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1. INTRODUCTION

Each ordinary homogeneous second order linear differential equation

V' + pi(x) Y+ po(x)y =0,

where p; and p, are real continuous functions on an (open) interval I = R, can be
transformed on the whole interval I by means of a transformation of the form

(1) 2(t) = /(1) (h(1))
into the same type of equation with (real) analytic coefficients, in particular, into the
equation

z"+z=0

on a suitable interval J < R, see [1].
A natural question arises whether for a given ordinary homogeneous linear
differential equation of the n-th order

(2) YO 4 pu(x) YTV + o+ po(x)y =0, peCXI),

i =0,...,n — 1, atransformation exists which converts this equation into an eqan
tion of the same type with more regular coefficients, e.g., belonging to C* for some
k >0, or k = oo (infinitely differentiable functions), or even k = w (real analytic
functions).

The above result for the second order equations is misleading in some respect.
We shall prove, e.g., that the smoothness of the coefficient p,_; in (2) cannot be
improved by a transformation if p,-; € CI)\ C**}(I)and k < n — 2 (the number k
is invariant), whereas if k = n — 2 then after a suitable transformation the trans-
formed coefficient can be even (real) analytic. Of course, for n = 2 this critical case
occurs for the class C° (=C""?2).
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II. NOTATION, DEFINITIONS AND SOME BASIC FACTS

In 1892 P. Stickel [5] proved that under certain regularity conditions the form: (1)
is the most general pointwise transformation that converts the set of all solutions
of every linear differential homogeneous equation of the n-th order (n 2 2) into the
set of all solutions of an equation of the same type, i.e.,

(3) z™ + q,()z"" D + ...+ qy(1)z =0, q,€eCJ), i=0,...,n—1.

M. Cadek in [2] has proved the same assertion under a weaker assumption in-
volving only continuity instead of differentiability.

However, for our purpose, we shall need the following result that guarantees
a certain smoothness of the functions f and h in (1) if only one equation of the type
(2) is transformed by means of (1) into an equation (3).

Lemma 1 (sce [4]). Let n be an integer, n = 2, and let I « R, J = R be open
intervals. Suppose y;: [ - R, and z;:J >R, i=1,...,n, are two n-tuples of
linearly independent solutions of equations (2) and (3), respectively.

Let ‘l

z(t) = f(t)y yi(h(r)), teJd, i=1,..n,

be satisfied. for real continuous functions f and h defined on J such that h(J) =1.
Then
(4) fec(J)y, f(t)+0 forall telJ,

he CJ), dh(t)/dt +0 forall tel,
i.e., his a C*-diffeomorphism of J onto I .

With respect to the above mentioned results it is reasonable to say that (1) globally
transforms the equation (2) into the equation (3) if f and h satisfy (4), and for each
solution y:I — R of (2) the function z: J — R given by (1) is a solution of (3),
cf. [3].

Lemma 2 (sec c.g. [6]). Let (1) globally transform (2) into (3). Then the following
identities hold:

O @) = pa )80~ nr 00 — () .

"and

O anea) = (" 31 - )+ sl = 2 )
+ L+ P g+ T (e (B =g,

h = h(t), telJ.
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Corollary 1. If p,—; = Oonl then q,_, = Oon J if and only if
Y f(t) = clp (@t~ ted,

¢ = const. * 0.
If p,_; =0onlandq,-q =0on/J, then

sty = ("5 )@@ - 100 +

N 12
teJ. + pa-a(h(1)) H'%(1)

Proof is a direct consequence of relations (5) and (6).

III. AUXILIARY RESULTS

Lemma 3. Let n = 2 be an integer, and let
(1) 2(t) = /(1) »(h(1)) ,
where z e C*(J), y € C'(I), the functions f and h satisfy
fec(l), f{t)y+0onJ,
heC(J), dh(t))dt +0on J, hJ)=1, and rzn.
Then
y(x) = Agoz(k(x)),
y(x) = Ayoz(k(x)) + Ay2'(k(x)),
V'(x) = Azz(k(x)) + Ayz'(K(x)) + Ayyz"(K(x)),

YO() = Appz(k(x)) + AnZ (kX)) + .. + Az Ok(x) + .. + Az OKk(x) |

Yx) = Apoz(k(x)) + Auz'(k(x)) + ... + A,z (k(x)),
where k is the inverse function to h and A;;, 0 < i < n, 0 < j < i, are rational
expressions in f and h and their derivatives, such that x> A;(x) are functions
of the class C"~%=P7XI) for j > 0, and C""¥(I) for j = 0. Moreover, at most the
(i — j)th order of the derivatives of f occurs in A;;, and A;(x) % 0 for all xel
and i,0 £ i Z n.

