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1. INTRODUCTION

Consider the n-th order (n = 2) linear differential equation

(E) ° (L) =)y + 3 pu)) 3 =0,

where the coefficients p,(f), k = 2, ..., n, are real-valued continuous functions on
the interval I = {a, ©), —c0 < a < . Sometimes the following assumptions will
be required:

n xk—Z
A t)——— <0 forall tel, xeR;
(4) kgzpk()(k -2 7
(B) the hypothesis (A) is satisfied, n = 2m, p(t) < 0 forall tel, k = 2,3,...,n,

and p,(?) is not identically zero in any subinterval of I;
(C) the hypothesis (B) is satisfied and ps(t) = 0, ps(t) = 0, ..., p,—4(t) = Ofor all
tel.
For the orders n = 2, n = 3 and n = 4, the condition (A) is satisfied by the:

equations )

V' 4+ ps(t)y =0 with p)(f) <0 in I,

v+ p(t)y =0 with py(1)<0 in I,
and

Y+ pa1) ¥+ pa(t) Y + pu(t) y =0, pi) S0,
p3(1) £ 2py(1) pa(t) in I,
respectively. The last equation has been studied by J. Regenda in several papers,
e.g. [8], [9], [10], [11].
It is clear that if the equation (E) satisfies the assumption (A), then p,(f) < 0 in I

and for n = 2m + 1 we have p,(f) = 0 in I, while for n = 2m we have p,(t) < 0
in this interval. Conversely, if n = 2m, p,(t) < 0 in I, then for any ps(t), ..., p,-4(?)

there exists (a sufficiently great in absolute value) p,(f) < 0 such that the equation
(E) satisfies (A).
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Although the equations (E) of the second and third orders satisfying the condition
(A) are disconjugate, the equation y* — y = 0 (having the property (A)) possesses
a fundamental system of solutions y,(t) = €', y,(t) = e7%, ys(t) = cost, yu(t) =
= sin t, and, thus, has oscillatory solutions.

A nontrivial solution of the differential equation (E) is called oscillatory if its set
of zeros is not bounded from above. Otherwise, it is called nonoscillatory. The equa-
tion (E) will be called nonoscillatory when all its solutions are nonoscillatory;
oscillatory when at least one of its solutions is oscillatory. It is said to be disconjugate
in an interval J <1 iff each of its non trivial solutions has at most n — 1 zeros in J,
counting each zero so many times as its multiplicity indicates. It is eventually dis-
conjugate (onI) if it is disconjugate on an interval of the type (b, ), where bel.

In the paper fundamental properties of the equation (E) are derived under some
of the assumptions (A), (B), (C), such as the existence of solutions without zeros,
a comparison theorem, the existence of a bundle of solutions and the properties of
nonoscillatory solutions of the equation.

2. PRELIMINARIES

We begin by formulating and proving the results which are needed later on.

Lemma 1. Suppose that toel, y., i =0,1,...,n — 1, are arbitrary numbers.
Then the initial value problem

1) Llyl=0, yPt))=y5, i=01,...n—1,

is equivalent to the following Volterra’s integral equation

(2) YOrU(t) = g(1) + [i, A(t,s) y©U(s)ds, tel,

where

®) o) =35 =5 3 fun BT
0 e S ( n+ k)'

4 A5 = =3 Fo = 40 pser.

( ) ( ) kgz jspk( ) (k _ 2)! u

Proof. Integrating the equation (E) from t, to t and taking the initial conditions
in (1) into consideration, we get
- n—k+1

© e = = S fune) (S B =+
+ B Y (u) du) ds

(k= 2)!
We put (5) into the form (2). First we denote

9(t) =yo ' — Lopk(s)(i % (s—to)’)ds

to
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Then

- < y{) i—
)=yt — o Dils s PAVALLLIRY ,
g() Yo k; jf pk( )1 ; . (,] k)! (9 0) J

which implies (3).
"Similarly we consider the function

5[ [ I e o=
A=

Then, on the basis of (3) and (4), we get (2).

By virtue of the assumption (A), the function A(:, s) given by (4) is continuous and
nonnegative for ¢, < s < t as well as nonpositive for a < t < s £ t,. The following
lemma deals with the equation (2) in this case.

Lemma 2 ([8] p. 331). Let A(t, s) be a nonnegative and continuous function for
to < s =t (a nonpositive and continuous function for a <t <s). If g(t), ()
(¥(1)) are continuous functions in the interval {to, ) ({a, t5)) and

coo(t) < g(t) + [i, At s) @(s)ds  for  te<t,, )
(l//(t) 2 g(t) + |3, A(t, ) ¥(s)ds for tela, o)),
then every solution y(t) of the integral equation
(6) W) = g(t) + [, At 5) (s) ds
satisfies the inequality
W) Z ot) in <t 0) (y(t) SY(r) in <a,te)).
" If we suppose in addition that g(t) = 0 for te {ty, o) (g(t) < 0 for te<a, t,)),
then the solution y(t) of (6) satisfies the inequality
W) 2 9(t) 20 for tety, ) (y(t) £ g(t) £ 0 for teda, 1p)).

We shall show that under the assumption (A) neither the solution y(t) of the
equation (E) satisfying the conditions

() yte) =0, i=0,1,...n—2, y" (1) 0

nor any of its derivatives yU)(¢),j = 1,...,n — 1, hasa zero at tel, t % t,.
Lemma 3. Suppose that (A) holds and let y(t) be the solution of (E) satisfying

the initial conditions (7) with y®~1(t,) > 0. Then:

(®) (i) y()>0forallt>t, i=0,1,...n— 1.
(i) If a < to, then

9) (=1 Y1) > 0 forall te<a,to), i =1,2,...,n. *
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Proof. If the solution y of (E) satisfies (7) and y§~' = y™~(t,) > 0, then the
function g(t) determined by (2)is g(r) = y5~' > 0and, by Lemma 2, y*~(¢) = y§~*
for all t > t,, which in view of (7) leads to the inequalities (8).

