Czechoslovak Mathematical Journal

Valter Šeda

On a class of linear n-th order differential equations

Czechoslovak Mathematical Journal, Vol. 39 (1989), No. 2, 350-369
Persistent URL: http://dml.cz/dmlcz/102307

Terms of use:

© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON A CLASS OF LINEAR n-TH ORDER DIFFERENTIAL EQUATIONS
Valter Šeda, Bratislava
(Received July 15, 1987)
Dedicated to Academician Michal Greguš on the occasion of his sixtieth birthday

1. INTRODUCTIOIN

Consider the n-th order ($n \geqq 2$) linear differential equation
(E)

$$
(L[y] \equiv) y^{(n)}+\sum_{k=2}^{n} p_{k}(t) y^{(n-k)}=0,
$$

where the coefficients $p_{k}(t), k=2, \ldots, n$, are real-valued continuous functions on the interval $I=\langle a, \infty),-\infty<a<\infty$. Sometimes the following assumptions will be required:

$$
\begin{equation*}
\sum_{k=2}^{n} p_{k}(t) \frac{x^{k-2}}{(k-2)!} \leqq 0 \quad \text { for all } t \in I, \quad x \in R ; \tag{A}
\end{equation*}
$$

(B) the hypothesis (A) is satisfied, $n=2 m, p_{k}(t) \leqq 0$ for all $t \in I, k=2,3, \ldots, n$, and $p_{n}(t)$ is not identically zero in any subinterval of I;
(C) the hypothesis (B) is satisfied and $p_{3}(t) \equiv 0, p_{5}(t) \equiv 0, \ldots, p_{n-1}(t) \equiv 0$ for all $t \in I$.
For the orders $n=2, n=3$ and $n=4$, the condition (A) is satisfied by the equations

$$
\begin{array}{llll}
y^{\prime \prime}+p_{2}(t) y=0 & \text { with } & p_{2}(t) \leqq 0 & \text { in } I, \\
y^{\prime \prime \prime}+p_{2}(t) y^{\prime}=0 & \text { with } & p_{2}(t) \leqq 0 & \text { in } I,
\end{array}
$$

and

$$
\begin{gathered}
y^{(4)}+p_{2}(t) y^{\prime \prime}+p_{3}(t) y^{\prime}+p_{4}(t) y=0, \quad p_{2}(t) \leqq 0, \\
p_{3}^{2}(t) \leqq 2 p_{2}(t) p_{4}(t) \text { in } I,
\end{gathered}
$$

respectively. The last equation has been studied by J. Regenda in several papers, e.g. [8], [9], [10], [11].

It is clear that if the equation (E) satisfies the assumption (A), then $p_{2}(t) \leqq 0$ in I and for $n=2 m+1$ we have $p_{n}(t) \equiv 0$ in I, while for $n=2 m$ we have $p_{n}(t) \leqq 0$ in this interval. Conversely, if $n=2 m, p_{n}(t)<0$ in I, then for any $p_{3}(t), \ldots, p_{n-1}(t)$ there exists (a sufficiently great in absolute value) $p_{2}(t) \leqq 0$ such that the equation (E) satisfies (A).

Although the equations (E) of the second and third orders satisfying the condition (A) are disconjugate, the equation $y^{(4)}-y=0$ (having the property (A)) possesses a fundamental system of solutions $y_{1}(t)=e^{t}, y_{2}(t)=\mathrm{e}^{-t}, y_{3}(t)=\cos t, y_{4}(t)=$ $=\sin t$, and, thus, has oscillatory solutions.
A nontrivial solution of the differential equation (E) is called oscillatory if its set of zeros is not bounded from above. Otherwise, it is called nonoscillatory. The equation (E) will be called nonoscillatory when all its solutions are nonoscillatory; oscillatory when at least one of its solutions is oscillatory. It is said to be disconjugate in an interval $J \subset I$ iff each of its non trivial solutions has at most $n-1$ zeros in J, counting each zero so many times as its multiplicity indicates. It is eventually disconjugate (on I) if it is disconjugate on an interval of the type (b, ∞), where $b \in I$.

In the paper fundamental properties of the equation (E) are derived under some of the assumptions (A), (B), (C), such as the existence of solutions without zeros, a comparison theorem, the existence of a bundle of solutions and the properties of nonoscillatory solutions of the equation.

2. PRELIMINARIES

We begin by formulating and proving the results which are needed later on.
Lemma 1. Suppose that $t_{0} \in I, y_{0}^{i}, i=0,1, \ldots, n-1$, are arbitrary numbers. Then the initial value problem

$$
\begin{equation*}
L[y]=0, \quad y^{(i)}\left(t_{0}\right)=y_{0}^{i}, \quad i=0,1, \ldots, n-1, \tag{1}
\end{equation*}
$$

is equivalent to the following Volterra's integral equation

$$
\begin{equation*}
y^{(n-1)}(t)=g(t)+\int_{t_{0}}^{t} A(t, s) y^{(n-1)}(s) \mathrm{d} s, \quad t \in I \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
g(t)=y_{0}^{n-1}-\sum_{j=0}^{n-2} y_{0}^{j} \sum_{k=n-j}^{n} \int_{t_{0}}^{t} p_{k}(s) \frac{\left(s-t_{0}\right)^{j-n+k}}{(j-n+k)!} \mathrm{d} s, \tag{3}\\
A(t, s)=-\sum_{k=2}^{n} \int_{s}^{t} p_{k}(u) \frac{(u-s)^{k-2}}{(k-2)!} \mathrm{d} u, \quad t, s \in I \tag{4}
\end{gather*}
$$

Proof. Integrating the equation (E) from t_{0} to t and taking the initial conditions in (1) into consideration, we get

$$
\begin{align*}
y^{(n-1)}(t)= & y_{0}^{n-1}-\sum_{k=2}^{n} \int_{t_{0}}^{t} p_{k}(s)\left(\sum_{l=0}^{k-2} \frac{y_{0}^{n-k+l}}{l!}\left(s-t_{0}\right)^{l}+\right. \tag{5}\\
& \left.+\int_{t_{0}}^{s} \frac{(s-u)^{k-2}}{(k-2)!} y^{(n-1)}(u) \mathrm{d} u\right) \mathrm{d} s .
\end{align*}
$$

We put (5) into the form (2). First we denote

$$
g(t)=y_{0}^{n-1}-\sum_{k=2}^{n} \int_{t_{0}}^{t} p_{k}(s)\left(\sum_{l=0}^{k-2} \frac{y_{0}^{n-k+l}}{l!}\left(s-t_{0}\right)^{l}\right) \mathrm{d} s
$$

Then

$$
g(t)=y_{0}^{n-1}-\sum_{k=2}^{n} \int_{t_{0}}^{t} p_{k}(s) \sum_{j=n-k}^{n-2} \frac{y_{0}^{j}}{(j-n+k)!}\left(s-t_{0}\right)^{j-n+k} \mathrm{~d} s,
$$

which implies (3).
Similarly we consider the function

$$
\begin{aligned}
& -\sum_{k=2}^{n} \int_{t_{0}}^{t} p_{k}(u)\left(\int_{t_{0}}^{u} \frac{(u-s)^{k-2}}{(k-2)!} y^{(n-1)}(s) \mathrm{d} s\right) \mathrm{d} u= \\
& =-\int_{t_{0}}^{t}\left[\sum_{k=2}^{n} \int_{s}^{t} p_{k}(u) \frac{(u-s)^{k-2}}{(k-2)!} \mathrm{d} u\right] y^{(n-1)}(s) \mathrm{d} s
\end{aligned}
$$

Then, on the basis of (3) and (4), we get (2).
By virtue of the assumption (A), the function $A(\tau, s)$ given by (4) is continuous and nonnegative for $t_{0} \leqq s \leqq t$ as well as nonpositive for $a \leqq t \leqq s \leqq t_{0}$. The following lemma deals with the equation (2) in this case.

Lemma 2 ([8], p. 331). Let $A(t, s)$ be a nonnegative and continuous function for $t_{0} \leqq s \leqq t$ (a nonpositive and continuous function for $\left.a \leqq t \leqq s\right)$. If $g(t), \varphi(t)$ $(\psi(t))$ are continuous functions in the interval $\left\langle t_{0}, \infty\right)\left(\left\langle a, t_{0}\right\rangle\right)$ and

$$
\begin{array}{rll}
\varphi(t) \leqq g(t)+\int_{t_{0}}^{t} A(t, s) \varphi(s) \mathrm{d} s & \text { for } & t \in\left\langle t_{0}, \infty\right) \\
\left(\psi(t) \geqq g(t)+\int_{t_{0}}^{t} A(t, s) \psi(s) \mathrm{d} s\right. & \text { for } & \left.t \in\left\langle a, t_{0}\right\rangle\right),
\end{array}
$$

then every solution $y(t)$ of the integral equation

$$
\begin{equation*}
y(t)=g(t)+\int_{t_{0}}^{t} A(t, s) y(s) \mathrm{d} s \tag{6}
\end{equation*}
$$

satisfies the inequality

$$
y(t) \geqq \varphi(t) \quad \text { in }\left\langle t_{0}, \infty\right) \quad\left(y(t) \leqq \psi(t) \text { in }\left\langle a, t_{0}\right\rangle\right) .
$$

If we suppose in addition that $g(t) \geqq 0$ for $t \in\left\langle t_{0}, \infty\right)\left(g(t) \leqq 0\right.$ for $\left.t \in\left\langle a, t_{0}\right\rangle\right)$, then the solution $y(t)$ of (6) satisfies the inequality

$$
y(t) \geqq g(t) \geqq 0 \quad \text { for } \quad t \in\left\langle t_{0}, \infty\right)\left(y(t) \leqq g(t) \leqq 0 \text { for } t \in\left\langle a, t_{0}\right\rangle\right)
$$

We shall show that under the assumption (A) neither the solution $y(t)$ of the equation (E) satisfying the conditions

$$
\begin{equation*}
y^{(i)}\left(t_{0}\right)=0, \quad i=0,1, \ldots, n-2, \quad y^{(n-1)}\left(t_{0}\right) \neq 0 \tag{7}
\end{equation*}
$$

nor any of its derivatives $y^{(j)}(t), j=1, \ldots, n-1$, has a zero at $t \in I, t \neq t_{0}$.
Lemma 3. Suppose that (A) holds and let $y(t)$ be the solution of (E) satisfying the initial conditions (7) with $y^{(n-1)}\left(t_{0}\right)>0$. Then:
(i) $y^{(i)}(t)>0$ for all $t>t_{0}, i=0,1, \ldots, n-1$.
(ii) If $a<t_{0}$, then

$$
(-1)^{i+1} y^{(n-i)}(t)>0 \text { for all } t \in\left\langle a, t_{0}\right), i=1,2, \ldots, n
$$

Proof. If the solution y of (E) satisfies (7) and $y_{0}^{n-1}=y^{(n-1)}\left(t_{0}\right)>0$, then the function $g(t)$ determined by (2) is $g(t)=y_{0}^{n-1}>0$ and, by Lemma 2, $y^{(n-1)}(t) \geqq y_{0}^{n-1}$ for all $t \geqq t_{0}$, which in view of (7) leads to the inequalities (8).

