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Let us consider a parabolic variational inequality of the form
(1) u(t)e K

(Z—u+97(u),v—u)go VoeK ae. in (0,7)
t

u(0) = uy,

where K is a closed convex set in a Hilbert space and & is a nonlinear map. Let uy = @
be a stationary solution of (1), i.e. #€ K, (# (i), v — i) 2 0 for any v e K. In [3] we
introduced a condition on # (i), #'(i) and K, which was sufficient for the asymptotic
stability of the stationary solution #i. However, if & '(#) is not symmetric, then this
condition is, in general, not necessary. In this paper we give a generalization of this
condition and we illustrate its usefulness by several examples.

Throughout the paper we shall use the notation and assumptions from [3]. Let us
just briefly recall that Vand H are real Hilbert spaces with norms |- | and ||, respec-
tively, V.« H < V', where the inclusions are dense and compact, by (-, ) we denote
the duality between ¥’ and V and also the scalar product in H, K is a closed convex
set in V, i = 0e K, & is of the form #(u) = Au + N(u) + F,, where A: V> V'
is a continuous linear map, A = A, + A,, A;: V— V' is symmetric and coercive,
A,: V- H is continuous, N: V- H is locally Lipschitz continuous, |N(u), =
= o(||u) for u >0 in V,F,e V', (Fo,v) 2 0 for any ve K. Then we have the
following

Theorem. Let I: H - H be the identity mapping, let B: H - H be a strictly
positive self-adjoint continuous linear operator, B(V) < V, (I — B?)(3K) = K,
(Au, B*u) 2 of|u|®> — Clu|* and (F,, B*u) = ¢(F,,u) for any ueK nad some
a,C,c > 0. Let

2
) Jpi= liminf A4 Fo BW) o
uek, Jjull >0 |Bul?
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Then the conclusions of Theorem 1 in [3] are valid. In particular, uy = 0 is
asymptotically stable in the topology of V and for any ¢ > 0 and ). < A, there
exists & > 0 such that the solution u(t) of (1) with ““o” < 0 exists for all time and

fulfils |u(t)]| < ee™*.

The proof of Theorem is based on the same arguments as the proof of Theorem 1
in [3], where we assumed B = I. The only difference is in deriving estimates
analogous to the inequalities (5) and (6) in [3]. Here we can put v = u — B?u in (1)
to get

(5) (dl + Fu), Bzu) <0
dt
which together with (2) implies
(6) ;(;it |Bul> + A|Bul® + Blu® + n(Fo.u) < 0

for some 4, §,n > 0. Now the proof of Theorem I in [3] can be repeated word by
word only substituting |u| by |Bu].

In what follows we give applications of Theorem to the cases where we have to
choose B =+ I in (2), i.e. where [3, Theorem 1] cannot be applied.

Example 1. Let Q < RN be a smoothly bounded domain, let V be the Sobolev
space Wy *(Q) x Wy X(Q), H = IX(Q) x I}(Q),

9'-(“) = 97(“1: uz) = (——dAu, - fl(ul’ uz)a —du, — fz(“n “2)) 5
where f;: R* > R are C' maps, f{0,0) =0, |of;/ou;| < C(1 + |uy|” + |us|’).

y <2/(N—2) if N>2 (i,j =1,2). Denote b;;:= 0df;/ou;(0,0) and suppose
by, >0, by, <0, bisbsy <0, byy + byy <0, byihyy > bysbyy. Let K =
= Wy *(Q) x K, where K is a closed convex cone in W, **(Q) with its vertex at zero.

Then u = 0 is a stationary solution of (1) and also of the equation

ORI

-+ F(u) =0.

4 ()

It is well known that the stability of the trivial solution of (3) is equivalent to the
condition Re o(#'(0)) > 0, which is equivalent to the condition

d>d°:= maxi]—<b“ + Lzhﬂ—),

P % — by
where 1; is the i-th eigenvalue of the operator —4 with the zero Dirichlet boundary
conditions (cf [1, 2]). It follows from [1, 2] that for a large class of cones K there
exists d' = d'(K) > d° such that the trivial solution of the inequality (1) is unstable
provided d < d' and # is linear. In particular, if K = K* := {ve Wy *(Q); v 2 0}
then one can easily check d' = by,[4,.
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On the other hand, putting

5 - (J(g)l (;)

where I is the identity in I*(Q) and b = —b,,[by,, we obtain
(Au, B*u) = bd [q |Vu,|* dx + [q |Vu,|* dx — bb, [quidx —
— bzz _[Q u% dx
hence (2) is fulfilled for d > b;,/A, and any K. Particularly, the condition (2) is
“optimal” for K = K*.

Example 2. Let V = Wy°%(0, 1), H= 0, 1), F(u) = —u" + d(-)u’ + f(+,u)
where d:[0,1] - R and f:[0,1] x R - R are C' functions. Let M < [0, 1] and
let K = {ueV;u = 0onM]. Let fi(x,0) = 0on (0, 1), f(x,0) = 0Oon M, f(x,0) =
= 0on (0, 1)\ M.Then u, =0 is a stable stationary solution of (1), since by putting
B?*u = e Pu, where D’ = d, we obtain ’

(Au + Fo, B*u) = [ge 2((w')* + fi(+,0) u? + f(-,0)u)dx = A fyu®dx
for some 4 > 0 and any u e K.
Example3. Let V=H = R*, K = K",

1
F=A=| 1
—C

—— )

1
L 0],
1

¢ > 3. Then (Au, u) < 0 for u = (1, 1, 0) € K, however by putting

¢ 00
B*=[(010
00 &2

with & < 1/c we get (Au, B*u) = ¢*|u|?> for any ueK, hence uy, = 0 is a stable
solution of (1).
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