If a < to and the solution y of (E) satisfies (7) with y5~' = y®~"(t,) < 0, then
g(t) = y§~' < 0 and, by Lemma 2, y" (1) < y5~' < 0 for all te{a, to). This,
with respect to (7), implies (—1)* y*~?(1) > 0 in {a, t,), i = 1,2, ..., n. Hence the
inequalities (9) for the solution y with ya~! > 0are true.

Under the condition (B) or the condition (C) stronger results can be proved.

Lemma 3'. Suppose that (B) holds and let y(t) be a nontrivial solution of (E)
satisfying at ty €I the initial conditions

yt)) =y 20, i=01,...n—1.
Then
ym(t)>0 forall t>t,, i=0,1,....,n—1.

Lemma 3". Suppose that (C) holds and t, > a. Let y(t) be a nontrivial solution
of (E) satisfying the initial conditions
(1) yD(te) = (-1)'y5 =0, i=0,1,....,n—1.
Then
(=) y(t) >0 forallt, a<t<ty, i=0,1,...,n—1.

The proofs are similar to that of Lemma 3 and will be omitted.
Using the well-known Kiguradze lemmas ([5], pp. 289—290, [12], p. 94) we get
the following lemma.

Lemma 4. Let y(t)e C™(I) be such that y(t) > 0 in (b, ) where a < b < 0.
Then thereis a ¢, b < ¢ < o0, such that

either

(i) thereisan 1,0 < 1 < n, with the following property. If | > 0, then y(t) > 0,
cSt<oo, i=0,1,...,1—1; if ISn—1, then (—=1)"*7y¥(t) >0 for ¢ <
St<o,j=LI1+1,...n—1; and (=1)"" y™(t) 2 0 in {c, ), y"(t) =0
holds in no subinterval {d, ©) < {c, ©),

or

(ii) there is a k, 1 < k < n, with the property

Y1) =0 in {c, )

and y(t) > 0 in {c, ) for i =0,1,...,k — 1,

or

(iii) there is a k, 1 £ k < n,and an 1,0 £ 1 £ k — 1, such that if | > 0, then
y(1) > 0in {c,0), i =0,1,....,1 = 15 if I £ k — 2, then (—1)"*7 yU(t) > 0 in
(e, ), j=L1+1,..,k=2; further (—1)""*71y*"D(1) 20 in {c, ),
y*~1(t) = 0 holds in no subinterval {d, ) = {c, ©) and

y®(t) is strictly oscillatory in {c, ), i.e. it changes its sign in each subinterval
{d, ©) = {c, ) infinitely many times.
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Proof. Consider the function y™(t) in {b, o). Three cases may occur.

1. y™ is of constant sign in {b, ©), y*(¢) = 0 holds in no subinterval {d, w) =
< {c, ©). Then the first two Kiguradze lemmas are applicable. They give the
statement (i).

2. y™(t) = 0 in an interval {d, ©) = (b, o). We denote by k, 1 < k < n, the
smallest integer i for which y®)(t) = 0 in an interval {d,, ) = {b, ). Clearly
y*7(t) = const > 0 in {d;, o) and by integration we get the statement (i).

3. y™(t) is strictly oscillatory in an interval {(d, ) = (b, ). Then we again
consider the smallest integer i for which y(t) is strictly oscillatory. If we denote it
by k, then y® is strictly oscillatory, but y®*~1)(t) is of constant sign in an interval
{d,, ) and y*~ () = 0 holds on no subinterval {d,, o) of <{d;, ). Again the
statement (iii) follows from the Kiguradze lemmas.

The next lemma is similar to a result proved in [7] by M. Medved under stronger
conditions (p,(t) € C"~*((a, b))). The same result has been given in Corollary 5.1,
[6]. p- 90. Here another proof is constructed.

Lemma 5. Suppose that the equation (E) is disconjugate in {to, o) where toel,
and the function f(t) e C({t,, o)) does not change its sign in {t,, ). Then the
differential equation
(10) Liy] = /(1)
is nonoscillatory in {t,, ), i.e. for each solution y(t) of(IO) there exists an interval
{ty, ), te < ty, such that either y(t) = O or y(t) + 0 fort, <t < w.If the former
case occurs then f(t) = 0 in {t, o).

Proof. According to G. Mammana (see [6], p. 45, or [7], pp. 102—103), if (E)
is disconjugate, then there exist real continuous functions g,(z), ..., g,(t) in {t,, )
such that the operator Lcan be decomposed into factors

y] = (% - g,,(t)) <8dt - gl(t)>y.
Hence, if we put ‘ ’

(1) y=yi, Y=g yi=virr, i=1..n=1, y— gy =),
then the equation (10) is equivalent to the system
(12) Vi=g0) yi + yier, i=1,...n— 1,

Yu = gut) yu + f(1)

in the following sense. If y(7) is a solution of (10), then the vector function (y,(%), ...
...» (1)) determined by (11) is a solution of the system (12) and conversely, if
(y4(t), ..., y,(?)) is a solution of (12), then y(t) = y,(t) satisfies (10).

Suppose that () = 0 in (g, ). In the case f(¢) < 0 we would proceed similarly.
First we show that any solution of the equation y;, = g,(t) y, + f(¢) is nonoscillatory.
If such a solution y, is negative in a neighbourhood of co, then it is nonoscillatory.
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If there is a point #; = ¢, such that y,,(tl) = 0, then it can be written in the form

(13) vlt) = u(t) + [, K(2, 5) f(s) ds,
where K(t, 5), t; < s < t, is the Cauchy function for the equation
(14) Yy —g(t)y=0

and hence it is positive for ¢; < s < ¢, while u,(t) is the solution of (14) determined
by the condition u,(t;) = y,(t;) 2 0 and thus y,(f) 2 u,(t) 2 0 for all ¢ > t,.
Further, (13) yields that either y,(f) = 0 in a neighbourhood of o or y,(t) > 0
in an interval {t,, o). Therefore the equation y;, = g,(t) y, + f(t) is nonoscillatory.
By finite induction we can show that all equations in the system (12) are nonoscillatory.
This implies that (10) is nonoscillatory. Clearly y(f) = 0 in {t;, ) implies that
f(#) = 0in the same interval.

