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ON SPECIAL PLANE NETS 

ALOis ŠvEC, Brno 

(Received February 15, 1988) 

The local projective differential geometry of nets has been studied extensively; 
see [ l ] - [ 3 ] . In the paper, I prove a global result. 

1. Let P2(R) be the projective plane over reals. Let N be a net of curves given on 
a domain D c P2(R); let DQ c U2 be a domain with coordinates (x, y) and m: D0 ^ 
~> D a difTeomorphism mapping the lines x = const, and y = const, into the lines 
of our net. The points m(x, y), mx(x, y), my(x, y) being linearly independent (here 
mx = dm|dx, etc.), the homogeneous coordinates of the point m(x, y) satisfy 
hyperbolic partial differential equation 

(1.1) mxy = amx + bmy + cm ; a = a(x, y ) , . . . , c = c(x, y) 

on D0. Ofcourse, we may choose other coordinates x = x(x), y = y(y) and another 
analytic point m = g(x, y) m; the net N determines thus the equation (1.1) up to 
these changes. 

The theory of the equation ( l . l ) is well known. The Laplace transform of our 
net N given as above is a mapping m': D0 ~* P2(U) such that there is a tangent field 
t(x,y) on D0 satisfying t(x,y)m'(x,y)e{m(x,y),m'(x,y)} for each (x,y)eD0; 
by {z l5 z 2 }, we denote the subspace through zl9 z2 e P2(U). It is known that our net 
has exactly two Laplace transforms 

(1.2) m1 = my — am , т _ х = mx — bm ; 

indeed, 

(1.3) (d|dx) mi — bmt + hm , (d|dy) m_x = am_x + km 

with 
(1.4) /i = c + ab — ax , k = c + ab — by . 

The functions /z, A: are the so-called Laplace-Darboux invariants. In fact, they are 
not invariants/but the quadratic pointforms 

(1.5) Фі = hdxdy, ф-і — kdxày 

are invariants of (1.1) with respect to the changes x ~> x(x), y -+ y(y), m ^> gm, 
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and are thus invariants of our net N. The point m1 satisfies, if h Ф 0 on D0, 

(1.6) mlxy = a1mlx + ^ m ^ + címí with a t = a + (log h)y , bi = b , 

Ci = c + h - k - b(log h)y ; (log h)y := h'1^ ; 

and the Laplace transforms of the net Nx are 

(1.7) m2 := ( m ^ = m l y — almi , (m1)_1 = m1:c — b^^ = frm ; 

similarly for N-x. 
Let us consider the complexification Pc(U) of P2(U) and of J90. An elliptic net N 

on a domain D c P2(R) is a diffeomorphism / : D0 ^ D carrying the lines x ± iy = 
= const, of D0 into the lines of N. Let us introduce the complex coordinate z = 
= x + iy and the usual operators ôjôz = i(d|du — id|dv), d|dz = i(d|du + id|dv). 
As in the real case, an elliptic net induces an equation of the type 

(1.8) mzf = stfmz 4- i?m ž + ^ ш ; <Є = * 

on Z)0; it may be rewritten as 

(1.9) mxx + myy = 2(i7 + si) mx + 2i(^ - ^) my + Л . 

Then the Laplace transforms are 

(1.10) m1 = mz — &4m , m-t = m t = mz — &4m 
with 

(1.11) m l z = sémx + Я т , m_lz- = jafm_! + Km ; 

Я = íř + sé3 - j * z , K = H ; 

the associated invariant point forms are then 

(1.12) фі = Я dz dž , ф_! = фх = К âz dž . 

2. In this section we introduce a certain elliptic net N\ e = ± 1 , on P2(R) (or, as 
the case may be, a part of it). Consider the domain 

(2.1) De = {z є C = C u {oo} ; 1 + ezž > 0} ; 

ofcourse, D + í = C. With each point z є DB let us associate the point 

(2.2) m(z) = (1 + ezž)"1 (z + z, i(z - z), 1 - ezž) є P2(R) ; 

the elliptic net Ns on т(Д,) is formed by the images of the lines z = const, and z = 
= const. It is easy to see that 

(2.3) mz- = - 2 e ( l + ezž)"2 m 

and the point forms (1.12) are 

(2.4) q>x = q>-x = -2e ( l + ezž )~ 2 dzdž . 

Consider an affine space A3 over reals with a fixed basis {0; ei9 e2, ^з} and the 
coordinates (X, Y, Z) defined by P = 0 + X ^ + Ye2 + Ze3. Let i\ Dt _• 4 3 be 
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an inclusion map given by 

(2.5) f(z) = 0 + i(z + z) e± + ii(z - z) e2 . 

