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COEFFICIENTS OF ERGODICITY GENERATED 

BY NON-SYMMETRICAL VECTOR NORMS 

ANTONÍN LEŠANovsKÝ, Praha 

(Received June 6, 1988) 

Coefficients of ergodicity have proved to be a useful tool for the investigation of 
both homogeneous and inhomogeneous Markov chains. It has been also realized 
that they can be taken as upper bounds for the absolute value of the largest non-unit 
eigenvalue of stochastic matrices. There is an extensive literature in this field. The 
list of references below forms merely a certain sample in this respect. 

Their applications to different problems caused, unfortunately, a certain ambiguity 
as to the notion coefficient of ergodicity itself. The following two definitions have 
appeared: 

(i) Any scalar function т(-) continuous on the set Sřn of all n x n stochastic 
matrices (treated as points in R"2) and satisfying 0 <; т(Р) й 1 for P є &*„ is called 
a coefficient ofergodicity — see [16], page 136. n 

(ii) Let d(% •) be any metric on the set Dn = {x; x є R\ x ^ 0, £ xt = 1}. Then 
the quantity í = 1 

<P) = s u p ^ i ^ for P e ^ „ 
y,zeDn a(y, z) 

y*z J 

is called a coefficient ofergodicity - see [15]. (All vectors in this paper are assumed 
to be row vectors.) 

It is obvious that a function t(P) = plx fulfils the demands of (i) but cannot be 
generated on 6fn (n ^ 2) by any metric d(-, •) on Dn x Dn. On the other hand, 
a metric d(y,z) = \\y - z||*>, where [|-||^ is the /^-norm, i.e. ||x||^ = max{|x f | ; 
i = l , . . , , w } , generates by (ii) a coefficient of ergodicity denoted in this paper 
by *oo(') which possesses by [17] and [10] the property 

(p\ _ / nl^ f°r n even » 
™%п

Тсо[)~\(п-\)І2 fornodd, n ^ 3 . 
Thus, for n ^ 4 there exists a P e ^n such that rJj*) > 1. This implies that r^(P) 
is not a coefficient of ergodicity in the sense of (i). These two examples show that 
none of the above definitions is fully compatible with the other. 
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In this paper, the following restricted version of (ii) will be considered: 
n 

Definition. Let || • || be any norm on Rn. Let Hn = {z; z є Rn, z Ф 0, £ z, = 0}. 
The quantity I==1 

(1) T(P) = sup| |xP| | for Pe^n 
xsHn 

IWI=1 

is called a coefficient of ergodicity generated by the vector norm |J-||. 

Note that d(yP, zP) = ||(>> — z) P|| holds if the metric d(*, •) corresponds to the 
norm ||-||, and that y — z є #„ whenever y, z є Dn, y =j= z. Hence the definition is 
compatible with (ii). 

It should be mentioned that all coefficients of ergodicity studied by now except 
for Birkhoff's one (for its definition see [16], page 83) are ofthe form (1). Attention 
has been paid to those generated by the Ip-norms 

(2) \\хІ = (І\хі\РУІР f o r * є Д " , p e [ l ; o o ) , 
i = l 

(3) ||x||oo = max{|xj|; i' = l , 2 , . . . , n } for xeRn, 

in particular for p = 1, 2, or oo. Three main topics have been discussed — their 
functional form in terms of entries of a stochastic matrix (e.g. [3], [11], [15], [l7]), 
their properties (e.g. [10], [11] or [l5]) and applications. The applications concern 
the Markov chains [4], [8], [13] or the spectrum localization problem [1] and [11], 
etc. 

The present paper deals with a class of coefficients of ergodicity generated by 
a non-symmetrical generalization of the ^-norm 

n 

(4) N k = Z a iN for * e £ w , 
/ = i 

where a = (ax; .. .; a„) e Rn and at > 0 for all i = 1, ..., n. It touches all the three 
items mentioned in the last paragraph. Moreover, we shall focus on the quantity 
sup т(Р) as a function of т (or, equivalently, as a function of the norm which generates 
рєУп 

т). Theorem 3 provides a characterization of the lrnovm. It states that the only 
ccefficient of ergodicity т(-) generated by a vector norm on Rn which fulfils the 
requirements of(i) is тх(*). 