In the next lemma the notation f(¢) < g(t) for t > oo (taken from [6], p. 57) will
mean that both functions f and g are positive in a neighbourhood of co and f(1) =
= o(g(t)) for t - oo. For the sake of completeness we state Lemma 2.1 from [6],
p. 58 as

Lemma 6. Let V be an n-dimensional vector space of functions continuous in I.
Then the following two statements are equivalent:
L. Each function y(t)e V, y(t) % 0, is different from 0 in a neighbourhood of .
2. There exists a basis {y(t)}}, for V such that
yi(t) < yo(t) < ... < y(t) for t—> 0.
Using this lemma we prove the following result.

Lemma 7. Suppose that the equation (E) is nonoscillatory, the function f(t) e C(I)
is nonoscillatory and let y(t) < y,(t) < ... < y,(t) for t > o0 be a hierarchical
system of solutions of (E). Then the nonhomogeneous equation (10) is nonoscilla-
tory, i.e., all its solutions are nonoscillatory, iff there is a nonoscillatory solution
yo(t) of (10) such that |yo|, y1, y2, .., ya form a hierarchical system of functions,
i.e.

either

|yo(0)] < »4(1) < yo(t) < ... < y(t) for t— o
or there is a je{1,2,...,n — 1} such that
yi(f) <o <y i) < |yo(0)] € yjea(t) < ... < y(t) for t-> o0,
or

ya(t) < yo(t) < ... < y(1) < |po(t)] as t— 0.
Proof. If |yo|, ¥1, ¥, ..., y, form a hierarchical system in the sense given above,
then it is clear that each solution

¥(1) =i§10.~yi(t) + yolt), tel,

of (10) is nonoscillatory.
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Conversely, suppose that each solution of (10) is nonoscillatory. Then for each
i=1,2,...,n and any solution y, of (10) the function y(t)/yo(t) is continuous in
a neighbourhood of oo and moreover, for each ¢ € R, y(t)[yo(t) = ¢ in a neighbour-
hood of co. In fact, the roots of the equation y{t)/yo(t) = c are either the roots of
yi(t) (when ¢ = 0) or the zeros of the solution —(1/c) y{(t) + yo(t) of (10). The ine-
quality y(t)/yo(t) * ¢ for each ce R and the continuity of y(t)/ye(t) in a neigh-
bourhood of oo ensure the existence of a finite or infinite lim y(t)/yo(¢). This implies

t—

that for each i = 1,2,...,n and any solution y,(t) of (10) one and only one of the
following cases may arise: y(t) < |yo()], |vo(t)] < yi(2), yolt) ~ ¢ yi(t) for 1 - o0
with 0 < |¢| < oo.

Let us fix a solution y, of (10). Then either |yo|, ¥y, ¥2, ..., ¥, form a hierarchical
system in the sense given in the statement of the lemma, or there existsaj, 1 < j < n,
such that y(t) ~ ¢ y,(t) for t — oo. In the former case the proof of the lemma is
complete. In the latter case we consider the function yg(t) = yo(t) — ¢ y{(t), t€l,
which is a nonoscillatory solution of (10). Again two cases may occur. Either yj,
V1> V25 ---» Yu-form a hierarchical system and the proof is done or there exists a k,
I £ k £ n, such that yg(t) ~ ¢, yi(t) for t > o0. As lim yg(t)/y(t) = 0 and thus

t—=> o

|¥6(1)] < y,(t), we must have k < j. We now consider the solution of (10), y5(t) =
= yo(t) — coyt) = yolt) — ¢ y(t) — ¢, yi(t), tel. As concerns this solution,
either |y3|, ¥4, ¥2, ..., y, is a hierarchical system or thereisan I, 1 < I < k < j such
that yg(t) ~ ¢, y/(t) for t — co. After at most j steps we come to a solution yg(t)
of (10) such that |y}, y1, y5, ..., ¥, form a hierarchical system of functions.

The next lemma is interesting in itself and will play an important role in the investi-
gation of a nonoscillatory equation (E). It has been given by U. Elias in [2], p. 269
as Theorem 1.

Lemma 8. Suppose that the equation (E) is disconjugate on I, p(t) is a continuous
Sfunction of a fixed sign on I, and the perturbed equation
(E) Lly] + p()y =0
is nonoscillatory on I. Then the equation (E) is eventually disconjugate.

3. THE EXISTENCE OF MONOTONIC SOLUTIONS

- Theorem 1. Suppose that (A) holds. Then there exists a solution y(t) of (E) such
that
(15) y(t)>0 forall t>a, i=0,1,...,n—1.

Pronf. Let y(t) be the solution of (E) which satisfies the initial conditions y?(a) =
=0,i=0,1,...,n =2, y»"Y(a) = 1. Then, by Lemma 3, the inequalities (15)
follow.

Denote by zy(t), zy(t), ..., z,-4() the solutions of (E) defined on I which are
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determined by the initial conditions
. 0, i+j for i,j=0,1,...,n—1,
@ =0 =10 1]

Theorem 2. Suppose that (A) holds. Then there exists a solution z(1) of (E) such
that

either
(16) (=1 z9() >0 forall tel, i=0,1,...,n—2,
(=1~ 'z ()20 in I,
or

z(t) > 0 for all te I and there exists a ty I such that z(t) = 0 for all t = ¢,,
i=1,2,...,n— 1.