If $a<t_{0}$ and the solution y of (E) satisfies (7) with $y_{0}^{n-1}=y^{(n-1)}\left(t_{0}\right)<0$, then $g(t)=y_{0}^{n-1}<0$ and, by Lemma 2, $y^{(n-1)}(t) \leqq y_{0}^{n-1}<0$ for all $t \in\left\langle a, t_{0}\right\rangle$. This, with respect to (7), implies $(-1)^{i} y^{(n-i)}(t)>0$ in $\left\langle a, t_{0}\right), i=1,2, \ldots, n$. Hence the inequalities (9) for the solution y with $y_{0}^{n-1}>0$ are true.

Under the condition (B) or the condition (C) stronger results can be proved.
Lemma 3'. Suppose that (B) holds and let $y(t)$ be a nontrivial solution of (E) satisfying at $t_{0} \in I$ the initial conditions

$$
y^{(i)}\left(t_{0}\right)=y_{0}^{i} \geqq 0, \quad i=0,1, \ldots, n-1
$$

Then

$$
y^{(i)}(t)>0 \text { for all } t>t_{0}, \quad i=0,1, \ldots, n-1
$$

Lemma 3". Suppose that (C) holds and $t_{0}>a$. Let $y(t)$ be a nontrivial solution of (E) satisfying the initial conditions

$$
(-1)^{i} y^{(i)}\left(t_{0}\right)=(-1)^{i} y_{0}^{i} \geqq 0, \quad i=0,1, \ldots, n-1
$$

Then

$$
(-1)^{i} y^{(i)}(t)>0 \quad \text { for all } t, \quad a \leqq t<t_{0}, \quad i=0,1, \ldots, n-1
$$

The proofs are similar to that of Lemma 3 and will be omitted.
Using the well-known Kiguradze lemmas ([5], pp. 289-290, [12], p. 94) we get the following lemma.

Lemma 4. Let $y(t) \in C^{(n)}(I)$ be such that $y(t)>0$ in $\langle b, \infty)$ where $a \leqq b<\infty$. Then there is a $c, b \leqq c<\infty$, such that
either
(i) there is an $l, 0 \leqq l \leqq n$, with the following property. If $l>0$, then $y^{(i)}(t)>0$, $c \leqq t<\infty, i=0,1, \ldots, l-1$; if $l \leqq n-1$, then $(-1)^{l+j} y^{(j)}(t)>0$ for $c \leqq$ $\leqq t<\infty, j=l, l+1, \ldots, n-1 ;$ and $(-1)^{l+n} y^{(n)}(t) \geqq 0$ in $\langle c, \infty), y^{(n)}(t) \equiv 0$ holds in no subinterval $\langle d, \infty) \subset\langle c, \infty)$,
or
(ii) there is a $k, 1 \leqq k \leqq n$, with the property

$$
y^{(k)}(t) \equiv 0 \quad \text { in }\langle c, \infty)
$$

and $y^{(i)}(t)>0$ in $\langle c, \infty)$ for $i=0,1, \ldots, k-1$,
or
(iii) there is a $k, 1 \leqq k \leqq n$, and an $l, 0 \leqq l \leqq k-1$, such that if $l>0$, then $y^{(i)}(t)>0$ in $\langle c, \infty), i=0,1, \ldots, l-1$; if $l \leqq k-2$, then $(-1)^{l+j} y^{(j)}(t)>0$ in $\langle c, \infty), j=l, l+1, \ldots, k-2 ;$ further $(-1)^{l+k-1} y^{(k-1)}(t) \geqq 0$ in $\langle c, \infty)$, $y^{(k-1)}(t) \equiv 0$ holds in no subinterval $\langle d, \infty) \subset\langle c, \infty)$ and
$y^{(k)}(t)$ is strictly oscillatory in $\langle c, \infty)$, i.e. it changes its sign in each subinterval $\langle d, \infty) \subset\langle c, \infty)$ infinitely many times.

Proof. Consider the function $y^{(n)}(t)$ in $\langle b, \infty)$. Three cases may occur.

1. $y^{(n)}$ is of constant sign in $\langle b, \infty), y^{(n)}(t) \equiv 0$ holds in no subinterval $\langle d, \infty) \subset$ $\subset\langle c, \infty)$. Then the first two Kiguradze lemmas are applicable. They give the statement (i).
2. $y^{(n)}(t) \equiv 0$ in an interval $\langle d, \infty) \subset\langle b, \infty)$. We denote by $k, 1 \leqq k \leqq n$, the smallest integer i for which $y^{(i)}(t) \equiv 0$ in an interval $\left\langle d_{1}, \infty\right) \subset\langle b, \infty)$. Clearly $y^{(k-1)}(t) \equiv$ const >0 in $\left\langle d_{1}, \infty\right)$ and by integration we get the statement (ii).
3. $y^{(n)}(t)$ is strictly oscillatory in an interval $\langle d, \infty) \subset\langle b, \infty)$. Then we again consider the smallest integer i for which $y^{(i)}(t)$ is strictly oscillatory. If we denote it by k, then $y^{(k)}$ is strictly oscillatory, but $y^{(k-1)}(t)$ is of constant sign in an interval $\left\langle d_{1}, \infty\right)$ and $y^{(k-1)}(t) \equiv 0$ holds on no subinterval $\left\langle d_{2}, \infty\right)$ of $\left\langle d_{1}, \infty\right)$. Again the statement (iii) follows from the Kiguradze lemmas.

The next lemma is similar to a result proved in [7] by M. Medved under stronger conditions $\left(p_{k}(t) \in C^{(n-k)}((a, b))\right)$. The same result has been given in Corollary 5.1, [6], p. 90. Here another proof is constructed.

Lemma 5. Suppose that the equation (E) is disconjugate in $\left\langle t_{0}, \infty\right)$ where $t_{0} \in I$, and the function $f(t) \in C\left(\left\langle t_{0}, \infty\right)\right)$ does not change its sign in $\left\langle t_{0}, \infty\right)$. Then the differential equation

$$
\begin{equation*}
L[y]=f(t) \tag{10}
\end{equation*}
$$

is nonoscillatory in $\left\langle t_{0}, \infty\right)$, i.e. for each solution $y(t)$ of (10) there exists an interval $\left\langle t_{1}, \infty\right), t_{c} \leqq t_{1}$, such that either $y(t) \equiv 0$ or $y(t) \neq 0$ for $t_{1}<t<\infty$. If the former case occurs then $f(t) \equiv 0$ in $\left\langle t_{1}, \infty\right)$.

Proof. According to G. Mammana (see [6], p. 45, or [7], pp. 102-103), if (E) is disconjugate, then there exist real continuous functions $g_{1}(t), \ldots, g_{n}(t)$ in $\left\langle t_{0}, \infty\right)$ such that the operator L can be decomposed into factors

$$
L[y]=\left(\frac{\mathrm{d}}{\mathrm{~d} t}-g_{n}(t)\right) \ldots\left(\frac{\mathrm{d}}{\mathrm{~d} t}-g_{1}(t)\right) y .
$$

Hence, if we put

$$
\begin{equation*}
y=y_{1}, \quad y_{i}^{\prime}-g_{i}(t) y_{i}=y_{i+1}, \quad i=1, \ldots, n-1, \quad y_{n}^{\prime}-g_{n}(t) y_{n}=f(t), \tag{11}
\end{equation*}
$$

then the equation (10) is equivalent to the system

$$
\begin{align*}
& y_{i}^{\prime}=g_{i}(t) y_{i}+y_{i+1}, \quad i=1, \ldots, n-1, \tag{12}\\
& y_{n}^{\prime}=g_{n}(t) y_{n}+f(t)
\end{align*}
$$

in the following sense. If $y(t)$ is a solution of (10), then the vector function $\left(y_{1}(t), \ldots\right.$ $\left.\ldots, y_{n}(t)\right)$ determined by (11) is a solution of the system (12) and conversely, if $\left(y_{1}(t), \ldots, y_{n}(t)\right)$ is a solution of (12), then $y(t)=y_{1}(t)$ satisfies (10).

Suppose that $f(t) \geqq 0$ in $\left\langle t_{0}, \infty\right)$. In the case $f(t) \leqq 0$ we would proceed similarly. First we show that any solution of the equation $y_{n}^{\prime}=g_{n}(t) y_{n}+f(t)$ is nonoscillatory. If such a solution y_{n} is negative in a neighbourhood of ∞, then it is nonoscillatory.

