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GLOBAL BEHAVIOUR OF SOLUTIONS TO SOME NONLINEAR 

DIFFUSION EQUATIONS 

MAREK FiLA and JÁK FiLO, Bratislava 

(Received February 10, 1988) 

0. INTRODUCTION 

The present paper deals with the large time behaviour of solutions to the problem 

(I) ut = Aum + up — au x є D , t > 0 , 

u(x, t) = 0 x є D , t > 0 , 

tt(x,0) = Mo(x)(^0) xeD, 

where D cz RN is a smoothly bounded domain, a ^ 0, m > 0, p > 1 and pm~l < 
< (N + 2)(iV - 2 )" 1 if N ^ 3. The equation in (I) without the reaction term 
up — au is well known for 0 < m < 1 as the plasma or fast diffusion equation, for 
m = 1 as the heat conduction equation and for m > 1 as the porous medium or slow 
diffusion equation. 

Problems related to Problem (I) have been studied by many authors (e.g. Alikakos 
[1], Ball [3], Fila and Filo [6], Galaktionov [9], Levine and Sacks [11], Lions [12], 
Nakao [13], [14], Ni, Sacks and Tavantzis [15], Payne and Sattinger [16], Sacks 
[17], [18], Tsutsumi [19], understanding that the present list of authors is not 
complete). 

It is known that Problem (I) does not admit a global solution for every u0 if m <p 
or if m = p, a = 0 and D is "large enough". For m < p it is shown in [6] that 
a solution ofa (slightly) more general problem blows up in a finite time ifthe function 
Wo belongs to a certain unstable set B (for the definition see Section 2). Here we prove 
a corresponding blow-up result in a case which is not included in [6], namely if 
m = p, a > 0 and D is "large enough". 

Global existence and decay to zero in L^-norm of solutions to Problem (I) with 
w?o є flK(H'is the potential well, for the definition see Section 2) was proved by Nakao 
in [14] for 1 S m < P and a = 0. We extend his results to 0 < m < 1, a = 0 
and 0 < m ^ p, a > 0. In the case of0 < m < 1 it is demonstrated that the solution 
vanishes in a finite time if u™ e W. To prove this we first show that the solution is 
bounded in L°°-norm in a similar way as Nakao in [14], and using the "potential 
well" method we derive its convergence to zero in Lw+1-norm. The existence of the 
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extinction time follows then by comparison with a solution of the fast diffusion 
equation, which is known to vanish in a finite time. As is expected, for a > 0 the 
absorptive term -au causes that the corresponding set W is larger than for a = 0, 
therefore our result does not follow from [14] by obvious comparison arguments. 
As concerns the case m = p, as far as we know, it has not been studied by the 
"potential well" method. 

lfp < m all solutions are global and bounded (see [18]). Stabilization of solutions 
to Problem (I) for this case was studied in [5] in one space dimension. 

1. PRELIMINARIES 

Let us first introduce some notation: QT = D x (0, T), ST = dD x (0, Г), 
|i)|-Lebesgue measure of the set D, \u\q = ||w||Lq(jD), 1 й q á oo, \u\q

q = (|^)*7, 
+Hl = {u є Hl(D): u à 0 a.e. in D, и ф 0}, ||u|| = (JD \Vu\2 áx)l/2 JD ft(í) -
= fD h(x, t) dx, JJQT h = ÍJQT h(x, t) dx dt and (u(t), v(t)) = JD u(t) v(t). 

Definition 1. By a solution of Problem (I) on [0, T] we mean a nonnegative 
function u such that 

u e C([0, T] ; L2(D)) n L°(QT), um є L°°(0, T; Hj(D)), 

and u satisfies 

(1.1) (u(t), cp(t)) - JJCt (ucpt - Vum 4cp + f{u) cp) = (u09 <p{0)) 

for all t є [0, T] and q> є Я^О, T; U{D)) n L°°(0, T; Hj(D)), where/(u) = wp - aw. 
A subsolution (supersolution) of Problem (I) is defined as above with equality 

in (1.1) replaced by ^ (S>) whenever ф ^ 0. 
By £ we shall denote the set of all nontrivial nonnegative stationary solutions of 

Problem (I). 
In the sequel we shall often denote the solution u( = u(x, t)) of Problem (I) by 

u(t, u0). 
Throughout this paper we shall use the following hypotheses about the data D 

and u0: 

(Hl) D is a bounded domain in RN whose boundary dD is of class C3, 

(H2) < є L°°(D) n Hl(D) and u0 £ 0 a.e. in D. 