Proof. We shall apply a construction similar to that given in [4], p- 1S. For each
natural number k > a let ¢y 4, €4 4 ..., €,— 1, De numbers satisfying

n—1
(17) Zc,?,k =1,
i=0
n—1
¢z (ky=a;, j=0,1,...n—1,
i, J
i=o

where a;, j=0,1,...,n —1, are such that a4 =a;, =... =a,, =0,
(-1)"a,-, <O.
Since zo(t), zy(?), ..., z,-4(t) are linearly independent and a,_, can be arbitrarily

chosen, the numbers ¢q y, ¢4 g, ..., €y dO €Xist.
n—1

Denote Z(t) = Z ¢ix z(t). Then Z(t) is a nontrivial solution of (E). In view of

the first condmon in (17) and by Lemma 3,
(18) (-1yz2(1) >0, j=01,...,n—1, a<t<k.

For each natural number i, 0 < i < n — 1, the sequence {c;;} is bounded, thus
there exists a sequence of natural numbers {k(I)} such that the subsequences {c; .}
converge to numbers ¢;, i =0,1,...,n — 1, as [ — co. From (17) we see that

n—1
> ¢; = 1. The sequences {Z,,(?)}, {Zi)(1)}, .-, {25n (1)} converge uniformly on

any compact subinterval of I to the functions z(t), z'(¢), ..., z®=1(t), respectively,

where
n—1

2(t) = ¥ erz(1)
i=0
is a nontrivial solution of (E). The inequalities (18) imply that
(19) (=1)'z9(t) =0 forall tel and i=0,1,....,n—1.
If there existed a point toel and a je{0,1,...,n — 2} such that 2(”(t0) =0, we
would consider the smallest j with the mentloned property Then, by (19) M=o
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would hold for all ¢ Z #,. As z(r) is a nontrivial solution of (E), z(f) > 0 in I and
hencei, J = 1. Denote I =j — 1. Then zV(tf) = ¢, £ 0 in <fy, o) and, since
(—1)"z(t) = 0 and ¢, cannot be negative (this would imply that z(r) is negative
in a neighbourhood of ©), I must be even. If I > 0, then z¥(t) = ¢, > 0 and
z87(t) = ¢t + q and hence z(~ (1) > 0 for all sufficiently great ¢, which con-
tradicts (19), because ! — 1 is odd. This contradiction shows that I = 0 and the
theorem is proved.

Remark. If p,(t) # 0 in any neighbourhood of oo (and hence n = 2m), then in
the alternative (16) only the first statement can hold. If p,(t) = 0, then solutions of
both types in (16) can occur, as the example of the equation y*> — y" = 0 shows.
This equation has the following fundamental system of solutions: y,(f) = 1, y,(t) =
=¢', yy(t) = €', yu(t) = sint, ys(t) = cos t.

Corollary. If (C) holds, then there exists a solution z(t) of (E) such that

(=1)"zP(t) > Oforall tel, i=0,1,..,n—1.

Proof. Firét, we know that there exists a solution z(f) of the equation (E) with
(=1)"z%(t) > 0 for all tel, i = 0,1,...,n—2, and (—1)""'z"" () 2 0 in I
By Lemma 3", (—1)"~* z~"(t) > 0 must hold in the whole interval I.

1

4. COMPARISON THEOREMS

The fundamental property of the equation (E) under the assumption (A) is given
by the following theorem which is stronger than the Caplygin comparison theorem

([6]. p. 46).
Theorem 3. Suppose that (A) holds. Let tyel and let u(t), o(t) e C'(I) be two
Sfunctions such that

(20) u®(to) = v(to), i=0,1,....,n—1, and
L[u](¢) =2 L[v](¢) forall tel.
Then
(i) u®(t) = v9() forall t = 1o, i =0,1,....,n — 1;
(ii) If a < to, then
(—1 7 w0 = (=1 (1) forall 1, a<t<t,,
i = 03 19 n— 1 .

]\;{0"‘3006", if there 1s @ t:to <ty (a <ty £ 1o) such that L[u] (t,) > L[] (t1),
then

uD(t) > o(t) for gl t > t, i=0,1, . n—1
(=™ () > (=100 forall 1, 4 <t<ty,
1=0,1,...,n — 1).
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Proof. Denote by K(t, s) the Cauchy function for the equation (E), i.e., K(+,s)
is the solution y(r) of (E) such that y(s) =0, i =0,1,....,n — 2, y"7U(s) = 1,
By Lemma 3,

(21)
and

(22) (=1

I'K(t, 5)

o >0 forall t>s>1, i=01,...,n-1,
tl

aK(t s)>0 forall ast<s=st,, i=0,

1,..,n—1.

Denote by y4(t) the solution of (E) satisfying y(li)(to) = uD(t5) = v(ty),i = 0,1, ...
.,n— 1. Then

00 =00 + [ P 1y 9 0,

t
v(i)(,)zy(lo(t)Jr[ ”K(t Q)L[]()ds tel, i=0,1,..,n—1.

v to

Hence
t Al
(23) u() - o) = J % (L[u] (5) = L[] ()} ds forall tel,
to
i=0,1,....,n—1.
By (20), (21), (22) and (23) the result follows.
If the condition (B) is fulfilled, a stronger result holds.

Theorem 3'. Suppose that (B) holds. Let toel and let u(t), o(t)e C'(I) be two
functions such that

(20 uty) = v(ty), i=0,1,...,n—1, and L[u](t) = L[v](?)

forall t=1t,.
Then
ud(1) = v'(1) forall tz1,, i=0,1,..,n—1.

Proof. Let K(t, s) have the same meaning as in the proof of Theorem 3 and let
ydt), i = 1,2, be the solutions of (E) determined by the conditions

Y(to) = u®(to), ¥ (t0) = vty), i=0,1,...,n—1.
Then instead of (23) we get
(23!) u(i)(t) _ U(i)(t) — y(l)(t) y(i)(t) +

+J‘ 61;(i q){L[](S)_L[u](s)}ds forall tel, i=0,1,...,n—1.
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Since y; — y, is a solution of (E) with (y, — y,)” (t,) =2 0, Lemma 3’ implies that
(yi —y2)P()z0forall t 215, i =0,1,...,n — 1. By these inequalities as well
as by (21), on the basis of (20")and (23'), we get the result.