If there is a point $t_{1} \geqq t_{0}$ such that $y_{n}\left(t_{1}\right) \geqq 0$, then it can be written in the form

$$
\begin{equation*}
y_{n}(t)=u_{n}(t)+\int_{t_{1}}^{t} K(t, s) f(s) \mathrm{d} s, \tag{13}
\end{equation*}
$$

where $K(t, s), t_{1} \leqq s \leqq t$, is the Cauchy function for the equation

$$
\begin{equation*}
y^{\prime}-g_{n}(t) y=0 \tag{14}
\end{equation*}
$$

and hence it is positive for $t_{1} \leqq s<t$, while $u_{n}(t)$ is the solution of (14) determined by the condition $u_{n}\left(t_{1}\right)=y_{n}\left(t_{1}\right) \geqq 0$ and thus $y_{n}(t) \geqq u_{n}(t) \geqq 0$ for all $t>t_{1}$. Further, (13) yields that either $y_{n}(t) \equiv 0$ in a neighbourhood of ∞ or $y_{n}(t)>0$ in an interval $\left\langle t_{2}, \infty\right)$. Therefore the equation $y_{n}^{\prime}=g_{n}(t) y_{n}+f(t)$ is nonoscillatory. By finite induction we can show that all equations in the system (12) are nonoscillatory. This implies that (10) is nonoscillatory. Clearly $y(t) \equiv 0$ in $\left\langle t_{1}, \infty\right)$ implies that $f(t) \equiv 0$ in the same interval.

In the next lemma the notation $f(t) \ll g(t)$ for $t \rightarrow \infty$ (taken from [6], p. 57) will mean that both functions f and g are positive in a neighbourhood of ∞ and $f(t)=$ $=o(g(t))$ for $t \rightarrow \infty$. For the sake of completeness we state Lemma 2.1 from [6], p. 58 as

Lemma 6. Let V be an n-dimensional vector space of functions continuous in I. Then the following two statements are equivalent:

1. Each function $y(t) \in V, y(t) \neq 0$, is different from 0 in a neighbourhood of ∞.
2. There exists a basis $\left\{y_{i}(t)\right\}_{i=1}^{n}$ for V such that

$$
y_{1}(t) \ll y_{2}(t) \ll \ldots \ll y_{n}(t) \text { for } t \rightarrow \infty .
$$

Using this lemma we prove the following result.
Lemma 7. Suppose that the equation (E) is nonoscillatory, the function $f(t) \in C(I)$ is nonoscillatory and let $y_{1}(t) \ll y_{2}(t) \ll \ldots \ll y_{n}(t)$ for $t \rightarrow \infty$ be a hierarchical system of solutions of (E). Then the nonhomogeneous equation (10) is nonoscillatory, i.e., all its solutions are nonoscillatory, iff there is a nonoscillatory solution $y_{0}(t)$ of (10) such that $\left|y_{0}\right|, y_{1}, y_{2}, \ldots, y_{n}$ form a hierarchical system of functions, i.e.
either

$$
\left|y_{0}(t)\right| \ll y_{1}(t) \ll y_{2}(t) \ll \ldots<y_{n}(t) \text { for } \quad t \rightarrow \infty
$$

or there is a $j \in\{1,2, \ldots, n-1\}$ such that

$$
y_{1}(t) \ll \ldots \ll y_{j}(t) \ll\left|y_{0}(t)\right| \ll y_{j+1}(t) \ll \ldots<y_{n}(t) \text { for } t \rightarrow \infty
$$

or

$$
y_{1}(t) \ll y_{2}(t) \ll \ldots \ll y_{n}(t) \ll\left|y_{0}(t)\right| \text { as } t \rightarrow \infty .
$$

Proof. If $\left|y_{0}\right|, y_{1}, y_{2}, \ldots, y_{n}$ form a hierarchical system in the sense given above, then it is clear that each solution

$$
y(t)=\sum_{i=1}^{n} c_{i} y_{i}(t)+y_{0}(t), \quad t \in I,
$$

of (10) is nonoscillatory.

Conversely, suppose that each solution of (10) is nonoscillatory. Then for each $i=1,2, \ldots, n$ and any solution y_{0} of (10) the function $y_{i}(t) \mid y_{0}(t)$ is continuous in a neighbourhood of ∞ and moreover, for each $c \in R, y_{i}(t) \mid y_{0}(t) \neq c$ in a neighbourhood of ∞. In fact, the roots of the equation $y_{i}(t) \mid y_{0}(t)=c$ are either the roots of $y_{i}(t)$ (when $c=0$) or the zeros of the solution $-(1 / c) y_{i}(t)+y_{0}(t)$ of (10). The inequality $y_{i}(t) \mid y_{0}(t) \neq c$ for each $c \in R$ and the continuity of $y_{i}(t) \mid y_{0}(t)$ in a neighbourhood of ∞ ensure the existence of a finite or infinite $\lim _{t \rightarrow \infty} y_{i}(t) \mid y_{0}(t)$. This implies that for each $i=1,2, \ldots, n$ and any solution $y_{0}(t)$ of (10) one and only one of the following cases may arise: $y_{i}(t) \ll\left|y_{0}(t)\right|,\left|y_{0}(t)\right| \ll y_{i}(t), y_{0}(t) \sim c y_{i}(t)$ for $t \rightarrow \infty$ with $0<|c|<\infty$.

Let us fix a solution y_{0} of (10). Then either $\left|y_{0}\right|, y_{1}, y_{2}, \ldots, y_{n}$ form a hierarchical system in the sense given in the statement of the lemma, or there exists a $j, 1 \leqq j \leqq n$, such that $y_{0}(t) \sim c y_{j}(t)$ for $t \rightarrow \infty$. In the formes case the proof of the lemma is complete. In the latter case we consider the function $y_{0}^{1}(t)=y_{0}(t)-c y_{j}(t), t \in I$, which is a nonoscillatory solution of (10). Again two cases may occur. Either y_{0}^{1}, $y_{1}, y_{2}, \ldots, y_{n}$ form a hierarchical system and the proof is done or there exists a k, $1 \leqq k \leqq n$, such that $y_{0}^{1}(t) \sim c_{1} y_{k}(t)$ for $t \rightarrow \infty$. As $\lim _{t \rightarrow \infty} y_{0}^{1}(t) \mid y_{j}(t)=0$ and thus $\left|y_{0}^{1}(t)\right| \ll y_{j}(t)$, we must have $k<j$. We now consider the solution of $(10), y_{0}^{2}(t)=$ $=y_{0}^{1}(t)-c_{1} y_{k}(t)=y_{0}(t)-c y_{j}(t)-c_{1} y_{k}(t), t \in I$. As concerns this solution, either $\left|y_{0}^{2}\right|, y_{1}, y_{2}, \ldots, y_{n}$ is a hierarchical system or there is an $l, 1 \leqq l<k<j$ such that $y_{0}^{l}(t) \sim c_{2} y_{l}(t)$ for $t \rightarrow \infty$. After at most j steps we come to a solution $y_{0}^{m}(t)$ of (10) such that $\left|y_{0}^{m}\right|, y_{1}, y_{2}, \ldots, y_{n}$ form a hierarchical system of functions.

The next lemma is interesting in itself and will play an important role in the investigation of a nonoscillatory equation (E). It has been given by U. Elias in [2], p. 269 as Theorem 1.

Lemma 8. Suppose that the equation (E) is disconjugate on $I, p(t)$ is a continuous function of a fixed sign on I, and the perturbed equation

$$
\begin{equation*}
L[y]+p(t) y=0 \tag{E}
\end{equation*}
$$

is nonoscillatory on I. Then the equation (E) is eventually disconjugate.

3. THE EXISTENCE OF MONOTONIC SOLUTIONS

-Theorem 1. Suppose that (A) holds. Then there exists a solution $y(t)$ of (E) such that

$$
\begin{equation*}
y^{(i)}(t)>0 \text { for all } t>a, \quad i=0,1, \ldots, n-1 \tag{15}
\end{equation*}
$$

Proof. Let $y(t)$ be the solution of (E) which satisfies the initial conditions $y^{(i)}(a)=$ $=0, i=0,1, \ldots, n-2, y^{(n-1)}(a)=1$. Then, by Lemma 3, the inequalities (15) follow.

Denote by $z_{0}(t), z_{1}(t), \ldots, z_{n-1}(t)$ the solutions of (E) defined on I which are
determined by the initial conditions

$$
z_{i}^{(j)}(a)=\delta_{i j}= \begin{cases}0, & i \neq j \text { for } \quad i, j=0,1, \ldots, n-1 . \\ 1, & i=j\end{cases}
$$

Theorem 2. Suppose that (A) holds. Then there exists a solution $z(t)$ of (E) such that
either

$$
\begin{gather*}
(-1)^{i} z^{(i)}(t)>0 \text { for all } t \in I, \quad i=0,1, \ldots, n-2, \tag{16}\\
(-1)^{n-1} z^{(n-1)}(t) \geqq 0 \quad \text { in } I,
\end{gather*}
$$

or
$z(t)>0$ for all $t \in I$ and there exists a $t_{0} \in I$ such that $z^{(i)}(t) \equiv 0$ for all $t \geqq t_{0}$, $i=1,2, \ldots, n-1$.
Proof. We shall apply a construction similar to that given in [4], p. 15. For each natural number $k>a$ let $c_{0, k}, c_{1, k}, \ldots, c_{n-1, k}$ be numbers satisfying

$$
\begin{align*}
& \sum_{i=0}^{n-1} c_{i, k}^{2}=1 \tag{17}\\
& n-1 \\
& \sum_{i=0}^{n-1} c_{i, k} z_{i}^{(j)}(k)=a_{j}, \quad j=0,1, \ldots, n-1,
\end{align*}
$$

where $a_{j}, j=0,1, \ldots, n-1$, are such that $a_{0}=a_{1}=\ldots=a_{n-2}=0$, $(-1)^{n} a_{n-1}<0$.

Since $z_{0}(t), z_{1}(t), \ldots, z_{n-1}(t)$ are linearly independent and a_{n-1} can be arbitrarily chosen, the numbers $c_{0, k}, c_{1, k}, \ldots, c_{n-1, k}$ do exist.