We shall refer to these hypotheses collectively by (H). Afterwards we shall need the 

following basic results. 

Proposition 1 (Comparison principle). Suppose that D satisfies (H1) and that u0 

and v0 both satisfy (H2). If u is a subsolution and v is a supersolution of Problem 

(I) on [0, T] with u0 S ô tnen u = v a-e- in Qr-

For the p r o o f of this proposition for m ^ 1 we refer to [2] and for 0 < m < 1 
to [7]. 
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Proposition 2 (Existence). Suppose that (H) holds. Then there exists a time tmax, 
0 < *max á °o (which depends on the data D, m,f and u0) such that Problem (I) 
possesses a unique solution u on [0, T] /o r any Te (0, řmax). / / ímax < oo řften 

(1.2) lim |u(i, мо)!«, = oo . 
t~* ' m a i 

Moreover,for 0 ^ 5 < ř < tmax u satisfies 

(1.3) ^ ^ [ Ѵ М + 1 П І 2 + « . « o ) ) š J(«m(s,«o)), (m + \yjs 
where 

(1.4) J(w) = iH*-MJ/(^")dr. 
For the p roo f of Proposition 2 for m ^ 1 we refer to [11] and for 0 < m < 1 

to [7]. 

2. THE CASE 0 < m < p 

Throughout this section we shall always use the following assumptions about the 
parameters m and p: 

(2.1) 0 < m < p , 1 < p for iV = 1, 2 and 

0 < m < p < (N + 2) m|(N - 2 ) , 1 < p for N ^ 3 . 

In the same way as in [6] put 

/(WwW2 4- n\w\1 + 1/™Y/2\4p + m)/(p~m) 
(2.2) J = fc inf (Ш + * M l + l / m U 

we + H*oV Ml+Wm / 

where k = min (1/2, m/(m + sign a)) — m|(m + p). By the Sobolev embedding 
theorem, |w|1 + p / w й Q||w||, Cs > 0, and it is easy to see that d is positive. Using 
the notation 

(2.3) ед = и а + «Мїїї£-Мії?£. 
we set 

(2.4) . W = {w є + tfJ: J(vv) < d and K(w) > 0} u {0} 
and 
(5.) В = {w є + Я*: J(w) < d and k(w) < 0} . 

We shall call the sets W and B a stable set (potential well) and an unstable set, 
respectively. The number d given by (2.2) is a modification of the "depth of the 
potential well", which was introduced by Payne and Sattinger in [16] for semilinear 
parabolic equations that cover our Problem (I) for m = 1 and a = 0. 

R e m a r k . l f a = O o r m = l t h e n d = inf ( supJ(Aw))(seee.g.[13],[19])andit 
is not difficult to verify that in this case we+H1° ° = я < д а 

W= {we +Hl u {0}: 0 й J(Aw) < d for 0 й Я й 1} 
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and 
В = {w є +Н1

0: J(Aw) < d for 1 й Я < oo} . 
Moreover, 

d = min J(vm) 
veE 

(see e.g. [6]). 

Theor€m 2.1. Ássume that D and u0 satisfy (H) and let (2.1) /io/d. Supposefurther 
that u™ e Ж. T^en i&ere ex/sřs a global solution u(t, u0) ofProblem (I), wm(ř, u0) є W 
for 0 ^ t < oo, tfrcJ if satisfies thefollowing decay property: 

(i) IfO < m < 1 then there exists a time Te, 0 g Te < oo such that 

(2.6) w(r, u0) ss 0 /o r Te ^ Г < oo . 

(ii) If m = 1 then there exist positive constants C, a swc/t ř^ař 

|w(*> wo)|oo = C exp ( - a r ) for 0 ^ ř < oo . 

(iii) If m > 1 Е е̂и řftere exists a positive constant C such that 

\u(t, wo)^ й C(t + l)-V(*-i) / o r o á í < oo . 

Remark . The rate of convergence to zero in (iii) is "optimal" only for the case 
a = 0 as for a > 0 we deduce from a simple comparison argument that all solutions 
of Problem (I) which decay to zero in L°°-norm decay at least as const, e x p ( - a ' i ) 
for some a' > 0. 

To make the description of the flow given by Problem (I) by the "energy" method 
more complete, let us recall the following result (for the proof see [6]). 