Proof. From (1) we have y(x) = 1/f(k(x)) z(k(x)), thus 4, = 1/f(k)e C'(I) =
= C""(I)fori = 0andj = 0. Also Ayo(x) #+ 0onIand A, contains no derivatives
of f. Further,

V(%) = Aoo(x) 2(k(x)) + Aoo(x) K'(x) 2(K(x)) , or
V() = Ayofx) 2(k(x)) + Aya(x) 2/(k(x)),

ApeC ()= CI) for i=1 and j=0, and
ApeC i Iy=C D7t for i=1 and j=1.

where
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Also A;4(x) #+ 0 onI and A,; contains derivatives of f of orders < 1 — i, i = 0, 1.
Proceeding by induction, suppose that
Y(x) = Apz(k(x)) + ... + A;z9(k(x)) + ... + Az O(k(x)) ,
A;eCm T D) for j>0,
Aipe C{I) Ay(x) =0 on I, and
A;; contains derivatives of fof orders =i —j, 0j<si<n.
Then YEED(x) = Ajoz(k(x)) + (Awk’ + Ajy) z'(k(x))
+ (A k' + A}) z'(k(x))
+ ...
+ (Ai -1k + AY) z9(k(x))
+ (Ayk + A ) 297 D (k(x)
+ ...
+ (A - k" + AY) Z(i)(k(x))
+ (Aky D (k(x)) =
= Air102(k) + Aiprg Z(k) + oo A Apry  29K) + Apy jer 29T0(K) +
. et Apry i ZO(k) + Apey e 297 (K)
Evidently A;,, o€ C""“*!(I), and for j > 0 we have
A,-;,,j eC U DA CTT ) CTTUTDTY]) =
— Cr—(i—'j)—l(l) — Cr~(i+1—j)—l(1) ,
A,‘+1‘j+1 e Cr-—(i—-j)'l(l) A Cr_I(I)ﬂ Cr—(i—(j+1))—2(1) —
— Cr—((i+l)—(j+l))—l(1).
Moreover,
'I A;y,; contains derivatives of f of orders < max{i— (j —1),i —j+ 1} =
=(i+1) -
A1 j+1 contains derivatives of f of orders < max {i — j,i —(j + 1) + 1} =
=i—j=(G{+1)—-(+1).
Finally, A;, ;44(x) = A;(x) k'(x) £ 0onI. Q.E.D.
~ Lemma 4. Let (2) be globally transformed into (3) by means of (1), where f and h
satisfy the assumptions of Lemma 3.
Then the coefficients q;, i = 0,...,n — 1, of the equation (3) are expressible in
the following way:
(8) (qn = 1)
qn—l(’) = Bn—-l,n + Bn—-l,n—lpn—l(h(t)) ’
qn—Z(t) = Bn—z,n + Bn—l.n—lpn—l(h(t)) + Bn—Z,n—an—Z(h(t))

516



aft) = Biy + Bio1pu-1((t) + Bi,—2pa-a(h(t)) +
e+ Bispf(h(1) + ... + By pi(h(1)) .

4o(t) = By, + Bo - 1pu—1(h(t)) + ... + Bipj(h(t)) + ... + Bg opo(h(1)),
where t+— B;(t) for 0<i<n—1 and i £j < n are functions of the class
Cr*i7i=Y(J) for i > 0 and of the class C"7¥(J) for i = 0. Moreover, B;{t) + 0
on J foralli=0,...,n —1and By is expressible in terms of the derivatives of f
of orders < j — i.

Proof. We may write

YO) + poey(x) Y I() + .o+ po(x) 1(x) :é:opj(x) P =

=3 % p/a) 440 29060

j=0i=

Hence the coefficient g,(t) of z** is

at) = (L A;(h(1)) p(h(1)] (D)) -
j=i
Thus
Bij(t) = A{h(1))[An(h(t)) -
Fori >0, A;,e C""U™97Y(I). Since he C'(J), r = n, and 4,, € C"'(I), A,(x) + 0
for x eI, we have B;;€ C""Y™P71(J). For i = 0, 4,0 € C"¥(I), hence By; € C"¥(J)
for j =0, ..., n. Moreover, B;{(t) = A;(h(t))[An(h(1)) # 0 for te J. Q.E.D.

Lemma 5. For a given p € C"‘Z(I) and a positive constant d there exist an interval
J = R and a C"*'-diffeomorphism h of J onto I satisfying

9) d =% h"(1)h'(t) — 3 h"*(0)[3(t) + p(h(r)) K'*(r), teJ.