Denote $\tilde{z}_{k}(t)=\sum_{i=0}^{n-1} c_{i, k} z_{i}(t)$. Then $\tilde{z}_{k}(t)$ is a nontrivial solution of (\mathbf{E}). In view of the first condition in (17) and by Lemma 3,

$$
\begin{equation*}
(-1)^{j} \tilde{z}_{k}^{(j)}(t)>0, \quad j=0,1, \ldots, n-1, \quad a \leqq t<k \tag{18}
\end{equation*}
$$

For each natural number $i, 0 \leqq i \leqq n-1$, the sequence $\left\{c_{i, k}\right\}$ is bounded, thus there exists a sequence of natural numbers $\{k(l)\}$ such that the subsequences $\left\{c_{i, k(l)}\right\}$ converge to numbers $c_{i}, i=0,1, \ldots, n-1$, as $l \rightarrow \infty$. From (17) we see that $\sum_{i=0}^{n-1} c_{i}^{2}=1$. The sequences $\left\{\tilde{z}_{k, l)}(t)\right\},\left\{\tilde{z}_{k(l)}^{\prime}(t)\right\}, \ldots,\left\{\tilde{z}_{k(l)}^{(n-1)}(t)\right\}$ converge uniformly on any compact subinterval of I to the functions $z(t), z^{\prime}(t), \ldots, z^{(n-1)}(t)$, respectively, where

$$
z(t)=\sum_{i=0}^{n-1} c_{i} z_{i}(t)
$$

is a nontrivial solution of (E). The inequalities (18) imply that

$$
\begin{equation*}
(-1)^{i} z^{(i)}(t) \geqq 0 \text { for all } t \in I \text { and } i=0,1, \ldots, n-1 \tag{19}
\end{equation*}
$$

If there existed a point $t_{0} \in I$ and a $j \in\{0,1, \ldots, n-2\}$ such that $z^{(j)}\left(t_{0}\right)=0$, we would consider the smallest i with the mentioned property. Then, by $(19), z^{(j)}(t) \equiv 0$
would hold for all $t \geqq t_{0}$. As $z(t)$ is a nontrivial solution of $(\mathrm{E}), z(t)>0$ in I and hence, $j \geqq 1$. Denote $l=j-1$. Then $z^{(l)}(t) \equiv c_{l} \neq 0$ in $\left\langle t_{0}, \infty\right)$ and, since $(-1)^{l} z^{(l)}(t) \geqq 0$ and c_{l} cannot be negative (this would imply that $z(t)$ is negative in a neighbourhood of ∞), l must be even. If $l>0$, then $z^{(l)}(t) \equiv c_{l}>0$ and $z^{(l-1)}(t)=c_{l} t+q$ and hence $z^{(l-1)}(t)>0$ for all sufficiently great t, which contradicts (19), because $l-1$ is odd. This contradiction shows that $l=0$ and the theorem is proved.

Remark. If $p_{n}(t) \neq 0$ in any neighbourhood of ∞ (and hence $n=2 m$), then in the alternative (16) only the first statement can hold. If $p_{n}(t) \equiv 0$, then solutions of both types in (16) can occur, as the example of the equation $y^{(5)}-y^{\prime}=0$ shows. This equation has the following fundamental system of solutions: $y_{1}(t)=1, y_{2}(t)=$ $=\mathrm{e}^{t}, y_{3}(t)=\mathrm{e}^{-t}, y_{4}(t)=\sin t, y_{5}(t)=\cos t$.

Corollary. If (C) holds, then there exists a solution $z(t)$ of (E) such that

$$
(-1)^{i} z^{(i)}(t)>0 \text { for all } \quad t \in I, \quad i=0,1, \ldots, n-1
$$

Proof. First, we know that there exists a solution $z(t)$ of the equation (E) with $(-1)^{i} z^{(i)}(t)>0$ for all $t \in I, i=0,1, \ldots, n-2$, and $(-1)^{n-1} z^{(n-1)}(t) \geqq 0$ in I. By Lemma $3^{\prime \prime},(-1)^{n-1} z^{(n-1)}(t)>0$ must hold in the whole interval I.

4. COMPARISON THEOREMS

The fundamental property of the equation (E) under the assumption (A) is given by the following theorem which is stronger than the Čaplygin comparison theorem ([6], p. 46).

Theorem 3. Suppose that (A) holds. Let $t_{0} \in I$ and let $u(t), v(t) \in C^{n}(I)$ be two functions such that

$$
\begin{gather*}
u^{(i)}\left(t_{0}\right)=v^{(i)}\left(t_{0}\right), \quad i=0,1, \ldots, n-1, \quad \text { and } \tag{20}\\
L[u](t) \geqq L[v](t) \text { for all } t \in I .
\end{gather*}
$$

Then
(i) $u^{(i)}(t) \geqq v^{(i)}(t)$ for all $t \geqq t_{0}, i=0,1, \ldots, n-1$;
(ii) If $a<t_{0}$, then

$$
\begin{gathered}
(-1)^{n-i} u^{(i)}(t) \geqq(-1)^{n-i} v^{(i)}(t) \text { for all } t, \quad a \leqq t \leqq t_{0}, \\
i=0,1, n-1 .
\end{gathered}
$$

Moreover, if there is a $t_{1}, t_{0} \leqq t_{1}\left(a<t_{1} \leqq t_{0}\right)$ such that $L[u]\left(t_{1}\right)>L[v]\left(t_{1}\right)$, then

$$
\begin{gathered}
u^{(i)}(t)>v^{(i)}(t) \text { for all } t>t_{1}, \quad i=0,1, \ldots, n-1 \\
\left((-1)^{n-i} u^{(i)}(t)>(-1)^{n-i} v^{(i)}(t) \text { for all } t, \quad a \leqq t<t_{1},\right. \\
i=0,1, \ldots, n-1)
\end{gathered}
$$

Proof. Denote by $K(t, s)$ the Cauchy function for the equation (E), i.e., $K(\cdot, s)$ is the solution $y(t)$ of (E) such that $y^{(i)}(s) \stackrel{\bullet}{=}, i=0,1, \ldots, n-2, y^{(n-1)}(s)=1$. By Lemma 3,

$$
\begin{equation*}
\frac{\partial^{i} K(t, s)}{\partial t^{i}}>0 \text { for all } t>s \geqq t_{0}, \quad i=0,1, \ldots, n-1, \tag{21}
\end{equation*}
$$

and

$$
\begin{gather*}
(-1)^{n-i+1} \frac{\partial^{i} K(t, s)}{\partial t^{i}}>0 \text { for all } a \leqq t<s \leqq t_{0}, \quad i=0, \tag{22}\\
1, \ldots, n-1
\end{gather*}
$$

Denote by $y_{1}(t)$ the solution of (E) satisfying $y_{1}^{(i)}\left(t_{0}\right)=u^{(i)}\left(t_{0}\right)=v^{(i)}\left(t_{0}\right), i=0,1, \ldots$ $\ldots, n-1$. Then

$$
\begin{aligned}
& u^{(i)}(t)=y_{1}^{(i)}(t)+\int_{t_{0}}^{t} \frac{\partial^{i} K(t, s)}{\partial t^{i}} L[u](s) \mathrm{d} s, \\
& v^{(i)}(t)=y_{1}^{(i)}(t)+\int_{t_{0}}^{t} \frac{\partial^{i} K(t, s)}{\partial t^{i}} L[v](s) \mathrm{d} s, \quad t \in I, \quad i=0,1, \ldots, n-1 .
\end{aligned}
$$

Hence

$$
\begin{gather*}
u^{(i)}(t)-v^{(i)}(t)=\int_{t_{0}}^{t} \frac{\partial^{i} K(t, s)}{\partial t^{i}}\{L[u](s)-L[v](s)\} \mathrm{d} s \text { for all } t \in I, \tag{23}\\
i=0,1, \ldots, n-1
\end{gather*}
$$

By (20), (21), (22) and (23) the result follows.
If the condition (B) is fulfilled, a stronger result holds.
Theorem 3'. Suppose that (B) holds. Let $t_{0} \in I$ and let $u(t), v(t) \in C^{n}(I)$ be two functions such that

$$
\begin{gather*}
u^{(i)}\left(t_{0}\right) \geqq v^{(i)}\left(t_{0}\right), \quad i=0,1, \ldots, n-1, \text { and } L[u](t) \geqq L[v](t) \\
\text { for all } t \geqq t_{0} .
\end{gather*}
$$

Then

$$
u^{(i)}(t) \geqq v^{(i)}(t) \text { for all } t \geqq t_{0}, \quad i=0,1, \ldots, n-1 .
$$

Proof. Let $K(t, s)$ have the same meaning as in the proof of Theorem 3 and let $y_{i}(t), i=1,2$, be the solutions of (E) determined by the conditions

$$
y_{1}^{(i)}\left(t_{0}\right)=u^{(i)}\left(t_{0}\right), \quad y_{2}^{(i)}\left(t_{0}\right)=v^{(i)}\left(t_{0}\right), \quad i=0,1, \ldots, n-1 .
$$

Then instead of (23) we get

$$
u^{(i)}(t)-v^{(i)}(t)=y_{1}^{(i)}(t)-y_{2}^{(i)}(t)+
$$

$$
+\int_{t_{0}}^{t} \frac{\partial^{i} K(t, s)}{\partial t^{i}}\{L[u](s)-L[v](s)\} \mathrm{d} s \quad \text { for all } \quad t \in I, \quad i=0,1, \ldots, n-1
$$

Since $y_{1}-y_{2}$ is a solution of (E) with $\left(y_{1}-y_{2}\right)^{(i)}\left(t_{0}\right) \geqq 0$, Lemma 3^{\prime} implies that $\left(y_{1}-y_{2}\right)^{(i)}(t) \geqq 0$ for all $t \geqq t_{0}, i=0,1, \ldots, n-1$. By these inequalities as well as by (21), on the basis of (20') and (23'), we get the result.