If we apply Lemma 3" instead of Lemma 3’, we get the following theorem.

“Theerem 3". Suppose that (C) holds. Let a < t,, let u(t), v(t)e CY(I) be two
functions such that

(207) (=) u®(te) 2 (= 1) vtp), i=0,1,...n—1, and

Llul(t) = L[v](t) forallt, a<t=1,.
Then

(=) uD(t) = (—1)"o9t) forallt, agt1<t,, i=01,..,n—1.
5. REGULARITY OF BUNDLES

Let toel. Denote by yo(t), y4(t), .... y,—4(t) the solutions of (E) defined on I
which are determined by the initial conditions

yW(to) =6y, 1,j=0,1,..,n—1.
It is clear that for each je{0,1,...,n — 1} each solution y(t) of (E) such that

n—1
y9(t,) = 0 is a linear combination z ¢ yi(1). The set of all such solutions will be
ey
called the bundle of solutions of (E) of the j-th kind at the point t,. If the wronskian
W(Yos s Yj=1s Yj+1s ---» Yu—1) () does not vanish on a subinterval J < I, then we

say that this bundle is regular on J.

The following theorem is true.

Theorem 4. Suppose that (A) holds. Then for each point tyel, each je {0, 1, ...

., n — 1}, the bundle of solutions of (E) of the j-th kind at t is regular inI — {15}
and hence the functions yo(t), ..., yj-1(1), yj+1(t), ..., ya=+(t) form a fundamental
set of solutions for a certain homogeneous linear differential equation of the
(n — 1)-st order in I — {t,}.

Proof. Consider the wronskian W(yo, ..., ¥j—1, ¥j41, ---» Yu—1) (¢). If there were
a point #y €1, t; * to, such that W(vo,.... ¥j—1. Vj+1s --» Yu=1) (f;) = O, then the
system (in Unknowns ¢g, ... Cj—1, Cj41s -5 Cym1)

n—1
ch)’;(ci)(H) =0, i=01,....n—2,
&

would have a nontrivial solution, and hence there would exist an (n — 1)-tuple

n—1
(Zos -y Tj=1s Cjsts .o Eymyq) such that ch yi(ty) =:7(t)) =0, i=0,1,...
k=

k#]
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n—1
ot =21 5(¢) = 0in I, then 0 y (1) + Y ¢, ¥i(f) = 0 which would contradict the
K=0
) kj
fact that yo(t), ..., ya—y(t) are linearly independent. Thus §“~!(t,) + 0 and j(t)
should be a solution of (E) with an (n — 1)-tuple zero at ¢, and with j9(to) = O,
which cannot occur if (E) satisfies (A) (a contradiction with Lemma 3).

Corollary. Suppose that (A) holds. Then for each pair of different numbers to, t; €
el, any j,0<j<n—1,and any (n — 1)-tuple y}, i = 0,1,...,n — 2, of real
numbers there exists a unique solution y of (E) which satisfies the conditions

y(t) =0, yOt)) =y, i=01,...,n—2.
In particular, the homogeneous boundary value problem
Liy] =0, y9te)=0, yt;)=0, i=0,1,...,n—2,

has only the trivial solution and thus, there exists a unique Green’s function for
that problem.

6. NONOSCILLATORY EQUATIONS

Suppose that the equation (E) is nonoscillatory. Then, by Lemma 6, there exists

a hierarchical fundamental system of solutions y(t), i = 1,2, ..., n, of the equation
(E), which means that
(24) 1) € yalt) < ... < 1) for 1 0.

Moreover, from the proof of the lemma it follows that for any two nontrivial solu-
tions y, z of (E) there exists a finite or infinite lim y()/z(r). We shall call these two
t— 0

solutions equivalent, notation y(t) ~ z(t), when this limit is finite and different
from 0. The relation to be equivalent is reflexive, symmetric and transitive and hence
by this relation the set of all nontrivial solutions of (E) is decomposed into classes
of equivalent solutions. In view of (24) and of the representation of the solution y(r)

of (E) in the form y(1) = Y ¢; y(t), t €I, the following statements hold:
=1

1. For each nontrivial solution y of (E) there exists one and only je
€{1,2,...,n} such that y(t) & y(t), and thus there are exactly n classes U;, j =
,2,...,n, of equivalent solutions of (E), possessing y; as their representatives.

J
2. The class U; consists of the solutions Y, ¢, y(t) of (E), where ey, ..., ¢;—y, ¢; + 0
k=1

are arbitrary numbers. Hence, the class U, is a one dimensional vector subspace,
without the trivial solution, of the space of all solutions of (E), and the solution
y1(t) is unique up to multiplication by positive constants.

By Theorem 7.1, in [3], p. 329, we get the following statement.

3. If the equation (E) is eventually disconjugate, i.e. it is disconjugate on an

361



interval (b, 0) = I, then the solution y,(t) (with the smallest growth) has two
properties:
a) y4(t) > 0 in (b, o).
b) When Z(t) is the solution of (E) (from the proof of Theorem 2) satisfying the
initial conditions
#Nk)y=0, j=0,..,n=2, (=12 (k)<0

for each k > b, and the normalization condition
n—1 s
Y #%(a) = 1
i=o

(i.e. the conditions (17)), then y,(1) = lim Z(t) in the sense that for each j =
k=

=0,1,...,n — 1, 20(t) converges uniformly to y{() on every compact subinterval
of (b, oo) as k — oo. Hence, Corollary to Theorem 2 implies that, provided that the
equation (E) satisfies the condition (C) and is eventually disconjugate, then the solu-

tion z(t) of the equation with
(25) (=)' z9(t) >0 forall tel, i=0,1,...,n—1,

belongs to the class U, (with the smallest growth) and is uniquely determined up to
multiplication by positive constants.

