, ...) := F(ay, a3, by, ...), and use the
conditions (7.25).

8. Characterization of quadratic surfaces. Let 7 = Azq be an e]liptic surface satis-
fying an equiaffine condition

(8.1) F(a,, as, by, ..., bs) = 0.
In what follows, let us write

(8.2) R=S

instead of

(83) R=S + (') a, -+ (') as + (') bz + (') b4 + (') (b1 - 3b3) + (') (b5 - 3b3).
Applying Cartan’s lemma to (6.29), we see that

(8.4)  da, — 3a30 = ay;0" + 65,0%, daz + 3a,0 = a51! + a5,0?

with

(85) a3y —az;; =0, a3 +a,,=0.

Similarly, from (6.30),

(8.6)

db, — 4b,w = by 0" + by,0*, db, + (by — 3bj)w = b2yt + byy0?,
dby + 2(by — bs) @ = by;0" + by, dby + (3b; — bs)w
dbs + 4byw = bs;0' + bs,w

b0 + byro?,
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with
(8.7) byt + bay — by — b3, =0, by + bsy — by — by, =0,
3bsyy — bsy — 3byy + by =0, 3byy — byy — 3b3, + by, =0,

ie., -
(8.8) bys = by, by =byy, bay =b3y, bsy =by,.
From (8.1) we get
5
(8.9) iF—daz+a—Fdas+z F 4p,—0.
da, das i=1 0b;

Let my € m be an arbitrary point. There exists a coordinate neighborhood U < =
of my such that the equiaffine metric (6.20) may be written as

(8.10) ds? = r¥(dx* + dy?), r=r(x,y)>0
inU,ie.,
(8.11) ol =rdx, o?=rdy.
This and (6.33) Jield
(8.12) o= —r1 a—rdx—éjidy s
dy 0x

while (8.4) + (8.6) imply

da, da, da, da,

.(8.13 —=Tra,, — =Tdy,, — =Tadz;, — =Trds,;
( ) o | 21 2y 22 ox 31 2 32
gﬁizl‘b“, 2—bizrbi2, i=1,...,5.
x y

Inserting (8.13; _,) into (8.5) we get
(8.14) day _ 94 _ 94y 045 _
: Ox dy 0x dy
From (8.7) we conclude
(8.15)  byy — 3b3y — byy +3byy =0, bsy — 3byy — by + 3by; =0
inserting there from (8.13), we obtain
by = 3b) by 0by _ o dlbs—3by) e, i3k o

(8.16)
) dy ox Ox dx dy dy

Let us take into account the condition (8.9). Because of Proposition 7.2, we have

. 5
(8.17) ilia2a+§£a3a,+z QI—:—biaEO; a=1,2.
da, day i=1 0b;
Using (8.5) + (8.8), these equations may be rewritten as
oF OF .~ F
(818) —‘azl + ’—‘022 + “a——‘(bll - 3b31 + 3b22) + &
da, das 0b,
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oF OF oF oF oF
— a3 — ——dy + —— by + — by + — by +
2a, 9a, ob, ob, ob,

oF JoF
+ — b42 + — (bsz - 3b32 + 3b41) = 0
db, 0bs

and, because of (8.13), we get them in the final form

(8.19) OF 9a, + OF da, + OF 6_(b_1 — 3b3_) +3 b, +
da, 0x  0Oa; dy  0b, 0x ay
OF dby | OF dby _ OF 0by | OF dby _
0b, 0x 0by 0y  0by 0x  0bs Oy
OF day _ OF day _ OF dby  OF db
da, 0y Oas 0x  0b, 0x  0b, dy
OF 3by | OF dby | OF folbs = 3b))  50ba) _ o
0by 0x  0b, 0y  0Obs Loy 0x
Write
(820) / = (a29 as, b23 bd., bl - 3b3) b5 - 3b3)T 5
the system (8.14) + (8.16) + (8.19) is then of the form
(8.21) d%+@%+<€/’=0.
0x dy
The symbol of (8.21) being defined by
(8.22) o(&m) = |+ B, (&n)eR?,
it is easy to see that
(8.23) deto(é,n) = —(& +1n*)2
with

¢ =3 -n 0
(8.24) P=\|-3 n 0 =& |,

R, R, R, 0

s, S, 0 S,

oF oF JoF JoF JoF JoF
R1=—€+(3——+——)n, Ry=—&d =0, Ry=-——¢,

0b, 0b,  0bs ob, 0Obs 0b,y

oF oF JoF oF JoF oF
Si=—&+_—n, S;={—+ —)5‘*'—"1’ Se=—n

ob, ob, 0by 0Obs Ob, 0bs
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Theorem. Let n = Ag’q be an analytic elliptic surface satisfying the condition
(8.1). Let @ in (8.24) vanish if and only if & =n = 0. Then there are only two
possibilities: (i) © is (a piece of ) a quadratic surface; (ii) the set

(8.25) N:={men; J=J,=J; =0 at m}
consists of isolated points.

Proof. Let my, € N be not isolated; for the definition of J, and J; see (7.14),
J being the Pick invariant. Around m,, take a coordinate neighborhood U as above,
and consider the system (8.21). Because of our supposition, it is elliptic, and [10],
Theorem 5.4.1 implies # = 0 on U and, by analyticity, on the whole n. Thus J = 0
onn, QED.
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