If we apply Lemma $3^{\prime \prime}$ instead of Lemma 3^{\prime}, we get the following theorem.
Theorem 3". Suppose that (C) holds. Let $a<t_{0}$, let $u(t), v(t) \in C^{n}(I)$ be two functions such that

$$
\begin{gather*}
(-1)^{i} u^{(i)}\left(t_{0}\right) \geqq(-1)^{i} v^{(i)}\left(t_{0}\right), \quad i=0,1, \ldots, n-1, \quad \text { and } \\
L[u](t) \geqq L[v](t) \text { for all } t, \quad a \leqq t \leqq t_{0} .
\end{gather*}
$$

Then

$$
(-1)^{i} u^{(i)}(t) \geqq(-1)^{i} v^{(i)}(t) \text { for all } t, \quad a \leqq t \leqq t_{0}, \quad i=0,1, \ldots, n-1
$$

5. REGULARITY OF BUNDLES

Let $t_{0} \in I$. Denote by $y_{0}(t), y_{1}(t), \ldots, y_{n-1}(t)$ the solutions of (E) defined on I which are determined by the initial conditions

$$
y_{i}^{(j)}\left(t_{0}\right)=\delta_{i j}, \quad i, j=0,1, \ldots, n-1
$$

It is clear that for each $j \in\{0,1, \ldots, n-1\}$ each solution $y(t)$ of (E) such that $y^{(j)}\left(t_{0}\right)=0$ is a linear combination $\sum_{\substack{k=0 \\ k \neq j}}^{n-1} c_{k} y_{k}(t)$. The set of all such solutions will be called the bundle of solutions of (E) of the j-th kind at the point t_{0}. If the wronskian $W\left(y_{0}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{n-1}\right)(t)$ does not vanish on a subinterval $J \subset I$, then we say that this bundle is regular on J.

The following theorem is true.
Theorem 4. Suppose that (A) holds. Then for each point $t_{0} \in I$, each $j \in\{0,1, \ldots$ $\ldots, n-1\}$, the bundle of solutions of (E) of the j-th kind at t_{0} is regular in $I-\left\{t_{0}\right\}$ and hence the functions $y_{0}(t), \ldots, y_{j-1}(t), y_{j+1}(t), \ldots, y_{n-1}(t)$ form a fundamental set of solutions for a certain homogeneous linear differential equation of the $(n-1)$-st order in $I-\left\{t_{0}\right\}$.

Proof. Consider the wronskian $W\left(y_{0}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{n-1}\right)(t)$. If there were a point $t_{1} \in I, t_{1} \neq t_{0}$, such that $W\left(y_{0}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{n-1}\right)\left(t_{1}\right)=0$, then the system (in unknowns $c_{0}, \ldots, c_{j-1}, c_{j+1}, \ldots, c_{n-1}$)

$$
\sum_{\substack{k=0 \\ k \neq j}}^{n-1} c_{k} y_{k}^{(i)}\left(t_{1}\right)=0, \quad i=0,1, \ldots, n-2
$$

would have a nontrivial solution, and hence there would exist an ($n-1$)-tuple $\left(\tilde{c}_{0}, \ldots, \tilde{c}_{j-1}, \tilde{c}_{j+1}, \ldots, \tilde{c}_{n-1}\right)$ such that $\sum_{\substack{k=0 \\ k \neq j}}^{n-1} \tilde{c}_{k} y_{k}^{(i)}\left(t_{1}\right)=: \tilde{y}^{(i)}\left(t_{1}\right)=0, \quad i=0,1, \ldots$
$\ldots, n-2$. If $\tilde{y}(t) \equiv 0$ in I, then $0 y_{j}(t)+\sum_{\substack{k=0 \\ k \neq j}}^{n-1} c_{k} y_{k}(t) \equiv 0$ which would contradict the fact that $y_{0}(t), \ldots, y_{n-1}(t)$ are linearly independent. Thus $\tilde{y}^{(n-1)}\left(t_{1}\right) \neq 0$ and $\tilde{y}(t)$ should be a solution of (E) with an $(n-1)$-tuple zero at t_{1} and with $\tilde{y}^{(j)}\left(t_{0}\right)=0$, which cannot occur if (E) satisfies (A) (a contradiction with Lemma 3).

Corollary. Suppose that (A) holds. Then for each pair of different numbers $t_{0}, t_{1} \in$ $\in I$, any $j, 0 \leqq j \leqq n-1$, and any $(n-1)$-tuple $y_{1}^{i}, i=0,1, \ldots, n-2$, of real numbers there exists a unique solution y of (E) which satisfies the conditions

$$
y^{(j)}\left(t_{0}\right)=0, \quad y^{(i)}\left(t_{1}\right)=y_{1}^{i}, \quad i=0,1, \ldots, n-2 .
$$

In particular, the homogeneous boundary value problem

$$
L[y]=0, \quad y^{(j)}\left(t_{0}\right)=0, \quad y^{(i)}\left(t_{1}\right)=0, \quad i=0,1, \ldots, n-2,
$$

has only the trivial solution and thus, there exists a unique Green's function for that problem.

6. NONOSCILLATORY EQUATIONS

Suppose that the equation (E) is nonoscillatory. Then, by Lemma 6, there exists a hierarchical fundamental system of solutions $y_{i}(t), i=1,2, \ldots, n$, of the equation (E), which means that

$$
\begin{equation*}
y_{1}(t) \ll y_{2}(t) \ll \ldots \ll y_{n}(t) \text { for } t \rightarrow \infty . \tag{24}
\end{equation*}
$$

Moreover, from the proof of the lemma it follows that for any two nontrivial solutions y, z of (E) there exists a finite or infinite $\lim _{t \rightarrow \infty} y(t) / z(t)$. We shall call these two solutions equivalent, notation $y(t) \approx z(t)$, when this limit is finite and different from 0 . The relation to be equivalent is reflexive, symmetric and transitive and hence by this relation the set of all nontrivial solutions of (E) is decomposed into classes of equivalent solutions. In view of (24) and of the representation of the solution $y(t)$ of (E) in the form $y(t)=\sum_{j=1}^{n} c_{j} y_{j}(t), t \in I$, the following statements hold:

1. For each nontrivial solution y of (E) there exists one and only $j \in$ $\in\{1,2, \ldots, n\}$ such that $y(t) \approx y_{j}(t)$, and thus there are exactly n classes $U_{j}, j=$ $=1,2, \ldots, n$, of equivalent solutions of (E), possessing y_{j} as their representatives.
2. The class U_{j} consists of the solutions $\sum_{k=1}^{j} c_{k} y_{k}(t)$ of (E), where $c_{1}, \ldots, c_{j-1}, c_{j} \neq 0$ are arbitrary numbers. Hence, the class U_{1} is a one dimensional vector subspace, without the trivial solution, of the space of all solutions of (E), and the solution $y_{1}(t)$ is unique up to multiplication by positive constants.

By Theorem 7.1 in [3], p. 329, we get the following statement.
3. If the equation (E) is eventually disconjugate, i.e. it is disconjugate on an
interval $(b, \infty) \subset I$, then the solution $y_{1}(t)$ (with the smallest growth) has two properties:
a) $y_{1}(t)>0$ in (b, ∞).
b) When $\tilde{z}_{k}(t)$ is the solution of (E) (from the proof of Theorem 2) satisfying the initial conditions

$$
\tilde{z}_{k}^{(j)}(k)=0, \quad j=0, \ldots, n-2, \quad(-1)^{n} \tilde{z}_{k}^{(n-1)}(k)<0
$$

for each $k>b$, and the normalization condition

$$
\sum_{j=0}^{n-1} \tilde{z}_{k}^{(j)^{2}}(a)=1
$$

(i.e. the conditions (17)), then $y_{1}(t)=\lim _{k \rightarrow \infty} \tilde{z}_{k}(t)$ in the sense that for each $j=$ $=0,1, \ldots, n-1, \tilde{z}_{k}^{(j)}(t)$ converges uniformly to $y_{1}^{(j)}(t)$ on every compact subinterval of (b, ∞) as $k \rightarrow \infty$. Hence, Corollary to Theorem 2 implies that, provided that the equation (E) satisfies the condition (C) and is eventually disconjugate, then the solution $z(t)$ of the equation with

$$
\begin{equation*}
(-1)^{i} z^{(i)}(t)>0 \quad \text { for all } t \in I, \quad i=0,1, \ldots, n-1 \tag{25}
\end{equation*}
$$

belongs to the class U_{1} (with the smallest growth) and is uniquely determined up to multiplication by positive constants.

Remark. If' $p_{n}(t) \equiv 0$ in any neighbourhood of ∞, the equation (E) fulfils the condition (A) and is eventually disconjugate, then the same result holds, only (25) is replaced by (16). If $p_{n}(t) \equiv 0$ in (b, ∞) and there exists a solution $z_{1}(t)$ satisfying (16) as well as a solution $z_{2}(t) \equiv$ const. >0, then $z_{1}(t) \in U_{1}$ and $\lim _{t \rightarrow \infty} z_{1}(t)=0$.

Suppose now that the equation (E) satisfies the condition (B). By Lemma 3', for a point $t_{0} \geqq a$ and for two different solutions $y(t), z(t)$ of (E) such that $y^{(i)}\left(t_{0}\right) \leqq$ $\leqq z^{(i)}\left(t_{0}\right), i=0,1, \ldots, n-1$, we have $y^{(i)}(t)<z^{(i)}(t)$ for all $t>t_{0}$ and $i=0,1, \ldots$ $\ldots, n-1$. Hence a nontrivial solution $y(t)$ of (E) such that

$$
\begin{equation*}
y^{(i)}\left(t_{0}\right) \geqq 0, \quad i=0,1, \ldots, n-1, \tag{26}
\end{equation*}
$$

has the property that at any fixed point $t_{1}>t_{0}$ all values $y^{(i)}\left(t_{1}\right)$ are positive, $i=$ $=0,1, \ldots, n-1$. Comparing this solution with $y_{n} \in U_{n}$ we see that there exists a $k>0$ such that $y_{n}^{(i)}\left(t_{1}\right)<k y^{(i)}\left(t_{1}\right), i=0,1, \ldots, n-1$, and thus, by Lemma 3^{\prime}, $\lim _{t \rightarrow \infty} k y(t) / y_{n}(t) \geqq 1$. Since y_{n} belongs to the class of the highest growth, we have the $t \rightarrow \infty$ following statement:
4. If the equation (E) satisfies the condition (B), then each nontrivial solution y of (E) satisfying (26) at a point $t_{0} \geqq a$ is equivalent to y_{n} and thus $y \in U_{n}$. In particular, any solution y of (E) with a zero of multiplicity $n-1$ at t_{0} belongs to U_{n}.