Theorem 2.2. Assume that D, u0 satisfy (H) and let (2.1) hold. If u™eB then 
um(t, u0) є B for 0 й t < tmax and 

ímax й ( ( | o | - 1 Ыт
тХ\Ур-1Жт+1Чр - i ) 0 - с ) ) " 1 , 

where the constant C є (0, 1) depends on d, u0, m and p, i.e. the solution blows up 
in afinite time in L^-normfor u™ є B. 

The p r o o f of Theorem 2.1 will be preceded by some useful lemmas. 

Lemma2.3. Let u%eWand v = (J(u*5)|d)<*-"V<J> + m)^ Then u
m(t,u0)eWfor 

0 ^ t < tmax and u satisfies 

(2.7) \u(t, u0)\Z+4 Û v{\um{t, м0)||2 + a\u(t, u0)\2+
+{) 

and 
(2.8) fc(||tt"(f, u0)\\2 + a\u(t, Mo)|::i) < J(u"(t, u0)) < d 

for 0 ^ t < tmâX. 

P r o o f of Lemma 2.3. To see that Wis nonempty and invariant we can proceed 
in the same way as in the proof ofTheorem 1 of [6], and we omit it here. The estimate 
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(2.8) follows immediately from (1.3) and (2.4). Now (1.3) and (2.2) yield 

(2.9) j(u"(t)) ^ <T1 J{<) КЬ"Щ2 + 

+ a\u{t)\ZX\r+m)l(P'm) (|"(0|mîD2m/(m_P) 

for 0 й t < ímax. As 0 < K{u%t)), (2.9) gives 

(2.10) \u(t)\Zt>pud-4W)(\\um(t)\\2 + 

+ a\u(t)\Z+
+\y^mmp'm) (|u(ř)|™:?)1~(p+m)/(p-'") 

which implies (2.7). 

Lemma 2.4. Let u™ є W. Then u satisfies 

(2.11) \u(t, Mo)U+i Û K|m+i(l + Q) - 1 / ( , , - 1 ) , 0 ^ í < řmax , 

wÄere C = (V 1 - 1)0» - l ) ( |o | " 1 |"oĚÍÍ) (p-1)/(m + 1) • 
Proof of Lemma 2.4. Inserting um(t) into (1.1) we obtain using (2.7) 

(2.12) ^\и{і)\іХ\й(т + і){\-ѵ-1)Щ\Г4 fora.e. / e [ 0 , O -
dř 

Now, using the Holder inequality, (2.12) yields 

тКОі:її + (m + i)(v-1 - i)|D|(1-')/(m+l)K')Ět? ^ o 
dř 

for a.e. t є [0, řmax). Hence (2.11) follows by the standard comparison theorem for 
ordinary differential equations. 

Lemma 2.5. Let |w(f, w0)|m+p be bounded on [0, řmax). Then řmax = oo and 

(2.13) |wO,w0)|ooáC(|w0|oo, sup |tt(f,tt0)|m+p) 
O^f<oo 

for 0 g t < oo. 
Proof of Lemma 2.5. We use Moser's technique just like Nakao in [14] (see also 

Alikakos [l]). As the case of 0 < m < 1 is not considered there, let us outline the 
proof for the sake of completeness. 

Let r > m and 0 < T < fmax. Inserting q> = ur into (l.l) and performing obvious 
manipulations we obtain 

(2.14) jHOISiH^+V^W-
dt {m + r) 
-(r + i)KOi;i;-o(r + i)KO|i:i 

for a.e. t є [0, T]. If N ^ 3 the first term on the right hand side of (2.14) may.be 
estimated as follows, 

(2.15) JD u*+* á (JD u'+iy* (fD um+*)p> (JD u<r+m)NW-2)Y>, 
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where 
Pt = (2(m + p) ~ N(p - m))|(2(m + p) - JV(1 - m)), 

P2 = 2(p - l)/(2(m + p) _ jv(l - m)), 

P3 - (N - 2) (p ^ l)/(2(m + p) _ jv(i _ m)) 

and if JV = 2, 

(2.16) fD u>+' Û ( Ь " r + 1 ) S l (JD um+>Y* (JB иСг+-*»+»Ѵ*уь, 
where 

ßi = m/Ö» - 1 + m), Q2 = p(p - l)/(m + p) , 

Оз « m(p - l)/(m + p) (p - 1 + m). 
Now using the Sobolev embedding theorem, the last term of (2.15)((2.16)) may be 
estimated by the gradient of u<*+'>/2 a n d t h e n u s i n g Young's inequality we have 
(2.17) (r + 1) \u\>t; й 8||„<»^)/2ца + c ( e ) ( r + 1)Q ( | „ | : Î , ) R |B|r+i 

where 
ß = (2(m + jp) - JV(1 - m))/(2(m + p) - JV(p - m)), 

R = 2(p - l)/(2(m + p) - N(p - m)) 

ifiV ^ 3 and Ô = <2Ґ> P = 6Ô2 ifAT = 2. 
Putting e = 2mr(r + l)/(m + r)2, (2.14) and (2.17) yield 