1. NOTATION 

n — an integer greater than 1 
Jf = { l ; 2 ; . . . ; n } 
91 ={{Uj); iJejV, i*j] 
£fn — the set of all n x n stochastic matrices 
Rn — the set of all row vectors z = (z l5 ..., zn) of real numbers 
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Cn ~ the set of all row vectors z = (zu ..., z„) of complex numbers 
R\ = {x; x є Rn, x = (x l s ..., x„), xt > 0 for each / e JT) 

n 

Hn = {x; x є Rn, x Ф 0, X xi = °} 
/ = i 

e(l), for / є <#" — an element of Ä" the components of which are given by e\l) = 1 
and ef = 0 if і Ф i 

M(U) = e(0 __ e O ) f o r ( i , j ) e 9 l 
С/и = {«<*•»; {Uj)en) 
x+ = max {x; 0} 
x" = max { — x; 0} 
/ — identity matrix 
|| • ||p, for p є [ l ; oo) or p = oo — the /p — norm defined by (2) and (3) 
|| • | j ^ , for a e R"+ - the norm defined by (4) 
Tp(-) — the coefficient of ergodicity generated by || • \\p 
TNa(') — the coefficient of ergodicity generated by || • | | ^ 
N — the set of all positive integers 

2. FORMULA FOR rNa(P) IN TERMS OF THE ENTRIES OF THE MATRIX P 

The well-known formula for тх(Р) states that for calculation of i t (P) it is sufficient 
to consider (normalized) vectors u(iJ\ for i,j e J/\ і Ф j . This important property 
is preserved by the coefficients of ergodicity generated by the generalized l r norms 
||'[|jVa> for each a є Rn

+. 

Theorem 1. Let n є N - {1}, P є $fn and a є R\. Then 

(5) i J P ) = raaxA. 
yeUn \\y\\Na 

This result has been proved in [ l l ] — Theorem 4.1, wherethe coefficient ofergo-
dicity TNa has been denoted by rf. 

3. CONTRIBUTION OF THE COEFFICIENTS OF ERGODICITY iNa 
TO THE SPECTRUM LOCALIZATION 

Let Р е У „ have eigenvalues A^P),...,A^(P) (repeated as many times as their 
multiplicities indicate). We put 

fi(P) = max {|A,(P)|; і є Ж , Я,(Р) Ф 1} 

if there exists an / є Jí such that A,(P) Ф 1, and 

(6) n(P) = 1 

if all eigenvalues of P are equal to 1, i.e. if P = / . The quantity ц(Р) plays an im-
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portant role in numerical mathematics, theory of Markov chains, etc. Its relation to 
the values of the coefficients of ergodicity TNa(P) is given in 

Proposition. Let n eN — {!}, a є Rn
+, and P e £řn. Then 

(7) TNa(P)žft(P), 

i.e. the coefficients of ergodicity %а(Р), aeR\, are upper bounds of fi(P)for 
each P e Sfn. 

Proof. If P = / then obviously TNa(P) = ^(P) = 1 holds for each a e Rn
+. For 

P Ф I define a function/e: Cn ^ R by 

(8) L(z) = max ^ _ Z _ ^ 1 . 
(ij)e9i a{ + aj 

It is well-known that any vector x є Hn can be expressed in the form 
n n 

(9) x = £ x,V'> - £ xjJ» = ^ I I х + х / и ™ , 
i = l 7=1 X h i = l 7 = 1 

II II / ф . 

so that 

(io) Nk = TT- Í Z*.41K''4k-
X L i = i 7 = 1 

7*i 
Thus 

| « ' | á т^г- І І xtxj{a, + aj) ^ ^ й L{z) ||x[|^ 
X L i = l 7=1 ířř + о , 

II II І Ф І 

for all x є Я„ and z є Cn. Further, by Theorem 1 we obtain 

1 " 
fa(zP) = max | £ (pik - р д ) z* -

( t ,7>^ a ř + ttj k = i 
= max _ i _ | u C ^ P z ' | a / ^ ) m a x ^ ^ = / a ( z ) t N a ( P ) . 

(ij)ese ať + а,- (і,7)є% ||«l ,J,||jve 

It remains to take a right eigenvector z of the matrix P corresponding to its eigen-
valueAwhichsatisfies |A| = ^(P)andA ф 1. Wefindthat/a(z) > 0. Indeed,/^(z) ^ 0 
for all a e P + , z є Си, and /a(z) = 0 would imply that zt = z2 = .. . = zn so that 
Pz = z Ф Až. Thus, 

(11) ^ ) ^ = 7^=W = ^ ) ' 
/«(z) /«(z) 

As a matter offact, Theorem 3.1 of [11] states that each coefficient of ergodicity т 
generated by a vector norm || • || on R" fulfils x(P) S> /i(P) for each stochastic matrix P. 
This general result was proved in [11] byconstructinga norm |||*||| on C" which 
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was an extension of the norm || • || on Rn. The proof of the Proposition above shows 
that considering the special case of the norms \\*\\Na it is sufficient to use much 
simpler technique. 