Remark. The last statement concerning the solution with an ($n-1$)-tuple zero is also true under the condition (A).

Let $t_{0} \geqq a$ be an arbitrary but fixed point. As the bundle $B\left(t_{0}\right)$ of solutions of (E) of the 0 kind at the point t_{0} is an $(n-1)$-dimensional vector space of solutions of (E) which are all nonoscillatory with the exception of the trivial one, by Lemma 6 there exists a system $z_{1}, \ldots, z_{n-1} \in B\left(t_{0}\right)$ such that

$$
z_{1}(t) \ll z_{2}(t) \ll \ldots \ll z_{n-1}(t) \text { for } t \rightarrow \infty .
$$

Denote by V_{j} the class of all solutions from $B\left(t_{0}\right)$ which are equivalent to z_{j}. Then for each $j \in\{1, \ldots, n-1\}$ there is a unique $k(j)=k \in\{1, \ldots, n\}$ such that $V_{j} \subset U_{k(j)}$, and for $j_{1}<j_{2}$ we have $k\left(j_{1}\right)<k\left(j_{2}\right)$. Therefore $k(j) \geqq j$ for each $j=1,2, \ldots, n-1$. Now we prove the statement.
5. If the equation (E) satisfies the condition (B) and is eventually disconjugate, then

$$
V_{j} \subset U_{j+1} \text { for each } j=1,2, \ldots, n-1
$$

Proof. By the statement 4 , the solution with the $(n-1)$-tuple zero at t_{0} has a maximal growth and therefore belongs to $U_{n} \cap V_{n-1}$. Hence $V_{n-1} \subset U_{n}$. On the other hand, both classes U_{1}, V_{1} are one dimensional vector subspaces without the null solution and hence, if $U_{1} \cap V_{1} \neq \emptyset$, then $U_{1}=V_{1}$. But, in view of the statement $3, U_{1}$ contains a solution z satisfying (25) which has no zeros, and thus, z cannot belong to any of V_{j}. Hence $k(1)>1$. However, $k(1)>2$ cannot hold. Therefore $k(1)=2$ and proceeding step by step we obtain that $k(j)=j+1, j=1,2, \ldots$ $\ldots, n-1$.

Suppose now that the equation (E) satisfies the condition (C). Then the equation (E) generates a chain of equations
$\left(E_{2 j}\right)$

$$
y^{(2 j)}+\sum_{k=2}^{2 j} p_{k}(t) y^{(2 j-k)}=0, \quad j=1,2, \ldots, \frac{1}{2} n
$$

Here $\left(\mathrm{E}_{n}\right)$ means the equation (E). Each of the equations $\left(\mathrm{E}_{2 j}\right), j=1,2, \ldots, \frac{1}{2} n$, fulfils the condition (A), and if $p_{2 j}(t)$ is not identically zero in any subinterval of I, it also satisfies the condition (C). Moreover, the equation $\left(\mathrm{E}_{2}\right)$ is disconjugate on I. The remaining equations of the chain are dealt with in the following lemma.

Lemma 9. Let the equation (E) satisfy the condition (C) and let $n \geqq 4$. Then the equations $\left(\mathrm{E}_{4}\right),\left(\mathrm{E}_{6}\right), \ldots,\left(\mathrm{E}_{n-2}\right),\left(\mathrm{E}_{n}\right)$ are all eventually disconjugate if and only if they are all nonoscillatory.

Proof. Since the eventual disconjugacy implies the nonoscillation, we shall only show that if the equations $\left(\mathrm{E}_{4}\right),\left(\mathrm{E}_{6}\right), \ldots,\left(\mathrm{E}_{n-2}\right),\left(\mathrm{E}_{n}\right)$ are nonoscillatory, then they are eventually disconjugate. Denote

$$
\begin{equation*}
y^{(2 j)}+\sum_{k=2}^{2 j-2} p_{k}(t) y^{(2 j-k)}=0, \quad j=2,3, \ldots, \frac{1}{2} n \tag{E}
\end{equation*}
$$

which differs from $\left(\mathrm{E}_{2 j}\right)$ by the term $p_{2 j}(t) y$ and let $L_{2 j}\left(\widetilde{L}_{2 j}\right)$ be the operator standing on the left-hand side of $\left(\mathrm{E}_{2 j}\right)\left(\left(\widetilde{\mathrm{E}}_{2 j}\right)\right)$. As $\left(\mathrm{E}_{2}\right)$ is disconjugate on I and $\widetilde{\mathrm{L}}_{4}[y]=$ $=L_{2}\left[\mathrm{~d}^{2} y / \mathrm{d} t^{2}\right],\left(\widetilde{\mathrm{E}}_{4}\right)$ is disconjugate on I as well. As $\left(\mathrm{E}_{4}\right)$ is nonoscillatory and $p_{4}(t) \leqq$
$\leqq 0$ in I, by Lemma 8 we get that $\left(\mathrm{E}_{4}\right)$ is eventually disconjugate. Proceeding in this way, step by step we derive the eventual disconjugacy of the equations $\left(\mathrm{E}_{6}\right), \ldots,\left(\mathrm{E}_{n-2}\right)$, $\left(\mathrm{E}_{n}\right)$ and the lemma is proved.
Further we shall need a lemma which extends a result by T. Čanturija in [1], p. 33.

Lemma 10. If the equation (E) satisfies the condition (C) and is oscillatory, then for each $c \geqq a$ there are two numbers $c<c_{1}<c_{2}$, an $l_{0} \in\{2,4, \ldots, n-2\}$ and a solution $v(t)$ of (E) such that

$$
\begin{align*}
& v^{(j)}\left(c_{1}\right)=0, \quad j=0,1, \ldots, l_{0}-1, \tag{27}\\
& v^{(j)}\left(c_{2}\right)=0, \quad j=l_{0}, l_{0}+1, \ldots, n-1, \tag{28}\\
& v^{(j)}(t) \neq 0 \quad \text { for } \quad t \in\left(c_{1}, c_{2}\right), \quad j=0,1, \ldots, n-1 . \tag{29}
\end{align*}
$$

More precisely,

$$
\begin{gather*}
v(t) v^{(j)}(t)>0, \quad j=0,1, \ldots, l_{0}-1, \quad \text { in }\left(c_{1}, c_{2}\right\rangle \quad \text { and } \tag{30}\\
(-1)^{j+l} 0 v(t) v^{(j)}(t)>0, \quad j=l_{0}, l_{0}+1, \ldots, n-1, \quad \text { in }\left\langle c_{1}, c_{2}\right) .
\end{gather*}
$$

Proof. Let the equation (E) be oscillatory. Then there is an oscillatory solution $y(t)$ of this equation with a zero $c_{1}>c$. Consider the set S of all nontrivial solutions $y(t)$ of (E) such that there is a k with $1 \leqq k \leqq n-1$ and a $d>c_{1}, d=d(y)$, with the following properties: (a) y has a k-tuple zero at c_{1}; (b) $y^{(k)}(t)$ has $n-k$ zeros in $\left\langle c_{1}, d\right\rangle$ counting each zero according to its multiplicity. By Corollary to Theorem 4, $1 \leqq k \leqq n-2$. Put $c_{2}=\inf _{y \in S} d(y)$. Then $c_{1} \leqq c_{2}$ and there is a sequence $y_{m} \in S$ and a fixed $k, 1 \leqq k \leqq n-2$, such that all y_{m} possess a zero at c_{1} of the same multiplicity k and $y_{m}^{(k)}(t)$ have $n-k$ zeros in $\left\langle c_{1}, c_{2}+1 / m\right\rangle$. When we normalize the solutions $y_{m}(t)$ by $\sum_{i=0}^{n-1} y_{m}^{(i)^{2}}\left(c_{1}\right)=1$, the resulting family contains a subsequence which we again denote by $y_{m}(t)$ and which is locally uniformly convergent on I to a nontrivial solution $v(t)$ of (E). Moreover, $y_{m}^{(j)}(t)$ locally uniformly converge to $v^{(j)}(t)$ for $j=0,1, \ldots, n-1$.

Clearly v enjoys the property (a). By Rolle's theorem the property (b) of $y_{m}(t)$ implies that the statement (c) $y_{m}^{(j)}(t)$ have $n-j$ zeros in $\left\langle c_{1}, c_{2}+1 / m\right\rangle, j=$ $=k, k+1, \ldots, n-1, m=1,2, \ldots$, is true. Hence, on the basis of the convergence properties of $\left\{y_{m}^{(j)}(t)\right\}$ the equality $c_{2}=c_{1}$ would imply $v^{(k)}\left(c_{1}\right)=\ldots=v^{(n-1)}\left(c_{1}\right)=$ $=0$ and thus, $v(t) \equiv 0$ which contradicts the fact that v is a nontrivial solution of (E). Therefore $c_{2}>c_{1}$. Further, denote by $c_{1} \leqq t_{1, m} \leqq t_{2, m} \leqq \ldots \leqq t_{n-k, m} \leqq c_{2}+1 / m$ the set of zeros of the function $y_{m}^{(k)}(t)$ in $\left\langle c_{1}, c_{2}+1 / m\right\rangle$. Here each term stands so many times as its multiplicity indicates. By the compactness of the cubes in R^{n} as well as by the locally uniform convergence of $y_{m}^{(j)}(t)$ to $v^{(j)}(t)$ we get that for each i, $1 \leqq i \leqq n-k$, there is a subsequence $t_{i, m_{p}} \rightarrow t_{i}$ such that $y_{m_{p}}^{(k)}\left(t_{i, m_{p}}\right) \rightarrow v^{(k)}\left(t_{i}\right)$ as $p \rightarrow \infty$, whereby $c_{1} \leqq t_{1} \leqq \ldots \leqq t_{n-k} \leqq c_{2}$. Again by Rolle's theorem, the equality
$t_{i}=t_{i+1}=\ldots=t_{i+r-1}<t_{i+r}$ means that $v^{(k)}\left(t_{i}\right)=v^{(k+1)}\left(t_{i}\right)=\ldots=v^{(k+r-1)}\left(t_{i}\right)=$ $=0$, and thus, $v(t)$ has the property (b), too. Therefore $v \in S$.
Let $1 \leqq k \leqq l_{0} \leqq n-2$ be such that $v(t)$ satisfies (27), but $v^{\left(l_{0}\right)}\left(c_{1}\right) \neq 0$. Then $v^{\left(l_{0}\right)}(t)$ has $n-l_{0}$ zeros in $\left(c_{1}, c_{2}\right\rangle$. Proceeding in a similar way as in the proof of Theorem 3.3 in [6], p. 75, using the method of perturbation of zeros, we can show that $v^{\left(l_{0}\right)}(t) \neq 0$ in $\left(c_{1}, c_{2}\right)$ and hence the conditions (28) are fulfilled, too. At the same time, on the basis of (27), the inequalities (29) are true for $j=0,1, \ldots, l_{0}$.