Remark. If p,(t) & 0 in any neighbourhood of co, the equation (E) fulfils the
condition (A) and is eventually disconjugate, then the same result holds, only (25)
is replaced by (16). If p,(t) = 0 in (b, ) and there exists a solution z,(t) satisfying
(16) as well as a solution z,(f) = const. > 0, then z(t) € U, and lim z,(t) = 0.

t—= oo

Suppose now that the equation (E) satisfies the condition (B). By Lemma 3’, for
a point ¢, = a and for two different solutions y(r), z(z) of (E) such that y®(t,) <
< z29(t,), i =0,1,...,n — 1, we have y(t) < z(t) forall t > tyand i = 0,1, ...
...,n — 1. Hence a nontrivial solution y(t) of (E) such that

(26) y(t)) 20, i=01,...,n—1,

has the property that at any fixed point ¢; > t, all values y)(t,) are positive, i =
=0,1,...,n — 1. Comparing this solution with y,e U, we see that there exists
a k > 0 such that y{(t;) < k y(t;), i = 0,1,...,n — 1, and thus, by Lemma 3,
lim k y(¢)/y.(t) = 1. Since y, belongs to the class of the highest growth, we have the
=00

following statement:

4. If the equation (E) satisfies the condition (B), then each nontrivial solution y
of (E) satisfying (26) at a point t, = a is equivalent to y, and thus yeU,. In
particular, any solution y of (E) with a zero of multiplicity n — 1 at to belongs
to U,.

Remark. The last statement concerning the solution with an (n — 1)-tuple zero
is also true under the condition (A)
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Let t, = a be an arbitrary but fixed point. As the bundle B(t,) of solutions of (E)
of the 0 kind at the point 7, is an (n — 1)-dimensional vector space of solutions of (E)
which are all nonoscillatory with the exception of the trivial one, by Lemma 6 there
exists a system zy, ..., z,_1 € B(to) such that

z4(1) < z,(1) < ... K z,—4(t) for t— 0.

Denote by V; the class of all solutions from B(t,) which are equivalent to z;. Then
foreachje{1,...,n — 1} thereis a unique k(j) = ke {1, ..., n} suchthat V; = Uy,
andfor j; < j, wehave k(j,) < k(j,). Therefore k(j) = jforeachj =1,2,...,n — 1.
Now we prove the statement.
5. If the equation (E) satisfies the condition (B) and is eventually disconjugate,
then
Vic Uy, foreach j=1,2,...,n—1.

Proof. By the statement 4, the solution with the (n — 1)-tuple zero at t, has
a maximal growth and therefore belongs to U, n V,_,. Hence V,_; < U,. On the
other hand, both classes Uy, V; are one dimensional vector subspaces without the
null soluiion and hence, if U; N V; % 0, then U; = V;. But, in view of the statement
3, U, contains a solution z satisfying (25) which has no zeros, and thus, z cannot
belong to any of V;. Hence k(1) > 1. However, k(1) > 2 cannot hold. Therefore
k(1) = 2 and proceeding step by step we obtain that k(j)=j + 1, j =1,2,...
..,h—1.

Suppose now that the equation (E) satisfies the condition (C). Then the equation
(E) generates a chain of equations

2j
(E,)) VE + Y pl() yF R =0, j=1,2,...,3n.
k=2

Here (E,) means the equation (E). Each of the equations (Ey)), j = 1,2,...,4n,
fulfils the condition (A), and if p,(t) is not identically zero in any subinterval of I,
it also satisfies the condition (C). Moreover, the equation (E,) is disconjugate on I.
The remaining equations of the chain are dealt with in the following lemma.

Lemma 9. Let the equation (E) satisfy the condition (C) and let n = 4. Then
the equations (E,), (Eg), ..., (E,-,), (E,) are all eventually disconjugate if and only
if they are all nonoscillatory.

Proof. Since the eventual disconjugacy implies the nonoscillation, we shall only
show that if the equations (E,), (Es), ..., (E,-.), (E,) are nonoscillatory, then they
are eventually disconjugate. Denote

2j-2
(EZJ') y(Zj) + Z pk(t) y(2j'—k) = 09 J = 25 3,""%'17

k=2
which differs from (E, ) by the term p, () y and let L, ; (L, ) be the operator standing
on the left-hand side of (E,;)((E;;)). As (E,) is disconjugate on I and L,[y] =
= L,[d*y[d¢*], (E,)is disconjugate on I as well. As (E,) is nonoscillatory and p,(t) <
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< 0inI, by Lemma 8 we get that (E,) is eventually disconjugate. Proceeding in this
way, step by step we derive the eventual disconjugacy of the equations (Eq), ..., (E,-,),
(E,) and the lemma is proved.

Further we shall need a lemma which extends a result by T. Canturija in [1],
p. 33.

Lemma 10. If the equation (E) satisfies the condition (C) and is oscillatory, then
for each ¢ = a there are two numbers ¢ < ¢; < ¢,, an ly€ {2, 4,...,n — 2} and
a solution v(t) of (E) such that

(27) W e)) =0, j=0,1,.,1g—1,
(28) 9 ey) =0, j=1lplo+1,...n—1,
(29) vW(t) £ 0 for te(ey,cy), j=0,1,..,n—1.

More precisely,
(30) ot) v (1) >0, j=0,1,..,1—1, in (cy,c;» and
(=1 0u()o (1) >0, j=1lplo+1,...n—1, in {cy,¢5).