Further, consider the point S = 0 — e3 and the quadric QE 

(2.6) * 2 + Y2 + eZ2 = г 

in Л3; of course, <S є ß£. Let the mapping fiE: DE ~> g e be defined as follows: ^e(z) 
is the intersection ofthe line {i(z), S} with Qe and ^i(oo) = 5". It is easy to see that 

(2.7) fie(z) = 0 + X{z) et + Y{z) e2 + Z(z) еъ with 

X(z) = (1 + ezž)"1 (ž + z ) , Y{z) = i(l + ezž)"1 (ž - z) , 

Z(z) = (1 + ezž) - 1 (1 - ezž) . 

In A3, let us introduce the scalar product (for e = —1 non-definite) by 

(2.8) <el5 ех>£ = <e2, e2>£ = 1 , <e3, e3>£ = e ; <e,, e;->£ - 0 otherwise . 

It is easy to see that 

(2.9) dX(z) = (1 + zzz)-2 {(1 - ež2) dz + (1 - 8z2) dž} , 

aY(z) = - i ( l + ezž)-2 {1 + ež2)dz - (1 + ez2)dž} , 

dZ(z) = -2e ( l + ezž)~2 (ž dz + z dž) , 

and the mapping fiE induces, on DE, the metric 

(2.10) ds2 = (dX(z))2 + (d7(z))2 + e(dZ(z))2 = 

= 4(1 + &zž)~2 áz dž = -2eq>! . 

Let us remark that ás2Lí is exactly the complete Caley metric on D_ l 5 and И2 = 
= ( D _ ^ d s i j ) is the hyperbolic plane. 

Consider the „sphere" S2 c A3 given by X2 + Y2 + Z 2 = 1; let v£: ß£ ^ S2 

be the projection from the origin 0 and n: S2 ^> P2(U) the usual identification 
mapping. Comparing (2.2) and (2.7), we see that our net Ne is induced by the map 
n o v£ o ßE: DE ~> P2(U), and the lines ofNE are the images ofthe isotropic lines of 
the metric ds2. In this way, the geometric construction ofiV£ is fully described. 

3. On a domain D c P2(R) let an elliptic net N be given. With each point m є D 
let us associate a moving frame {m, M, M] such that M = mx and M = ra__! are 
the Laplace transforms; let the analytic points m, M be chosen in such a way that 

(3.1) m = m , [m, M, M] = i . 

Then we may write 

(3.2) dm = x%m + тМ + í M , áM = т?ш + т^М + т2М , 

dM = т°2т + т*М + т\М 
with 
(3.3) т° =, f? , т] = Ť2 , т2 = f} ; т°0 = fg , т° + тї + f| « 0 ; 
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the last two identities result from (3.1). Further, we have to take into account the 
integrability conditions 

2 
(3.4) dx{ = X A л т{ with x\ := T, %l := f . 

fc = 0 

Obviously, the lines of N are given by xx = 0. The point M being the Laplace 
transform, we have 

(3.5) x\ = ax . 

The exterior differentiation yields 

(3.6) {da + a(x°0 - 2x\ + x\)} л т - т? л x = 0 . 

According to Cartan's lemma, there are functions such that 

(3.7) da + a(io - 2т* + x\) = Ьхт - í>2í , т? = Ь2т + b3f . 
Thus 
(3.8) dM = x\M + т(Ь2т + aM) + fò3m . 

This means that the second Laplace transorm m2 either does not exist (in the case 
a = fr2 = 0) or is situated on the straight line {M, b2m + aM]. 

Definition. The elliptic net N will be called special if, at each point m e D, the 
second Laplace transform m2 either does not exist or is situated on the straight line 
{m l5 m_i} . 

It is easy to see that N is special if and only if 

(3.9) b2 = 0 , 

and this is equivalent to the condition that m_2 either does not exist or is situated 
ön the same line {mu m_ 1 }. From now on, let N be a special net. 

Let us choose other analytic points 

(3.10) m* = am , M* = ßM ; ocßß = 1 ; 

the last relation arising from (3.12). Writting down the equations (3.2) with (3.5) + 
+ (3.72) + (3.9) and the similar equations (3.2*), we easily find 

(3.11) T* = aß~lx , a* = a-^zß-'a , Ь* - oc~2ßßb3 . 

Thus the forms 

(3.12) фх = b3xx, c)_! = ß3xx 

are invariant; they are exactly the point forms (1.12) ofiV. 