Proof. The relation (9) is the so-calleld Kummer equation for the second order
equations

(10) v +p(x)y=0, peC¥I),
and
(11) 2" +dz=0 on J(deC®J)),

sec also Corollary 1. According to O. Bortivka [1], a solution h of (9) satisfying
h(J) =1, he C*(J), dh(r)/dt % 0 on J, exists if and only if the equations (10) and
(11) are of the same character. This can be always achieved for any constant d > 0,
when a suitable interval J = R is taken. Then all such solutions h are obtained as
compositions of the so-called phases and their inverses of the equations (10) and (11).
These phases are expressible as anti-derivatives of the expressions

(i(x) + y3(x))"" and (23(t) + z3() ",
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where y,, y, and z,, z, are linearly independent solutions of the equations (10) and
(11), respectively. Hence these phases are of the classes C"+'(I) and C®(J), respec-
tively, and he C"*'(J). Q.E.D.

IV. MAIN RESULTS

Theorem 1. Let n = 2 be an integer, and let a transformation (1) globally
transform (2) into (3).

If po-y € C{I)NCK (L) for 0 £k £ n—3, then q,_,eC(J)NCF(J), ie.
this k is an invariant with respect to transformations (1)

If p,-1€CI). k = n — 2, then there exists a transformation (1) with f, he
€ C**3(J) that globally transforms (2} into (3) with q,_, € C°(J), especially with
g,—1 =0onJ.

If po1€CIyand p,_, € C*"'(I), k = n — 1, then (2) can be iransformed inio
(3) with gq,—y = 0 on J and q,-, € C*"'(J).

Proof. Let p,_ e C¥I) for 0 £ k < n — 3. Since f'[feC" '(J) and h"[h'e
€ C""*(J) according to Lemma 1, the relation (5) gives g,_, € C¥(J), where s =
= min {k,n — 2} = k. However, if p,_, EC*"!(I) for 0 £ k < n — 3 then q,_, €
g C**1{J). In fact, if q,-, € C**!(J) then

pres(9) = s (40 + ) + () 0

belongs to C“'(I), where s = min{k + 1, n — 2} = k + 1, contrary to our as-
sumption.

Now, let p,_; € C{(I), k = n — 2. Consider a function g,_, of the class C°(R).
Choose also an arbitrary function fe C4(R) satlsfymg (4) for J = R. According
to Lemma 2 we have

(;) WOI(E) = Pams(H(D) WD) = = gum(t) = n F@IAD).

t=h~1(x)

or

(1) = c|f(n)] " eXP{ 4u-1(5) dS} X exp {*L P(h(t))}

=2 [
(#1)fo —-1)

where P e C¥*(I) is an anti-derivative of p,—;, and ¢ is a non-zero constant. For

F(h) := exp {n(n__—zT) P(h)} e C (1)

and
o= of e {2 [ aiafecrim
we get .

(12) F(h(0)) (1) = 9(1)
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where F(h) > 0 for h eI, and g(t) # 0 for t € R. By integrating (12) from 7, e [ to t,
we obtain

(13) S(h(t)) = S(h(to)) = [i, 9(s) ds =: G(1),

where S'(h) = F(h) > 0, Se C**%(I), G'(1) = ¢(t), G € C**3(R). Denote J := S(I).
For the inverse function S™* to S we have S~ e C***(J) and S™'(J) = L.

Now, we shall suppose that the functions f and g,-; are chosen in such a way
that G maps R onto R. This can be achieved e.g. by taking f = 1 and ¢,_, =0,
when

G(t) = [}, g9(s)ds = [ cds =c(t — to), c¢*0.
Then
$71(60) + S(h(o)
is defined for those ¢ (€ J) for which G(t) + S(h(t,)) € J. Thus we can write
h(t) := STYG(t) + S(h(10)))
for te J. We can see that he C*"%(J), dh(t)/dt = g(t)/S(h(t)) +0onJ, h(J)=1,
and, due to (13}, h satisfies the relation (5) with the given p,_, € X1y, q,-, € C°(J),
and f e C***(J) complying with (4) (e.g. g¢,—, = 0 and [ = 1).

If p,—y € CI), k = n — 1, then there exists he C***(J), k + 2 = n + 1, such
that f =1 and q,-; = 0 on J, i.e. fe C°(J) and ¢, € C°(J). Moreover, due to
Lemma 4 with k + 2 instead of 7, g,-, € C*" 2" 727"~ 1(J) A C**273(J) n CH(J) 0
A C*271(J) A CY(J) = ¢ 1(J). Q.ED.