(2.18) | ]u(t%Xl + | l u < - ^ ( t ) | | 2 =g Цг + l)Q(|«(i)|:î?)A K O t î î 

where 
C = QT%m + r)2 CNP2J4mr(r + l))Rm if N ^ 3 and 

C = Ô_1((m + rY C(P - l)/2m(p - 1 + m) r(r + l))<P"1)/"1 

if JV = 2 . 

As |u(i, u0)|m+p is bounded on [0, ímax), (2.18) can be rewritten into 

(2.19) 1 \u(t%l\ + Co |«^+ ' ) /2(0|2 й C,{r + l)ö |«(t)PîÎ 
dř 

for any r > m and a.e. t є [0, T]. At this step we need the following proposition 
which for m ^ 1 is a special case of Lemma 3.1 of [14]. As for 0 < m < 1 the 
arguments of [14] need some modifications we shall outUne the proof at the end of 
this section. 

Proposition 2.6. Let u(t) be a function defined on D x [0, Г], 0 < T g oo 
(appropriately smooth) satisfying (2A9)for any r > m with some constants Co(>0), 
Ci(>0) and o ( ^ l ) . Suppose that u0 = u(Q)eL*(D), sup|w(i)|m+1 < oo and in 
the case N ^ 3, m(N + 2) > N - 2. Then ° ^ r 

(2.20) sup |tt(f)|co й C(|woU sup |tt(OU+i,Cj). 
0^f^r OštšT 
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Now the constant C in (2.20) does not depend on T9 hence tmax = °° and the proof 
of Lemma 2.5 is complete. 

ProofofTheorem 2.1. We emphasize the proofofthe assertion (i) as the assertions 
(ii) and (iii) may be obtained using our definition of d and repeating Nakao's ar
guments of [13], [14], hence we only sketch their proofs. 

(i) By Lemmas 2.3-5 we know that tmax = oo and |w(*,Mo)U is bounded on 
[0, oo). Put 
(2.21) L = max (0, Mp _ 1 - a), M = sup |w(i, Wo)|,, , 

0 ^ f < o o 

and consider for a while the problem 

(2.22) vt = Avm + Lv x є D , t > 0 , 
v(x, t) = 0 x є dD , t < 0 , 
v(x, 0) = f0( = w(T, u0J) x e D , 

where T, sufficiently large, will be chosen later. We shall consider the case L > 0 as 
the case L = 0 follows easily. Putting v = w exp (Lř) and changing the time scale 
to t = - c " 1 ln (1 - cs), c = L(1 - m), (2.22) may be rewritten into 

(2.23) zs = Azm xeD, 0 < s < T , = c" 1 , 
z(x, s) = 0 x e dD , 0 < s < Tc, 
z(x, 0) = v0 x є D , 

where z(x,s) = w(x,r(s)) and s(r) = c_1(l — exp(-cr)). Now it is well known 
that any solution of Problem (2.23) considered on (0, oo) has a finite extinction time 
te = te(v0), i.e. z == 0 for s ^ ře (see e.g. [4], [7]). As (2.1) holds we easily obtain 

(2.24) фо) й ЫІ7ЦФ - m). 
As concerns (2.23), if v0 is so small that te(v0) < Tc? then z = 0 for s ^ te, but then 
also v = 0 for t ^ - c " 1 ln(l - cře). Hence we can choose by (2.1l) T so large 
that tc(u(T, u0)) < Tc, and using simple comparison arguments we have 

u(x, t) = 0 for t ^ Te = T - c"1 ln (1 - cte(u(T, u0)) , i.e. (2.6). 