The difference т(Р) — д(Р) forms a suitable utility criterion (for a given stochastic 
matrix P) of the coefficient т. A comparison of the quality of the estimates of fi(P) 
based on TNa and тр is given in the examples below. It is worth-while to note in this 
setting that for any £ > 0 and for any stochastic matrix P є £fn there exists a norm (| • || 
on Rn such that Тц.ц(Р) - ^(P) < e — see Theorem C.1 of [11]. The form of the 
norm || • || depends on the matrix P in a rather complicated manner. A coefficient of 
ergodicity і can, however, be used efficiently only if it is possible to express the value 
of т(Р) analytically in terms of entries of P. This condition is fulfilled for тІ5 т2 [15], 
T^ [ l7] and for Tjye, where a є Rn

+. (We have not mentioned BirkhofTs coefficient 
тв — see e.g. [16] because it cannot be generated by a vector norm on Rn — cf. 
Corollary 2 below.) The list of applicable coefficients of ergodicity is hence really 
short. An important advantage of the class [zNa; a e Rn

+] is that, although it keeps 
much of the simplicity of %u it exhibits a certain flexibility. This feature can be used 
when looking for an adequate coefficient of ergodicity to a given stochastic matrix. 
This is demonstrated by the following example. 

E x a m p l e 1. Let n = 3 and let 

(12) 

Easy calculations yield that Aj(P) = 1, A2(P) = A3(P) = 0, i.e. fi(P) = 0, and 
w(1 '2)P = w(1 '3)P = (0, 1, - 1 ) , w(2 '3)P = 0, so that by Theorem 1 we have 

/ л \ řa2 + аЪ a2 + аз) г r> + 
TNa(P) = max } ~ ; ~ \ for a e R„ . 

(fli + a2 a1 + аъ\ 
We put a(k) = (к, 1, 1) for k є N. Then 

lim%fl(fc)(P) = lim j ^ = 0 = /i(P). 
k^ao k^>ao К + 1 

On the other hand, | | i / ( 1 , 2 ) | |p = ||w(2'3)||p obviously holds for each p e [ l ; oo) and 
p = oo, so that 

x(P)>M^L И і , і 
LpV ) = || (i 2M\ II (1 2 i l l 

ш 1 , ч k / ' ; 

l lw llP IIй llP 
is true for each p e [1; oo) and p = oo. (Moreover, тв(Р) = 1 by the definition (see 
e.g. [16], page 83) of BirkhofT's coefficient.) 

Thus, all classical coefficients of ergodicity provide poor estimates of fi(P) for P 
given by (12). For determining the value of fi(P) it is, however, possible to restrict 
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onesetf to the class {rNa; aeRn
+}. Vaguely speaking, it makes it possible to apply 

an appropriately non-symmetrical tool to non-symmetrical stochastic matrices. 
The next example shows, however, that the class [xNa; aeR*} is not generally 

superior to {xp, p e [l; oo) or p = 00}. 

Example 2. Let n = 3 and let 

/2/3 1/3 0 \ 
(13) P = 1/3 0 2/3 . 

\ 0 2/3 1/3/ 
We find that Xt(P) = 1, A2(P) = i V 3 and A3(P) = - }J3, i.e. ^(P) = iJ3 
Further, 

u<^>i> = i ( l , l , - 2 ) , 
u<^>P = i ( 2 , - l , - l ) , 

u^P = i(l,-2,l), 
so that by Theorem 1 we obtain 

г (P) = max iK^i + <*2 + 2a3). K2fli + <*2 + <*3). ifci + 2a2 + a3)) = 
\ ax + д2 ax + a3 a2 + a3 j 

1 _̂  1 ^ o v í 2 а з . <*i + ^2 . <*i + ^2 = Ì + J max J ; ; 
[a1 + a2 ^! + a3 a2 + я3; 

The system 
2a3 < at + a2 , аг + a2 < ax + a3 , a1 + a2 < a2 + я3 

has no solution. It means that 
TNa(P) à I for each а є Rn

+ , 
and 

т*а(Р) - fi(P) Š; i(2 - V3) for each а є Rn
+ . 