Suppose that $v^{\left(L_{0}\right)}(t)>0$ in $\left(c_{1}, c_{2}\right)$. Then $v^{(j)}(t)>0$ in $\left(c_{1}, c_{2}\right)$ for $j=0,1, \ldots, l_{0}$. Two cases may occur: (i) l_{0} is even, and hence $2 \leqq l_{0} \leqq n-2$. The function $v^{\left(l_{0}\right)}(t)=u(t)$ is a solution of the equation

$$
\begin{equation*}
u^{\left(n-l_{0}\right)}+\sum_{k=2}^{n-l_{0}} p_{k}(t) u^{\left(n-l_{0}-k\right)}=-\sum_{k=n-l_{0}+2}^{n} p_{k}(t) v^{(n-k)}(t) \tag{31}
\end{equation*}
$$

which satisfies the conditions

$$
\begin{equation*}
u^{(j)}\left(c_{2}\right)=0, \quad j=0,1, \ldots, n-l_{0}-1 \tag{32}
\end{equation*}
$$

By the condition (C) the right-hand side of (31) is nonnegative in $\left(c_{1}, c_{2}\right)$ and attains positive values in any subinterval of $\left(c_{1}, c_{2}\right)$. Hence in virtue of (32), Theorem 3 implies that $(-1)^{n-l_{0}-j} u^{(j)}(t)=(-1)^{l_{0}+j} v^{\left(l_{0}+j\right)}(t)>0$ in $\left\langle c_{1}, c_{2}\right)$ for $j=0,1, \ldots$ $\ldots, n-l_{0}-1$. Thus (30) is true for all $j=0,1, \ldots, n-1$.

Finally we show that the case (ii) l_{0} is odd, cannot occur and this will complete the proof of the lemma. In this case we put $v^{\left(l_{0}+1\right)}(t)=u(t)$, which implies that u satisfies the initial value problem

$$
\begin{gathered}
u^{\left(n-l_{0}-1\right)}+\sum_{k=2}^{n-l_{0}-1} p_{k}(t) u^{\left(n-l_{0}-1-k\right)}=-\sum_{k=n-l_{0}+1}^{n} p_{k}(t) v^{(n-k)}(t) \\
u^{(j)}\left(c_{2}\right)=0, \quad j=0,1, \ldots, n-l_{0}-2
\end{gathered}
$$

Again by Theorem 3 we get the inequalities $(-1)^{n-l_{0}-1-j} u^{(j)}(t)=(-1)^{l_{0}+j+1}$. $. v^{\left(l_{0}+j+1\right)}(t)>0$ in $\left\langle c_{1}, c_{2}\right)$, for $j=0,1, \ldots, n-l_{0}-2$. Hence $v^{\left(l_{0}+1\right)}(t)>0$ in $\left\langle c_{1}, c_{2}\right)$ and thus $v^{\left(l_{0}\right)}(t)$ is increasing in the interval. But $v^{\left(l_{0}\right)}\left(c_{2}\right)=0$ which leads to contradiction with $v^{\left(l_{0}\right)}(t)>0$ in $\left(c_{1}, c_{2}\right)$.

Theorem 5. Suppose that the equation (E) satisfies the condition (C) and that $n \geqq 4$. Then the following statements are true:

1. If the equation (E) is nonoscillatory and, in the case $n \geqq 6$ the equations $\left(\mathrm{E}_{4}\right),\left(\mathrm{E}_{6}\right), \ldots,\left(\mathrm{E}_{n-2}\right)$ are eventually disconjugate, then for each nontrivial solution y of the equation (E)

either

there exists an even number $l \in\{0,2, \ldots, n\}$ and a point $c \geqq a$ such that

$$
\begin{align*}
& \text { if } l \geqq 2, \text { then } y(t) y^{(j)}(t)>0 \text { for } c \leqq t<\infty, j=0,1, \ldots, l-1 \text {, } \tag{33}\\
& \text { if } l \leqq n-2, \text { then }(-1)^{l+j} y(t) y^{(j)}(t)>0 \text { for } \\
& c \leqq t<\infty, \quad j=l, l+1, \ldots, n-1
\end{align*}
$$

and
$(-1)^{1+n} y(t) y^{(n)}(t) \geqq 0 \quad$ in $\langle c, \infty), \quad y^{(n)}(t) \equiv 0 \quad$ holds in no subinterval $\langle d, \infty) \subset\langle c, \infty)$,
or
there exists an odd $l \in\{1,3, \ldots, n-3\}$ and a point $c \geqq a$ such that

$$
\begin{align*}
& y(t) y^{(j)}(t)>0 \text { for } c \leqq t<\infty, \quad j=0,1, \ldots, l-1, \tag{34}\\
& (-1)^{j+1} y(t) y^{(j)}(t)>0 \text { in }\langle c, \infty), \quad j=l, l+1 .
\end{align*}
$$

Moreover, if

$$
\begin{equation*}
\int^{\infty} x_{1}(t) \mathrm{d} t=\infty \tag{35}
\end{equation*}
$$

for the first solution $x_{1}(t)$ of the hierarchical fundamental system for each of the equations $\left(\mathrm{E}_{2}\right),\left(\mathrm{E}_{4}\right), \ldots,\left(\mathrm{E}_{n-2}\right)$, then for y only the possibility (33) arises.
2. If for each $l \in\{2,4, \ldots, n-2\}$ there exists a solution $y(t)$ of the equation (E) with the property (33), then the equation (E) is nonoscillatory.

Proof. 1. If y is a nontrivial solution of (E), then there is an interval $\langle b, \infty)$ in which $y(t) \neq 0$. Two cases may occur. In the first case the inequalities

$$
\begin{equation*}
y(t) y^{\prime \prime}(t)>0, \quad y(t) y^{(4)}(t)>0, \ldots, y(t) y^{(n-2)}(t)>0 \tag{36}
\end{equation*}
$$

hold in an interval $\langle c, \infty) \subset\langle b, \infty$). Since the equation (E) satisfies (C), by this equation we get that $y(t) y^{(n)}(t) \geqq 0$ in $\langle c, \infty)$ and $y^{(n)}(t) \equiv 0$ holds in no subinterval $\langle d, \infty) \subset\langle c, \infty)$. Then by Lemma 4 there is an l such that the solution $y(t)$ fulfils (33). In view of (36), l must be an even number and hence $l \in\{0,2,4, \ldots, n\}$.

In the second case there is an even number $l_{0}, 0 \leqq l_{0} \leqq n-4$, such that for $l_{0} \geqq 2$ the inequalities

$$
\begin{equation*}
y(t) y^{\prime \prime}(t)>0, \ldots, y(t) y^{\left(l_{0}\right)}(t)>0 \tag{37}
\end{equation*}
$$

hold in an interval $\langle c, \infty) \subset\langle b, \infty)$ and $y(t) y^{\left(I_{0}+2\right)}(t)>0$ holds in no subinterval $\langle d, \infty) \subset\langle c, \infty)$. Hence, by (37), the right-hand side of the equation

$$
\begin{align*}
& v^{\left(n-l_{0}-2\right)}+p_{2}(t) v^{\left(n-l_{0}-4\right)}+\ldots+p_{n-l_{0}-2}(t) v= \tag{38}\\
& =-p_{n}(t) y(t)-p_{n-2}(t) y^{\prime \prime}(t)-\ldots-p_{n-l_{0}}(t) y^{\left(l_{0}\right)}(t)
\end{align*}
$$

is of a constant sign in $\langle c, \infty$) and thus, by Lemma 5, each solution of the equation is eventually different from 0 . The function $y^{\left(l_{0}+2\right)}(t)$ is one of these solutions and therefore $y(t) y^{\left(l_{0}+2\right)}(t)$ is eventually negative. Clearly $y(t) y^{\left(l_{0}+1\right)}(t)>0$ in a neighbourhood of ∞ and thus $l=l_{0}+1, l$ is odd and $l \in\{1,3, \ldots, n-3\}$.