Proof. Let the equation (E) be oscillatory. Then there is an oscillatory solution
(#) of this equation with a zero ¢; > c. Consider the set S of all nontrivial solutions
¥(t) of (E) such that there isa k with 1 < k <n —1landad > ¢, d = d(y), with
the following properties: (a) y has a k-tuple zero at c¢,; (b) y*(r) has n — k zeros
in {¢,, d) counting each zero according to its multiplicity By Corollary to Theorem 4,

1<k=<n-2 Putc, =inf d(y) Then ¢, < ¢, and there is a sequence y, €S
yesS
and a fixed k, 1 £ k < n — 2, such that all y, possess a zero at ¢, of the same

multiplicity k and )f,’,‘)(t) have n — k zeros in {cy, ¢, + 1/m). When we normalize

m

n—1
the solutions y,(1) by ¥ y?*(c,) = 1, the resulting family contains a subsequence

which we again denote by y,(f) and which is locally uniformly convergent on I to
a nontrivial solution u(f) of (E). Moreover, yi/(t) locally uniformly converge to
v (1) for j =0,1,...,n — 1.

Clearly v enjoys the property (a). By Rolle’s theorem the property (b) of y,(t)
implies that the statement (c) y,’)(t) have n — j zeros in {cy, ¢y + 1/m), j =
=k, k+1, —1,m=1,2,...,1s true. Hence, on the basis of the convergence
properties of {yf,{)(t)} the equality ¢, = ¢; would imply v*(c,) = ... = v®"(c,) =
= 0 and thus, v(r) = 0 which contradicts the fact that v is a nontrivial solution of (E).
Therefore ¢, > ¢;. Further, denote by ¢; £ 1, , £t , S ... S hmS ¢ + 1m
the set of zeros of the function y¥() in {c,, ¢, + 1/m). Here each term stands so
many times as its multiplicity indicates. By the compactness of the cubes in R" as
well as by the locally uniform convergence of y\/() to vY)(t) we get that for each i,
1 <i<n—k, there is a subaequence tim, = t; such that yo)(z;,, ) - v*¥(t;) as
p — 9, whereby ¢; < t; £ ... £ 1, £ ¢,. Again by Rolle’s theorem, the equality
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to= 1ty = ... = tiy, 1 <t;r,means that v®(t,) = o** V(1) = ... = o*TT (1) =
= 0, and thus, v(t) has the property (b), too. Therefore ve S.

Let 1 < k <1, £n — 2 be such that oz) satisfies (27), but v%(cy) # 0.Then
v9(t) has n — I, zeros in (cy, ;. Proceeding in a similar way as in the proof of
Theorem 3.3 in [6], p. 75, using the method of perturbation of zeros, we can show
that v'9() % 0 in (¢, ¢,) and hence the conditions (28) are fulfilled, too. At the
same time, on the basis of (27), the inequalities (29) are true for j = 0,1, ..., l,.

Suppose that v')(f) > 0 in (¢4, ¢;). Then v¥(t) > 0in (cy, ¢;) for j = 0,1, ..., I.
Two cases may occur: (i) Io is even, and hence 2 < I, < n — 2. The function
o)) = u(t) is a solution of the equation

n—1lo n
(31) ut"1o 4 kz'z pt) u®™ = — 3 (1) "Rt

k=n—lpo+2

which satisfies the conditions
(32) U e)) =0, j=0,1,..,n—1,—1.

By the condition (C) the right-hand side of (31) is nonnegative in (cy, c,) and attains
positive values in any subinterval of (cy, ¢;). Hence in virtue of (32), Theorem 3
implies that (— 1"~/ u() = (—=1)**/ v®*)(1) > 0 in {cy, ¢;) for j = 0, 1, ...
..., — Iy — 1. Thus (30) is true for all j = 0,1, ...,n — 1.

Finally we show that the case (ii) I/, is odd, cannot occur and this will complete the
proof of the lemma. In this case we put v°*(f) = u(z), which implies that u
satisfies the initial value problem

n—Ilp—1 n

R I (UL (
= 1

k=n—1lo+

u(f>(c2)=0, j=0,1,..,n—1,-2.

Again by Theorem 3 we get the inequalities (—1)""~1=7 y()(f) = (—1)l*i*1,
L0TIEN() > 0 in ey, ¢y), for j=0,1,....,n — I, — 2. Hence v+ (1) > 0 in
{¢y, ¢,) and thus v'°)(7) is increasing in the interval. But v9(c,) = 0 which leads to
contradiction with v'(f) > 0 in (cy, ¢,).

Theorem 5. Suppose that the equation (E) satisfies the condition (C) and that
n = 4. Then the following statements are true:

1. If the equation (E) is nonoscillatory and, in the case n = 6 the equations
(E4), (Eg), ..., (B,—,) are eventually disconjugate, then for each nontrivial solution
y of the equation (E)

either
there exists an even number 1€ {0,2, ..., n} and a point ¢ = a such that
(33) if 1=2, then y@&)y9(t) >0 for cst<oo, j=0,1,..,1-1,

- if 1=n—-2, then (—1)"*7y(t)y9(t) >0 for
cst<ow, j=L1+1,...,n—1
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and

(=)™ (1) y™() 20 in <{c,0), y™(t) =0 holds in no subinterval
{d, ©) = ¢, ),

or

there exists an odd 1€ {1,3,...,n — 3} and a point ¢ = a such that

(34) ¥O)y9()>0 for c<t<ow, j=0,1,..,1—1,
(=1 y()yP() >0 in {e,0), j=1L1+1.

Moreover, if
(35) §© x4(t)dt = o
for the first solution x(t) of the hierarchical fundamental system for each of the
equations (E,), (E,), ..., (E,—,), then for y only the possibility (33) arises.

2. If for each 1€ {2,4,...,n — 2} there exists a solution y(t) of the equation (E)
with the property (33), then the equation (E) is nonoscillatory.

Proof. 1. If y is a nontrivial solution of (E), then there is an interval {b, ) in
which y(t) & 0. Two cases may occur. In the first case the inequalities

(36) w(0) y" (1) >0, y(1) y*®(t) > 0, ..., (1) " 2(t) > 0

hold in an interval {c, w0) = (b, o). Since the equation (E) satisfies (C), by this
equation we get that y(t) y™(t) = 0 in {c, ) and y“(t) = 0 holds in no sub-
interval {(d, ©) = {¢, o). Then by Lemma 4 there is an I such that the solution y(r)
fulfils (33). In view of (36), ! must be an even number and hence I € {0, 2,4, ..., n}.

