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INTRODUCTION

In this paper we prove that the barycentric selection from an absolutely con-
tinuous set valued map F: (0, T)~~R" with nonempty convex values is absolutely
continuous. Moreover we prove using the barycentric selection that under certain
conditions for every x, € F(t,) there exists an absolutely continuous selection f(*)
from a set valued map F(+) such that f(t,) = xo.

The existence of an absolutely continuous selection plays an important role in
the viability theory (see [1]) if the viability map K(*) depends only measurably on
time. Then the necessary condition for the existence of a viable solution is the
existence of an absolutely continuous selection from K(*).

NOTATION

R” is the Euclidian n-dimensional space; d(x, y) is the Euclidian distance from x
to y. B(x, M) denotes the open ball of radius M about x and B := B(0, 1). S denotes
the unit sphere. If 4, B are subsets of R”, d(x, A) := inf {d(x, y) | y € A}, 6(4, B) :=
:=sup {d(x, B) | xe 4} denotes the separation of A from B and d*(4, B):=
:= sup (6(4, B), 8(B, A)) is Hasudorff distance of the sets 4 and B. For x, y e R",
x, y> denotes the scalar product.. Let 4 = R", 4 @, ee S then g,(e):=
SUpPgeq €a, €) is the support function of the set 4. By ri(4) we denote the relative
interior of the set A.

MAIN RESULTS

Definition 1. Let F: (0, T)~—R" be a set valued map with convex and compact
values. We say that F is an absolutely continuous map if the following condition is
fulfilled

Ve > 0, 36 > 0 such that for every system of intervals

ool [twnl, OS50, 2.2, 21,2 T)
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the following holds
E = 1) < o= man (T al(F(e) + BN () +B).
S l(F) + BNEE) + B)) < o

where p, denotes n-dimensional Lebesgue measure.
Let A = R" be a convex compact set with nonempty mterlor Then we define

(see [1])

- ﬂ,.(A) .

Theorem 1. Let F: (0, T)~~R" be an absolutely continuous set valued map with
nonempty convex and compact values. Let F(+) be bounded, i.e. there exists M > 0
such that

Vie(0,T), F(f)y< M.B.

Then the map f: (0, T) — R"
f(t) := b(F(t) + B)

is an absolutely continuous selection from F()
To prove this theorem we use the following lemma.

Lemma 1 (see Aubin and Cellina, 1984, p. 78). Let A = R"be a convex and compact
set and A; := A + B. Then b(4,) € A.
Proof of theorem 1. Let

&(f) := F(t) + B.

Let ¢ > 0. Since F(+) is an absolutely continuous set valued map there exists 6 > 0
such that for every system of intervals

[tntd ot tm], 0t <7, £...21,51,=T)
holds

(5, = 1) < 6 = max (3. w(0(t)~ 8(5))

3 @) 1) < 2 1B) /(401 + 1),

It follows that

Z I£(5) = f)] =

1

ol ( D ¥ 7 @) J o

x du,

m 1 1
= ; ( (”n(q)(t ) ”n(‘p("i))> J 0(!;)60(t()x I
! xdy, — _r x .
1(2(11)) J oo : 1 9(75) J oeinaceo e )
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Using lemma 1 and boundedness of the map F(-) we get
un(¢(ti)) = /l,,(B) > /1,,(4)(’[,-)) = ﬂn(B) o i=1,...,m,

<

”(”"(;(ti)) B “"(‘;(Ti))) J O(t1)nD(er) X dit

< |l @(x) — m@(1)] (M + 1)]u(B) ,

xdu,

” ! x dpy — J
u,,(d’(ti)) D)\D(ri) /‘n(¢(7i)) De\D(11)

< (@) N (x) + p(@(w:) N 8(1:))) (M + 1)?/10,(B) .