If a = 0 the assertion (iii) of Theorem 2.1 is proved in [14] and (ii) follows e.g. 
from [13] and [l4]. As we have already mentioned, for a > 0 our results do not 
follow from [14] by comparison arguments, but thanks to our definition of d for 
a > 0 (cf. (2.2)) we can obtain the same results. First, by the same way as in Theorem 
3.1 of [13] we may obtain the estimates 

(2.25) J(um(t, Mo)) й C(1 - d~l J(ufj) {t + i)-*»/G»-ù if m > l and 

J(u(t, w0)) й C(1 - d'1 J(u0)) exp (-Xt) , X > 0 if m = 1 , 

and we omit it here. Then using the Sobolev embedding theorem, (2.8) and (2.25), 
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we have 
(2.26) \u{u u0)\m+p й (Cs\\um(t, u0)||)t/M й C{t + 1 ) - 1 ^- 1 ) if m > 1 , 

|w(f, Wo)|i+p = Cexp(-A'r) , k' > 0 if m = 1 . 

Now put w(t) = (i + i)!/(^-1) w(ř) if m > i and w(t) = exp(A7)t/(r) if m = 1. 
Then w(t) satisfies, after changing the time scale, 

(2.27) ws = Awm + exp ((m - p) s|(rn - 1)) wp + ((ra - l )" 1 - a exp (5)) w 
if m > 1 , 

wt = Aw + exp ((1 — p) Xt) wp + (Я — a) w if m = 1 . 

From (2.26) and (2.27) we can obtain the boundedness of w in the L°°-norm in the 
same way as in Theorem 3.1 of [14], hence the conclusion. 

Proof of Proposition 2.6. Put rk = 2k + m - 1, dk = Cx{rk + l)Q, qk = 
= (rk + l) /(r^! + 1/2) and t; = иГк~1 + і/1 for & = 1, 2, 3 , . . . . Then (2.19) takes 
the form 

(2.28) ± $D v*(t) й -Co||<0||2 + d* Ь «*(0 • 
di 

Now we use the Nirenberg-Gagliardo inequaUty ([8, p. 27, Theorem 10.1]) in the form 

(2.29) JD vqk й Cf\\v\\bqk (jD v
Sk)qk(i~b)/Sk , 

where sk = {rk_x + l)/(r,_i + 1/2) and b = 2iV(^ - sk)jqk(2N - sk(N - 2)). Let 
us note that qk > 2, qk ^ 2 as k ^> 00 and vSk = wrk_1 + 1. As we have supposed 
iV — m(iV + 2) < 2, for N ^ 3, we can apply the Young inequality and (2.29) 
then yields 

(2.30) j D u " + 1 è < ф " - ' + 1 / Т + C(Ëk,k){\Du^ + T> 

where 0 < гк < 1 will be given later, pk = (2k+1 — e)j(2k — e), e ~ N - m(N + 2) 
and C(ek,k) may be estimated by Cek

NK2~e\ Now choosing zk = 2~Qk~" for pi 
so large that dkek + &\ й C0 it follows from (2.28) and (2.30) that 

(2.31) J L - f ur*+1 й - 6 * Л f "Гк+1 + bßk( SUP Л Í « r k - + 1Yfc 
V ' | o | d ř J D *|X>|Jx> \oi4T\D\]D ) 

for fe = 1, 2 , . . . , where áfc = (dk + sk) C(ek, k) |£>|Pk_1/et, hence 

(2.32) Aj f u" + 1 ^ m a x f ó J sup -1- Ґ « * - ' + Л * ~ f H?+1i 
|o|jz, V Vos*sr|D|jD y |D | j D ; 

for k = 1, 2, ... . Now we can take fi so large that dk > 1 and dk may be then estimated 
by c2Q'k for some c = c(Ct) > 0 and 'Q = 'Q{Q, p9 N, e) > 0. Thus, if we denote 

v P i 

K ~ max 1, l , | u o | r 2 , f s u p jL{ u'+t(t) 
\ostšT\D\JD 
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from (2.32) we can obtain inductively 

1 
(2.33) 
V J \D 

urk+1 S ôkô
Pk_1 . . . S

P2P3~'PkKP2P3'~Pk. 
D 

Now, since pk й nk = (2k - l)/(2*-1 - 1) for fc ̂  2, (2.33) yields 

(2 34Ì f urk+i < |2)|c
1+"k+'"+w2"3...«kj^«2n3...nk2ô'(fe+(fe~1)nk+(fe~2)r,k"k-1 + "- + n2"3","k) 

< \D\ c2k+i~x 2Q^k+2k+2~4)K2k~1 . 