On the other hand, since $\left(E_{n-l_{0}-2}\right)$ is eventually disconjugate, by [13], p. 322, there exist continuous and positive functions $p_{0}(t), p_{1}(t), \ldots, p_{n-l_{0}-2}(t)$ in an interval $\langle d, \infty) \subset\langle c, \infty)$ such that

$$
\int_{d}^{\infty} \frac{1}{p_{i}(t)} \mathrm{d} t=\infty \quad \text { for } \quad 1 \leqq i \leqq n-l-3
$$

and

$$
\begin{gathered}
L_{n-l_{0}-2}[y](t)=p_{n-l_{0}-2}(t) \frac{\mathrm{d}}{\mathrm{~d} t} p_{n-l_{0}-3}(t) \ldots \frac{\mathrm{d}}{\mathrm{~d} t} p_{1}(t) \frac{\mathrm{d}}{\mathrm{~d} t} p_{0}(t) y(t) \text { in }\langle d, \infty) \\
\text { for all } y(t) \in C^{n-l_{0}-2}(\langle d, \infty)) .
\end{gathered}
$$

By (37), (38), $L_{n-l_{0}-2}\left[y^{\left(l_{0}+2\right)}(t)\right] y(t) \geqq 0, L_{n-l_{0}-2}\left[y^{\left(l_{0}+2\right)}(t)\right] \equiv 0$ holds in no subinterval of $\langle d, \infty)$, while $y^{\left(l_{0}+2\right)}(t) y(t)<0$ in $\langle d, \infty)$. Hebce, by the first Kiguradze lemma, [12], p. 94, there is an odd $k, 1 \leqq k \leqq n-l_{0}-2$ and a $\delta, d \leqq \delta<\infty$ such that

$$
\begin{aligned}
& y(t) \tilde{L}_{j}\left[y^{\left(l_{0}+2\right)}\right](t)<0, \quad j=0,1, \ldots, k-1, \quad \text { and } \quad(-1)^{k+j} \\
& \tilde{L}_{j}\left[y^{\left(l_{0}+2\right)}\right](t)<0, \quad j=k, k+1, \ldots, n-l_{0}-3, \quad t \in\langle\delta, \infty)
\end{aligned}
$$

where

$$
\begin{gathered}
\tilde{L}_{0}[y](t)=p_{0}(t) y(t), \quad \tilde{L}_{j}[y](t)=p_{j}(t)\left[\tilde{L}_{j-1}[y(t)]\right]^{\prime}, \\
j=0,1, \ldots, n-l_{0}-2 .
\end{gathered}
$$

Hence $y(t) p_{0}(t) y^{\left(l_{0}+2\right)}(t)<0$ and $y(t) p_{1}(t)\left[p_{0}(t) y^{\left(l_{0}+2\right)}(t)\right]^{\prime}<0$ in $\langle\delta, \infty)$. Suppose that $y(t)>0$ in $\langle c, \infty)$. Then $p_{0}(t) y^{\left(l_{0}+2\right)}(t)$ is a decreasing and negative function in $\langle\delta, \infty)$. Therefore there is a $c_{1}>0$ such that $y^{\left(l_{0}+2\right)}(t) \leqq-c_{1} / p_{0}(t)$ in that interval. As by [13], p. 321, we have $p_{0}(t)=1 / x_{1}(t)$ where $x_{1}(t) \neq 0$ is the first solution in the hierarchical system for the equation $\left(\mathrm{E}_{n-l_{0}-2}\right)$, (35) implies that $\lim _{t \rightarrow \infty} y^{\left(l_{0}+1\right)}(t)=-\infty$, which contradicts the inequality $y^{\left(l_{0}+1\right)}(t)>0$ and thus the statement 1 is proved.
2. Suppose that for each $l \in\{2,4, \ldots, n-2\}$ there is a solution $y_{l}(t)$ of (E) with the property (33) in the same interval $\langle c, \infty$) and that the equation (E) is oscillatory. Then, by Lemma 10, there is a solution $v(t)$ of (E), two numbers $c<c_{1}<c_{2}$ and an $l_{0} \in\{2,4, \ldots, n-2\}$ such that (30) is true. Without loss of generality we may assume that both solutions $y_{l_{0}}(t), v(t)$ are positive in $\left(c_{1}, c_{2}\right)$. Let $\varepsilon>0$ and consider the solution w_{ε} of $(\mathrm{E}), w_{\varepsilon}(t)=y_{l_{0}}(t)-\varepsilon v(t), t \in\left\langle c_{1}, c_{2}\right\rangle$. Since $w_{0}^{(j)}(t)>0$ for $t \in\left\langle c_{1}, c_{2}\right\rangle, j=0,1, \ldots, l_{0}-1$, and $(-1)^{l_{0}+j} w_{0}^{(j)}(t)>0$ for $t \in\left\langle c_{1}, c_{2}\right\rangle, j=$ $=l_{0}, l_{0}+1, \ldots, n-1$, there exists a maximal $\varepsilon_{0}>0$ such that for all $\varepsilon, 0 \leqq \varepsilon \leqq \varepsilon_{0}$ we have

$$
\begin{gather*}
w_{\varepsilon}^{(j)}(t) \geqq 0 \quad \text { for } t \in\left\langle c_{1}, c_{2}\right\rangle, \quad j=0,1, \ldots, l_{0}-1, \tag{39}\\
(-1)^{l_{0}+J} w_{\varepsilon}^{(j)}(t) \geqq 0 \quad \text { for } \quad t \in\left\langle c_{1}, c_{2}\right\rangle, \quad j=l_{0}, l_{0}+1, \ldots, n-1 .
\end{gather*}
$$

Then at least one inequality in (39) is nonstrict for $\varepsilon=\varepsilon_{0}$. On the other hand, on the basis of (E), the inequalities (39) lead to the inequality

$$
w_{\varepsilon_{0}}^{(n)}(t)=-\sum_{k=2}^{n} p_{k}(t) w_{\varepsilon_{0}}^{(n-k)}(t) \geqq 0 \quad \text { in }\left\langle c_{1}, c_{2}\right\rangle,
$$

whereby in each subinterval of $\left\langle c_{1}, c_{2}\right\rangle$ there are points t at which $w_{\varepsilon_{0}}^{(n)}(t)>0$. Therefore the function $w_{\varepsilon_{0}}^{(n-1)}(t)$ is increasing in $\left\langle c_{1}, c_{2}\right\rangle$ and hence, in view of (28), $(-1)^{L_{0}+n-1} w_{\varepsilon_{0}}^{(n-1)}(t)>0$ in $\left\langle c_{1}, c_{2}\right\rangle$. Using the inequalities (27), (28), (30) and (33),
we get step by step that

$$
(-1)^{l_{0}+j} w_{\varepsilon_{0}}^{(j)}(t)>0 \quad \text { for } t \in\left\langle c_{1}, c_{2}\right\rangle, \quad j=n-1, n-2, \ldots, l_{0}+1, l_{0}
$$

and

$$
w_{\varepsilon_{0}}^{(j)}(t)>0 \quad \text { for } t \in\left\langle c_{1}, c_{2}\right\rangle, \quad j=l_{0}-1, l_{0}-2, \ldots, 1,0 .
$$

The obtained contradiction with (39) shows that the equation (E) is nonoscillatory.
Corollary. Suppose that the equation (E) satisfies the condition (C) and $n=4$. Then the following statements are true:

1. The equation (E) is eventually disconjugate if and only if it is nonoscillatory.
2. If the equation (E) is nonoscillatory, then for each nontrivial solution y of (E) either there exists an even number $l \in\{0,2,4\}$ and a point $c \geqq a$ such that
if $l \geqq 2$, then $y(t) y^{(j)}(t)>0$ for $c \leqq t<\infty, j=0,1, \ldots, l-1$,
if $l \leqq 2$, then $(-1)^{l+j} y(t) y^{(j)}(t)>0$ for $c \leqq t<\infty$,
$j=l, l+1, \ldots, 3$,
and $(-1)^{l+4} y(t) y^{(4)}(t) \geqq 0 \quad$ in $\langle c, \infty), \quad y^{(4)}(t) \equiv 0$
holds in no subinterval $\langle d, \infty) \subset\langle c, \infty)$,
or there is a point $c \geqq a$ such that

$$
y(t) y^{\prime}(t)>0 \text { in }\langle c, \infty), \quad y(t) y^{\prime \prime}(t)<0 \text { in }\langle c, \infty) .
$$

Moreover, if for the first solution $x_{1}(t)$ of the hierarchical fundamental system for the equation $\left(\mathrm{E}_{2}\right)(35)$ holds, then only the possibility $\left(33^{\prime}\right)$ can arise for $y(t)$.
3. If for $l=2$ there exists a solution $y(t)$ of the equation (E) with the property (33'), then the equation (E) is nonoscillatory.

References

[1] Чантурия, Т. А.: О колеблемости решений линейных дифференциальных уравнений высших порядков. Доклады семинара Инст. Прикл. Мат. им. И. Н. Векуа, Тбилисского гос. унив. 16 (1982), 1-74.
[2] Elias, U.: Nonoscillation and Eventual disconjugacy. Proc. Amer. Math. Soc. 66 (1977), 269-275.
[3] Hartman, Ph:. Principal Solutions of Disconjugate n-th Order Linear Differential Equations. Amer. J. Math. 91 (1969), 306-362.
[4] Greguš, M.: Third Order Linear Differential Equations. D. Reidel Publishing Co., Dordrecht, 1987.
[5] Кигурадзе, И. Т.: Некоторые сингулярные краевые задачи для обыкновенных дифференциальных уравнений. Издат. Тбилисского гос. унив., Тбилиси 1975.
[6] Левин, А.,Ю.: Неосцилляция решений уравнения $x^{(n)}+p_{1}(t) x^{(n-1)}+\ldots+p_{n}(t) x=0$. Усп. Мат. Наук, т. 24 (1969), 43-96.
[7] Medved, M.: Sufficient Condition for the Non-Oscillation of the Non-Homogeneous Linear n-th Order Differential Equation. Mat. Čas. 18 (1968), 99-104.
[8] Regenda, J.: Oscillatory and Nonoscillatory Properties of Solutions of the Differential Equation $y^{(4)}+P(t) y^{\prime \prime}+Q(t) y=0$. Math. Slovaca 28 (1978), 329-342.
[9] Regenda, J.: On the Oscillation of Solutions of a Class of Linear Fourth Order Differential Equations. Czech. Math. J. 33 (108) (1983), 141-148.
[10] Regenda, J.: Oscillation Theorems for a Class of Linear Fourth Order Differential Equations. Czech. Math. J. 34 (109) (1984), 113-120.
[11] Regenda, J.: Oscillation Criteria for Differential Equation $y^{(4)}+P(t) y^{\prime \prime}+R(t) y^{\prime}+$ $+Q(t) y=0$. Math. Slovaca 34 (1984), 419-425.
[12] Šeda, V.: Nonoscillatory Solutions of Differential Equations With Deviating Argument. Czech. Math. J. 36 (111) (1986), 93-107.
[13] Trench, W., F.: Canonical Forms and Principal Systems for General Disconjugate Equations. Trans. Amer. Math. Soc. 189 (1974), 319-327.

Author's address: Mlynská dolina, 84215 Bratislava, Czechoslovakia (Matematicko-fyzikálna fakulta UKo).