In the second case there is an even number [,, 0 < [, < n — 4, such that for
l, = 2 the inequalities

(7). W) (1) > 0, ... y(1) y19(1) > 0

hold in an interval {c, o) = <b, o0} and y(t) y**?(¢) > 0 holds in no subinterval
{d, ) = {¢, o). Hence, by (37), the right-hand side of the equation

(38) oD () v b Lt P o) 0 =
= — (1) W(1) = Pa—at) ¥'(8) — ... = Puci(t) Y1)

is of a constant sign in <c, 00) and thus: by Lemma 5, each solution of the equation
is eventually different from 0. The function y'°*?)(¢) is one of these solutions and
therefore y(t) y"°*?)(t) is eventually negative. Clearly y(r) y'°*"(r) > 0 in a neigh-
bourhood of oo and thus [ = I, + 1, lisodd and e {1,3,...,n — 3}.

On the other hand, since (E,-,-,) is eventually disconjugate, by [13], p. 322,
there exist continuous and positive functions py(?), p(t), ..., Pu—1,-2(f) in an interval
<d, ©) = {¢, o) such that

j‘—l—dt=oo for 1£ign—-1-3 .
a 1)
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and
Ly 15-2[¥](8) = Pucio- z(t) P.. 1o-3(t) -+ P:() Po(t)}(t) in {d, )

forall y(t)e C”"""z((d, 0)).

By (37), (38), Ly—1y—2[y'"°*2(1)] () = 0, L,—1y—>[y"**?(1)] = 0 holds in no sub-
interval of {d, o), while y°* (1) y() < 0 in {d, ). Hebce, by the first Kiguradze
lemma, [12], p. 94, there is an odd k, | £k <n—1I,—2and a s, d<5<w
such that

(&) Ly ] () <0, j=0,1,...k—1, and (—1)**/.

L] (1) <0, j=kk+1,...n—1,—3, tes, )

Lo[y1 () = po(0) (1), LIy] (1) = (1) L - s [y (01T

j=0,1,...n—1y—2.

Hence y(1) po(t) ¥ 2(t) < 0 and y() p4(t) [po(t) y"°*2(1)]' < 0 in {3, o0). Sup-
pose that y(t) > 0 in {c, 00). Then po(r) y"**?)(t) is a decreasing and negative
function in {8, ). Therefore there is a ¢; > 0 such that y*°*?(¢) < —c,/po(t)
in that interval. As by [13], p. 321, we have po(t) = 1/x,(t) where x,(t) % 0 is the
first solution in the hierarchical system for the equation (E,_,,_,), (35) implies that
lim y%°* () = — oo, which contradicts the inequality y“°**)(f) > 0 and thus the

t— 0

statement 1 is proved.

2. Suppose that for each I € {2,4,...,n — 2} there is a solution y(t) of (E) with
the property (33) in the same interval {c, cv) and that the equation (E) is oscillatory.
Then, by Lemma 10, there is a solution v(t) of (E), two numbers ¢ < ¢; < ¢, and
an lye{2,4,...,n — 2} such that (30) is true. Without loss of generality we may
assume that both solutions y,(t), v(t) are positive in (cy, c,). Let ¢ > 0 and consider
the solution w, of (E), w(t) = yi(t) — e o(t), te{cy, ¢,). Since w§’(t) > 0 for
tede, ), j=0,1,..,0p— 1, and (=1)°"Twi(t) > 0 for telcy,c,), j=
=lp,lo+1,....n — 1, there exists a maximal ¢; > O such that foralle,0 < ¢ < ¢,
we have
(39) wi(1) 20 for teley, ey, j=0,1,..,01p—1,

(=D w(1) =0 for tele, ), j=lolog+1,...,m—1.

Then at least one inequality in (39) is nonstrict for & = &,. On the other hand, on
the basis of (E), the inequalities (39) lead to the inequality

where

(n)(t) = - Z Px t) (" A)(t) 20 in ey, e,

whereby in each subinterval of {c;,c,) there are points t at which w(f) > 0.
Therefore the function w{"~"(¢) is increasing in {¢y, ¢,» and hence, in view of (28),
(=1)°*" P wi™D(t) > 0in {ey, ¢,). Using the inequalities (27), (28), (30) and (33),
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we get step by step that
(=D wd(t) >0 for telep, ey, j=n—1,n—=2,..,1o+ 1,1,
and
w@(t) >0 for teley, e, j=1Ilo—1,1p—2,...,1,0.

€0

The obtained contradiction with (39) shows that the equation (E) is nonoscillatory.

Corollary. Suppose that the equation (E) satisfies the condition (C) and n = 4.
Then the following statements are true:

L. The equation (E) is eventually disconjugate if and only if it is nonoscillatory.
2. If the equation (E) is nonoscillatory, then for each nontrivial solution y of
(E) either there exists an even number le{0,2,4} and a point ¢ Z a such that

(33) if =2, then y(t)y9(1)>0 for cst<w, j=0,1,..,1-1,
if 1<2, then (1) y(t)y9(1)>0 for ¢c<t< o,
j=L1+1,..,3,
and (—1)"**y(t) y®(t) 20 in (e, ), y*(t)=0
holds in no subinterval {d, ) < {¢c, ®),

or there is a point ¢ = a such that
(34) y0)y'(t) >0 in <c, o), ¥1)y(t)<0 in <c, o).
Moreover, if for the first solution x(t) of the hierarchical fundamental system
for the equation (E,) (35) holds, then only the possibility (33') can arise for y(t).
3. If for 1 = 2 there exists a solution y(t) of the equation (E) with the property
(33'), then the equation (E) is nonoscillatory.
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