Taking the (rk + l)-st root of(2.34) and letting k ^ oo we obtain 

{u(t)buc*2*'K, 
hence (2.20). 

3. THE CASE m = p > 1 

In this section we shall discuss Problem (I) for m = p > 1, i.e. 

(3.1) ut = Aum + um-au xeD, f > 0 , 

w(x, i) = 0 x є сШ , t > 0 , 

tt(x,0) = Mo(x)(^0) x e D , 

where a ^ 0. Before we introduce our result, let us collect some known facts. 

Theorem 3.1. Let kx denote thefirst eigenvalue and çt the corresponding eigen-
function of the Dirichlet problem Aq> + Xq> = 0 in D, q> = 0 on dD, and let (H) 
hold. 

(i) IfXx > 1, a ^ 0 then lim \u(t, w0)|oo = 0. 
t^oO 

(ii) J / Ai = 1, a = 0 řuen lim \u(t, u0) - С<р\,т\л = 0, where 
c-Kvi)/NJiiA!.^ 

(iii) J / At = 1, a > 0 ř/їеи lim |w(f, w0)|oo = 0. 
i^oo 

(iv) If Xi < 1, a = 0, u0 ф 0 then tmaJu0) < oo, i'.e. any solution w(r, w0) b/ows 
up in afinite time in П°-погт. 

Some comments to the proof of Theorem 3.1 will be given later. 
Now we shall treat the case AL < 1 and a > 0. In order to describe our result let 

us define 
d = inf ( sup J(A,w)). 

we + H*o O^A<oo 

In [6] we have demonstrated that 
m - 1 / lwL , , \ 2 ( m + l ) / ( m - l ) 
fil 1 ? „ , / i m - n • <*( *VH+1/m \ 

(3.2) 0 < d = , ~ X : a*"'("-'>inf - „ ' " " t 1 ' " < o o , 
1 ' 2(m + l ) w e a U l H ' - I H I 2 ) 1 7 2 / 
where g = {w є +H£: |w|| > ||w||2}, and we can introduce the stable set Wand the 
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unstable set B as follows: 

(3.3) W = {w є + Я*: J(w) < d and K(w) > 0} u {0} , 

(3.4) В = {w e +Hl
0: J(w) < d and K(w) < 0} . 

Theorem 3.2. Assume that D and u0 satisfy (H), m = p > 1, At < 1 and a > 0. 
(i) If Wo є W then there exists a constant C = C(u0) ^ 0 such that 

(3.5) |ti(r, Mo)|oo й C exp ( - a ( l - v) t), 0 й t < oo , 

wherev = (j(u™)ldfn~1)!2m. 
(ii) / / « о e Б then tmax(u0) < oo, z.e. the solution u(t, u0) blows up in afinite time. 

Moreover, 
(3.6) d = min J(rw) 

oe£ 

hence E is nonempty. 
P r o o f of Theorem 3.1. The assertions (i), (ii) have been proved by Sacks in [ l8] 

and (iv) by Galaktionov in [9]. To prove (iii), let us note that there exists no non-
negative nontrivial stationary solution to (3.1). Really, if v were such solution, it 
would hold 

|L,mI|2 і | . ,m|2 _ | , , | m + l ^ П 
-\\v [I + \v \2 = a\v\m+i > 0 , 

which is a contradiction to the fact that Xx = 1, i.e. E is empty. The assertion (ii) 
yields by a comparison argument that w(r, u0) remains bounded in L°°-norm as 
t ^ oo, so the semi-orbit {um(t, u0): t >̂ 0} is relatively compact in C(D), co(u0) is 
nonempty and a>(u0) c E u {0} = {0} (see [10, Theorem 2.5]), hence the conclusion. 

Before we give the proof of Theorem 3.2 let us introduce two lemmas. 

Lemma 3.3. Let \u(% w0)|m+1 be bounded on [0, řmaJ. Then řmax = co and 

(3.7) \u(t, M o ) | ^ й C ( | t t o | o o , SUp \u(t9 M o ) | m + l ) > ° й t < 00 . 
0 ^ r < o o 

P r o o f of Lemma 3.3. Putting q> — ur, r > m in ( l . l ) and performing standard 
manipulations we get 

(3.8) 1 \u\:t\ + ^ t + J | | u ( -^ |2 = (r + 1 } |„|r î : _ a(r +1} |,,|,jj. 
d/ (r + m) 

The right hand side of (3.8) may be estimated by the Nirenber-Gagliardo inequality 
and Young's inequality as follows: 