Theorem 2. Let (2) be globally transformable into (3), let i be a positive integer,
1£ign—-1.

Then p,_, € C'"Y(I), p,_, € C''(I), ..., p;s, € C'"(I) if and only if

Gu-1€ C7YJ), g€ CYJ) ..., qip, € CT(I) .
In this case
p;e C"Y(I) if and only if gq,e C'"'(J),

and, moreover, for 0 < k < i — 2 we have
pi€ CI)NC** (1) if and only if
qi€ CI)NCY(J), i.e. the pair (i, k) is an invariant .

Proof. Due to Lemma 1, we may put r = n in Lemma 4. If p,_, € C'"'(I), ...
e Piv1 €CTTY(I) for some i, 1 < i < n — 1, then owing to (8),

Gn-1 =B,y + Bn—1,n—1pn~1(h) € C"'Z(J) N Cn_l(-]) N Ci_l(']) = Ci_l(']) >
Gu-2 =By 2, + By_2,-1 pn—-l(h) + By g2 p,,_.z(h)E
eC" (N nC ) nCT () n M) n CTI(J) =
= C'"!(J) because n—2=i+1,
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Qiv1t = Biy1+ Bigy a1t Pn—x(h) + Biiiu-2 th(h) + ...
oo+ Biyy jpj(h) + oo + Bipy v Piva(h) e
= Cn—(n—*i—-l)—l(‘]) A Cn-(n—l—i—l)—l(‘]) A C,’-t(]) A
A CE=2mim0SI(]) A G () A L
e CUTEDTY A CT YT N
A CTIJ) A CTIJ) = CTY(J),
because 0 < i < n — 1. Under these assumptions, if also p, e C"(]) for some k,
0 <k <i—1,then g;e C{J). In fact,
q; = Bin + Bi,n—l pn—l(h‘) + Bi,n—l Pn—z(h) + ..+ B,',- p,(h)e
€ C DT A OO DT () A O ) AL A (T) A CHJ) =
- =CYJ), sincek < i— 1.
However, if p,_; € C'"X(I), ..., pis; € C'7'(I) and p; € C** (1) for some k, 0 < k <
< i —2, then also g; & C*"!(J). Otherwise, due to the fact that B,;# 0, p,(h) can
be expressed as a linear combination of functions of the class C***(J) with ocef-
ficients of the class C'™!, where k + 1 < i — 1. Hence p; € Ck* !(I) which contradicts

our assumption.

The converse is true because of the symmetry of our assumptions on the equations
(2) and (3). Q.E.D.

Corollary 2. If (2) is globally transformable into (3) and p,_, € C""*(I), p,_, €
eC"*(I),...,p;e C"'(I), then q,_,eC *(J), g,_,€C"3(J),...,q;€ CI7Y(J)
for 0 <j <n—1, and conversely. Of course, we always have pye C°(I) and
40 € C°(J).

. This follows immediately from Theorem 2 if we put successively i = n — 1,
i=n-—2..,i=]j. '

Example 1. y” + py(x) y" + py(x) ¥ + po(x) y = 0 on I with p, e CYI)\ C(I)
cannot be globally transformed into

2" + q,(t) 2" + q4(1) 2’ + qo(t)z =0 on J with g, e C'(J).

Theorem 3. Let p,_; = 0 and p,_, e C""*(I) in equation (2). Let equation (3)
-with q,_, = 0 on J be globally equivalent to (2). Then q,_, e C"~*(J). Moreover,
there exists a global transformation of (2) into (3) with q,_, € C®(J), in particular
with g¢,_, =1 on J. -

Proof. Due to Corollary 1, if p,_; = 0 and g,_, = 0 then (7) holds for a global
transformation (1) of (2) into (3). According to Lemma 1, we have f e C"(J). Hence
he C*!(J). Corollary 1 gives

P /(" N 1) = S W) — 3 W) + by (H(1)) (1) /(” N 1).
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Since p,_, € C" (I}, h" € C""*(J), we have gq,_, € C""*(J). Moreover, for d :=
:=1/("{") and p = p,_,, Lemma 5 guarantees the existence of an interval J < R
and a function he C""'(J) satisfying the above equation for ¢,_, = 1. If we put
fi= || "™/2 then the transformation (1) globally transforms equation (2) into
equation (3) with ¢,_, = 0 and ¢,_, = 1onJ. QE.D.

Example 2.y + py(x) ¥’ + po(x) ¥ = 0 on I with p, € C'(I) cannot be globally

transformed into z” + q,(t) z’ + go(f) z = 0 on J with g, € C'(J).
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