Let us remark that the ideal coefficient of ergodicity for P given by (13) is т2. 
A vector x є Я3 such that ||x||2 = 1 can be written in the form x = (y, z, —y — z), 
where y, z є R fulfil 2(y2 + z2 + yz) = 1. Further, 

xP = ^(2j + z, ~y -2z , z - j ) 
and 

ІИІ2 = î Жу2 + *2 + j*)) = * V3 = tfp). 

4. THE RANGE OF COEFFICIENTS OF ERGODICITY 

The convexity of the set Sfn implies that the range of a coefficient of ergodicity т 
is the closed interval [0; max r(P)]. Indeed, let P є £řn be such that т(Р) = max т(Р) 

Рє^„ Рє^„ 
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(for details concerning the existence of this maximum see [10]) and let C e 9>
n be the 

matrix with all its entries equal to l/w. Put P ( a ) = a . P + (1 — a ) . C for all a є [0; 1]. 
We obtain xP(a) = ocxP + (1 - a) . xC = a . xP for each x e Ял , so that т(Р(а)) = 
- а <r(P). 

It is well-known that ^ ( P ) ^ 1 for all P e Sřn, Taking into account that r(/) = 1 
holds for each coefficient of ergodicity т we conclude that 

max Ti(P) = 1 . 
PeSřn 

Hence, the situation in case of т1 is very simple. On the other hand, there has been 
probably only one attempt [ l0] at investigating maximal possible values of other 
coefficients of ergodicity. The explicit results of [10] concern those generated by 
the /p-norms and state that 

(14) max тр(Р) 
Pe9>n 

n\l-(l/p) 

V 
i y - ( i /p ) 

2 (n + iy-* + (n - 1) ] i/p 

if n is even , 

if n is odd 

for pe [1; oo), and 

(15) max r^(P) 
РєУп 

n 
/2 
\n 

if n is even 

if n is odd 

Observing the formulas (14) and (15) we find that for a given dimension n ofstochastic 
matrices the values of max тр(Р) do not exceed (n + l)/2 for p e [ l ; oo) or p = oo. 

РеУп 

This phenomenon of boundedness disappears if we take into consideration all the 
coefficients of ergodicity generated by vector norms. Moreover, we shall prove that 
for each real number co ̂  1 there exists such a coefficient of ergodicity т generated 
by a vector norm on Rn that 

max т(Р) = co . 
РєУп 

We shall start with 

Lemma. Let Pe5f2
 anà let >^(P) and Я2(Р) be its eigenvalues such that 1 = 

= Aj(P) ^ |^2(P)|. Then the equality 

(i6) hP 
= |A2(P)| 

holdsfor each x e H2 andfor each vector norm II • || on R2 

.290 



Proof. A matrix P є Уг and a vector x є H2 are obviously of the form 
'b 1 - b\ 

P = . 
{C 1 — C 

x = d . ( l , - 1 ) 

where b, c є [0; 1] and d є R - {0}. Thus 

xP = d(b-c)(l,-l), 

so that for each vector norm || • || on R2 we obtain 

lH|_Kb-c)|.|i(i,-i)i 
N H-Il(w)ll "1 '' 

It remains to remark that the eigenvalues of P are Ai(P) = 1 and A2(P) = b — c. 

Theorem 2. Lei n ^ 3. Tften 

(17) max zNa(P) = и](аЛ) + a^2) for each a e R\ , 
p^n a aj(a,n) + aha,n-l) 

wherej(a, •) is a one-to-one mapping of the set Jf onto Jf such that 

(18) aj{aA) ^ aKaa) ^ ... ^ aKa>n). 

Proof . We apply Theorem 1 of [ l0] to the coefficient of ergodicity xNa\ 

(19) max rNa(P) = 
PeSřn 

= m a x - ^ - max 1 ( £ х * ; - . . ; Е * ; ) | к , 
xeHn \\X\\Na(Ai,...,An)eA ieAi ієАп 

where A denotes the set of all decompositions of the set Jf into n disjoint subsets 
Au ..., An. We obtain 

n 

i I aj\ I *i| 

-"'I*,;...;Mk = * V * ^ E jVi i s ^ i і е Л " 
I aj\xj\ 

J = 1 

«Д«,!) | I *i| + «J1..2) I I I *l| 
і'єЛ^(а,і) J = 1 ІЄЛ,/ 

J * j ( f l . U < 
n 

адв,я) Fj(e,")l + алв,и-і) Z \xj\ 
y = i 

j*j(a,n) 

n 

М>Да,1) + а Л > , 2 ) ] Е | 1 * ; | - , . 
J = 1 ieHj < " j ( a , l ) + " j ( a , 2 ) 

fc.,^i,-n]iW "***> + <Wl> 
J = 1 
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because 