(3.9) \u\r
rtZ й С^в||м<я+Г>/2||2 + C(8)(iD W

( m + r ) ( w + 1 ) / 2 m)2 m / ( m + 1 )) 

for 0 < e < oo. As m + 1 < (2m)"1 (m + r) (m + 1) < r 4- 1, (3.8) and (3.9) 
yield (putting e = 2rmj(m + r)2 C\ and computing C(e)) 

(зло) 1 |«|-:i + 2wr< r + 1 ) | H < - ^ | * ž 
dř (m + r)z 

Š C|M|iir-*>(r + i)i+»<--i>/*<«+» | r + l 
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for 0 S t < tmax and r > m. As \u\m+1 is bounded on [0, fmax), we can apply Proposi
tion 2.6 to obtain 

|tt(f, u0)\^ й C(|tto|)oo. sup \u(t, tto)U+i) for 0 й t < tmax, 
°^ f <w 

hence ímax = oo by (1.2). 

Lemma 3.4. Let w£ є W. Then um(t, u0) e Wfor 0 й t < tmax and 

(3 .11 ) \u(t9 U0)\m+l e x p ( f l ( l - V) t) й |Wo|m+l 

for 0 й t < ímax. 

P roofofLemma 3.4. The fact that the set Wis invariant may be proved like in [6] 
and we omit it here. Now let us suppose that um(t, u0) e Q (cf. (3.2)). Then according 
to (1.3), (3.2) and (3.4) we have 

(3.12) J(u"(t)) й J(u$ (m - 1) ( a K ř ) | ; : í ) 2 " / ( " " 1 } / ( 4 w + 1) ( H O I * -

- ||wm(ř)||2) (m+1)/(w~1)). 
AsK(um(t)) > 0,(3.12)yields 

(3.i3) \um{t)\i - limoli2 й vaKoi::i for 0 s t < u . 
Here we can omit the assumption that um(t) e Q because if it does not hold, (3.13) 
is satisfied automatically. So, using the estimate (3.13), (1.1) for q> = um gives the 
differential inequality 

y \u(t)fcl\ + {m + 1)(1 - v)fl |u(i) | ; : i й 0, 
at 

which yields (ЗЛІ). 
P r o o f of Theorem 3.2. (i) Set w = u exp (a(l — v) t). Then it is not difficult to 

verify that w satisfies 

wt exp (a(i - v) (m - 1) t) = Awm + wm . 

Changing the scale to s = c"*(l - exp(cr)), c = a(l — v)(m — 1) and putting 
v(x, s) = w(x, r(s)), v satisfies 

vs = Avm + vm x є D , s e (0, smax), 

v(x, s) = 0 x e dD , s e (0, smax), 

v(x, 0) = м0(х) x e D • 

As Lemma 3.4 implies \v(s, w0)|m + i = |"0|m+1 f ° r Ö = 5 < smav w e c a n аРРІУ Lemma 
3.3 to obtain that smax = 00 and 

\v(s, M0)|00 ^ C ( K | o o , | t to |m+l ) > 

hence the conclusion. 
To prove the assertion (ii) of Theorem 3.2 we note that in a similar way as in the 
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proof of Lemma 3.4 we may obtain the estimate 

|w(*, Mo)|m+i ^ |"o|m+i exp(a(l - v)(m - 1) t|(m + 1)) 

for 0 ^ t < tmax if м'о є B, The next lemma completes then the proof of (ii). 

Lemma 3.5. Let the hypotheses of Theorem 3.2 be satisfied. Then there exists no 
global solution u ofProblem (3A)for which \u(t, w0)|OT+i ~̂  oo as t ^ oo. 

P r o o f of Lemma 3.5. Following an idea from [16] we proceed by contradiction. 
Suppose that tmax = oo and denote 

M{t) =ftM::i . 
Then we have 

jtf'(0 4«o|:îî + ftM«"+1).= 
= |tt0|;:î + (m + i ) f t ( - | "T + |и-ц - e|«|;íí), 

and further, 

M"(*) = (m + 1) (-2J(u%t)) + (m + 1)"1 (m. - 1) a|a(i)|£ÌÌ) .. 