Theorem. Let N be an elliptic special net on P2(U). Let us suppose q>x = ç~% 
to be an U-valued definiteform. Ifit is positive definite, let it have positive curvature. 
ThenN = N+1. 

Proof. We have Ьъ = b3 Ф 0 on P2(U); it follows from (3.103) + (3.113) that 
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we may choose b3 = —є = +1 , i.e., our fundamental equations are 
(3.13) x\ — ax, x°t = —ef. 
The differential consequences are 
(3.14) {da + a(x°0 - 2т} + x\)} л т = 0 , (2х°0 - т} - x{) л x = 0 . 
The complex conjugate of (3.142) being (2т° — x\ — f}) л т = 0, we have 2т° — 
— т} — т} = 0. Taking into regard (3.35), we get 
{3.15) х°0 = 0 , х\ + х\ = 0 . 
Thus we get, from (3.14^ and Cartan's lemma, the existence of a function b such 
that 
(3.16) àa — Ъах\ = bx . 
The exterior differentiation yields 
(3.17) (db - 4bx{) A x = -3a(aa + є) т л x 
and the existence of a new function c such that 
(3.18) db - 4Ьт} = et + 3a(aa + e) т л f. 

We have cpt = ф_х = ~етт. On P2(R), consider the metric 
(3.19) ds2 := \q>t\ = xx = (ш1)2 + (o>2)2 

with 
(3.20) x = co1 + ico2 , 
co1 and co2 being R-valued l-forms.Considering the Hodge *-operator with respect 
to ds2, we have *a>1 = co2, *a>2 = -a>1, i.e., 
(3.21) *т = - i t . 
Further, 
(3.22) x л x = - 2 i d o , 
do := со1 л co2 being the агеа element with respect to ds2. Let us calculate the 
Laplacian ofthe R-valued function aa. We have 
(3.23) d(aa) = âbx + аЪх , *d(aa) = -i(abx — аЬх), 

d * d(aa) = A(aa). do = 4{ЬБ + 3aa(aa + e)} do . 
We now have to evaluate the curvature of (3.19). It is well known that there exists 
exactly one l-form co such that dco1 = —со2 л co, dco2 = со1 л co, and the curva­
ture x is given by dco = —xco1 л co2. Now, let dr = x л g, dg = kx л т. Then 
Q = ico, and we get « == 2fc from the second equation. In our particular case, Q = т} 
and dg = (aâ + є) т л т. Thus 
(3.24) к = 2(aa +• e) . 
In the case e = 1, we have aä + e > 0, and (3.233) yields, via the maximum principle, 

(3.25) a = 0 . 
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In the case є = —1, Уі > 0 implies the same equation (3.25). However, then (3.24) 
yields x = —2, a contradiction. 

The equations (3.18) are now reduced to 
(3.26) x\ = 0 , T? = - f , 
and we have 
(3.27) dt = t л t} , dz{ = T л x . 
It is easy to check that we are in position to satisfy them by taking 
(3.28) T = V2 . (1 + zž)"1 dz , x\ = - ( 1 + zž)"1 (z dz - z dz) . 

The equations (3.2) may be written as 

(3.29) m, = V 2 . ( l + z z ) - * M , M z = - ( l + z ž ) ~ 1 ž M , 

M5 = - ( 1 + zž)"1 (V2 . m - zM) 

and the complex conjugate equation; here we take into account (3.3), (3.15) and 
(3.26). From (3.292) we get the existence of a function q>(z) such that 

(3.30) M = (1 + zž)'1 <p(z). 

Calculating then m from (3.293) and M from (3.291), we get 

(3.31) m = i V2 . (1 + zž)"1 {2z q>{z) - (1 + zž) q>'{z)) , 

M = - ( 1 + zž)"1 z2 q>(z) + z p'(z) - i(l + zž) ^"(ž) , 

respectively. Inserting this into (3.292), we obtain 

(3.32) q>'"{z) = 0 , i.e., q>(z) = B0 + B^ + B2z
2 with Bt є C . 

Thus 
(3.33) m = i V2 . (1 + zž) - 1 {2£0z + 2B2Ž + B^zž - 1)} . 

The condition m = m yields Б0 + B2 = 0, Бх = Bx. Put 2B0 = Ax — L42, Bt = 
= -A3 with 4 ř e R . Then 
(3.34) m = i V2. (1 + zž) - 1 {4i(z + z) + Л2 i(ž - z) 4- Л3(1 - zž)} . 

Thus we get the general solution of (3.29) 4- (3.29). Now, it is sufficient to compare 
it with (2.2) for г = 1. QED. 
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