І I Z * U I І ««1-І I *,| 
J = 1 іеЛ^ í = 1 »Єу1у(а, 1 ) 

j*j(a,l) ІфЛда.І) 

and 
n n 

I Nil ̂  | I *i| = |*Д«.»)| « 
7 = 1 J = 1 

j*j(a,n) j*j(a,n) 

To complete the proof, it is sufficient to introduce P = (Pij)1j=i є «§̂ „ and £ e Яи 

such that the fraction ||&Р||лв/||£||#в equals the right-hand side of (17). To this aim, 
we put 

b = j(a, 1) , 

c = j(a, 2 ) , 

d = j(a, n - 1), 

e = Да, и ) , 

&b = &c = l for i e ^ - { < * b 
p i ; = 0 otherwise , 

and 
* = u ^ . 

We find that 
3tP = мсь,с) 9 

so that 
ll^lUo == 4 + Uč = flj(g,l) + аЛа,2) 
lFl|iVa

 ad + ae aj(a,n-l) + aj(a,n) 

Corollary 1. The set of values of max т(Р) ѵѵйегс т varies over the set of all coef-
РєУп 

ficients ofergodicity generated by a vector norm on Rn is equal to {1} if n = 2 and 
[ l ; o o ) i / w ž; 3. 

Take an arbitrary n ̂  3 and œ є (1 ; oo). Corollary 1 above guarantees that there 
exists a vector norm || • || such that the corresponding Тц.ц fulfils 

(20) max r,,.,,(P) = ш . 
РєУп 

Such a vector norm on Rn is no doubt far from unique. The non-uniqueness ofvector 
norms can be regarded essential from the point ofview ofthe coefficients ofergodicity 
only if they differ at an element of the set Hn. Examples of essentially different vector 
norms in the case considered are e.g. the norms || ' | |#ь and || ' | |^с

 о п ^3> where 
b = (2co - 1, 1, 1) and c = (œ\ co, 1). 

A completely different situation arises in the case of co = 1. 

Theorem 3. If a coefficient of ergodicity x generated by a vector norm || • || on Rn 
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fulfils 
(21) sup x(P) = 1 

РєУп 

then 
(і) the norm | | ' | | coincides on the set Hn (up to a multiplicative constant) with 

the lx-norm\ 
(ii) the relation т(Р) = Tj(P) holdsfor each Pe Sfn. 
Proof. First, let n = 2. The one-dimensionality of the vector space H2 implies 

that any norm on H2 is determined by its value at x = (1, — 1), i.e. it equals a constant 
multiple ofthe /i-norm on H2. 

Now, let n ^ 3. We know from (21) that 

llxPll 
(22) L J l ^ i for all x e Hn and all P e S?n. 

IN 
Applying this fact to all elements of the set <4l and to all permutation matrices P є Уп 

we find that the values of ||w(l'j)|| are the same for all (ij) e 9t. We denote this value 
by q>. Further, any x e Hn can be expressed by (9) in the form 

* = A - î î *r*7"(iJ). 
x L i = i j = i 

j * i 

so that 

(23) ИІ^іЛ-І Z^7lK-1 = Mi<p 
x L i=i i = i 2 

и и Ji¥i 

holds for each x e Hn. It remains to prove that ||x|| equals i| |x||i c> on Яи. Let P ( x ) = 
= ( ^ J = 1 e ^ n b e g i v e n b y 

pft> = 1 if x, > 0 , 

РЙ> = 1 if xť á 0 , 

jp^} = 0 otherwise . 

Then we have 

(24) |xP<->|| = ||( І , , ; І x,; 0 ; . . . ; 0)|| = i | |x| | , . |u<^>|| = i | x | i , . <p . 
i = l i=i 

Xi>0 XigO 

The relations (22), (23) and (24) imply 

l | x | | = - | | x | | i forall xeHn. a и 2 и и 

This completes the proof of the theorem. 

Corollary 2. Birkhojf's coefficient xB is not generated by a vector norm. 
Proof . The coefficient тв fulfils (21) but тв and x1 do not coincide on £fn. 
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R e m a r k . An example of a vector norm defined on Rn which is different from || • || г 
on Rn but coincides with || • || j on Hn is the norm 

n n 

\x\ = Yj Iх»! ^ I Yj xi\ f ° r x e Rn -
i=i j = i 
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