Now (1.3) yields the inequality 

(3.14) MM" - 2m(m + 1)"1 M'2 ^ 2m(m + 1)"1 |w0|m+?i+1) + 

+ 8m(m + l ) - 4 r o b ^ 4 S b ( " 0 " ^ 7 2 ) ? -

- (Jo Ь « (m+1) /2(w (w+1) /2) ř)2) + (m + I ) " 1 (m - 1) aMM' -

- 2(m + 1) J(u'S)M - 4m(m + 1)"1 \u0\Z+
+\ M' . 

It is not difficult to see that there exists a t0 > 0 such that the right hand side of(3.14) 
is positive for t ^ t0, therefore 

(M~XY < 0 for t è *o where X = (m - l)/(m + 1) . 

Since M~A,is decreasing, it must have a root tt > 0, which is a contradiction. 
For the proof of (3.6) we refer to the proof of the analogous result in Theorem 2 

of [6]. 

References 

{1] Aiikakos, N. D.: LP bounds of solutions of reaction-diffusion equations, Comm. Partial 
Differential Equations 4 (1979), 827-868. 

[2] Aronson, D. G., Crandall, M. G., Peletier, L. A.: Stabilization ofsolutions ofa degenerate 
nonlinear diffusion problem, Nonlinear Analysis 6 (1982), 1001 — 1022. 

[3] Ball, J. M.: Remarks on blow-up and nonexistence theorems for nonlinear evolution equa
tions, Quart. J. Math. Oxford 28 (1977), 473-486. 

[4] Benilan, P., Crandall, M. G.: The continuous dependence on ф ofsolutions ofwř — Лф{и) = 
= 0, Indiana Univ. Math. J. 30 (1978), 161-177. 

[5] Fiia, M., Filo, J.: Stabilization of solutions of certain one-dimensional degenerate diffusion 
equations, Mathematica Slovaca 37 (1987), 217—229. 

237 



[6] Fila, M., Filo, J.: A blow-up result for nonlinear diffusion equations, Mathematica Siovaca 
39(1989),331-346. 

[7] Filo, J.: On solutions of perturbed fast diffusion equation, Aplikace Matematiky 32 (1987), 
364-380. 

[8] Friedman, A.: Partial Differential Equations, Holt, Rinehart and Winston, New York 1969. 
[9] Galaktionov, V. A.: A boundary value problem for the nonlinear parabolic equation ut = 

= Aua+1 + uß, Differential Equations 17 (1981), 836-842 (Russian). 
[10] Langlais, M., Phillips, D.: Stabilization of solutions of nonlinear and degenerate evolution 

equations, Nonlinear Analysis 9 (1985), 321 — 333. 
[11] Levine, H. A., Sacks, P. E.: Some existence and nonexistence theorems for solutions of 

degenerate parabolic equations, J. Differential Equations 52 (1984), 135—161. 
[12] Lions, P. L.: Asymptotic behavior of some nonlinear heat equations, Physica D 5 (1982), 

293-306. 
[13] Nakao, M.: Existence, nonexistence and some asymptotic behavior of global solutions of 

a nonlinear degenerate parabolic equation, Math. Rep., College Gen. Ed. Kyushu Univ., 
1983, 1 -21 . 

[14] Nakao, M.: ZAestimates of solutions of some nonlinear degenerate diffusion equations, 
J. Math. Soc. Japan 37 (1985), 4 1 - 6 3 . 

[15] Ni, W. M., Sacks, P. E., Tavantzis, J.: On the asymptotic behavior of solutions of certain 
quasilinear parabolic equations, J. Differential Equations 54 (1984), 97—120. 

[16] Payne, L. E., Sattinger, D. H.: Saddle points and instability of nonlinear hyperbolic equa
tions, Israel J. Math. 22 (1975), 273-303. 

[17] Sacks, P. E.: Continuity ofsolutions ofa singular parabolic equation, Nonlinear Analysis 
7 (1983), 387-409. 

[18] Sacks, P. E.: Global behavior for a class of nonlinear evolution equations, SIAM J. Math. 
Anal. 16 (1985). 

[19] Tsutsumi, M.: Existence and nonexistence of global solutions for nonlinear parabolic equa
tions, Publ. R.I.M.S., Kyoto Univ. 8 (1972/73), 211^229. 

Authors' addresses: M. Fila, 842 15 Bratislava, Mlynská dolina, Czechoslovakia (MFF UKo); 
J. Fi lo , 842 15 Bratislava, Mlynská dolina, Czechoslovakia (Ústav apl. matematiky a výp. 
techniky UKo). 

238 


		webmaster@dml.cz
	2020-07-03T07:27:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