Since F(+) is an absolutely continuous map
 ll0(1) = o) =
= 3 [(#(t) N 0(29) = 1(D(e) D) < m(B) oM + 1)

Using these estimates we get

m

5110~ stel <.
We proved that f(-) is absolutely continuous on the interval (0, T). O

Lemma 2. Let M > 0. Then there exists k > 0 such that for every two nonempty
convex and compact sets, C, D < R" such that C, D = M . B holds

kd*(C, D) 2 max [p,((C + B)~(D + B)), u,((D + B)\(C + B))].
Proof. We prove that there exists k; > 0 such that

k8(C, D) = k;6(C + B, D + B) 2 ,((C + B)\(D + B)).
There exists k; > 0 (see [1], p. 80) such that

((C + B)N(D + B)) < u,(B(D + B,5(C + B, D + B)) —

— (D + B) < k;6(C + B, D + B).
Similarly we prove that there exists k, > 0 such that

k,8(D, C) = k,8(D + B, C + B) = p,((D + B)\(C + B)).
Let

k := max (ky, k,) .
Then :
kd*(C, D) =2 max [u,((C + B)\(D + B)), u((D + B)\(C + B))].

O

The following definition was used by Kikuchi and Tomita, [3].

Definition 2. Let F: (0, T)~=R" be a set valued map with nonempty compact
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values. We say that F is d*-absolutely continuous if for Ve > 0, 36 > 0 such that
for every system of intervals

[11’11]""’[tms‘rm ’ (0 é tl é T é é tm é T é T)

the following holds
Zl(fj —1)<é ‘““Zld*(F (#;), F(x)) <.
j= j=

From lemma 2 follows:

Lemma 3. Let F: (O, T) ~=R"be a bounded, d*-absolutely continuous set valued
map with nonempty convex compact values. Then F(+) is an absolutely continuous
map.

Lemma 4. Let F: (0, T)~—R" be a set valued map with nonempty convex and
compact values and h: (0, T) — R" be an absolutely continuous function such that

VeeS, Vi, 7€(0,T), orue) — orele) < [h(t) — h(7)| .

Then F(+) is d*-absolutely continuous set valued map.
Proof. Using the minimax theorem (see [2]) we get

8(F(t) + B, F(tr) + B) = sup sup inf {e,y — x> =

eeS yeF(t)+B xeF(t)+B

= sup( sup <e,y) — sup <{e, x)) = sup (UF(z)+B(e) - UF(:)+B(e)) =
eeS yeF(t)+B xeF(z)+B eeS

= sup (orw(e) — oree)) = o(F(t), F(7)) .
It follows that

3(F(1), F(x)) < [h(t) — h(z)|, 8(F(x), F(1)) < [h(z) — h(1)],
d*(F(1), F(r)) < |h(t) — h()|.

Since h(+) is an absolutely continuous function then F(+) is d*-absolutely continuous
set valued map. [J

Theorem 2. Let H: (0, T)~—R" be a bounded set valued map with nonempty
convex and compact values and let ty € (0, T), x, € H(t). Let h: (0, T) — R" be an
absolutely continuous function such that

VeeS, V,7€(0,T), ouw(e) — ouwle) = |h(t) — h()|.

Then there exists > 0 and an absolutely continuous selection r: [to, to + 6)—R"
from H(+) such that '

{to) = Xq -

To prove theorem 2 we will use the following definition and lemma.
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Definition 3. Let L, K be linear subspaces in R". Let IT;(*) denote the projection
of the best approximation on the set L. We define

oL, K) :=sup {1 — |IT(x)| | xeK, |x]| =1} .

Lemma 5. Let H < B(0, R), (R > 0) be a convex compact set, L be a linear
subspace of R", L < aff(H) — aff(H) (aff(H) denotes the affine hull of the set H,
see [4]) and there exists x, € R" and & > 0 such that

B(xo,8)n(L+ xo) = H.

Let K be a linear subspace in R" such that K + L= R" and K n L= {0}. Let
Lo := Ng(0) (Nk(0) denotes the normal cone to K at 0, see [1]) and oL, L,) < 1.
Then there exists a constant r > 0 such that

onnkle) = inf {oy(e) + ox(e”) | e + " =e, |¢| + |e"]| £ 7}, Vees,

where r depends only on n, o, R, 0.
To prove lemma 5 we use the following two lemmas.

Lemma 6. Let L, L, be linear subspaces in R" and let dim(L,) = dim (L),
a:= a(L, Ly) < 1. Then the projection map IT: Ly — L has an inverse II "*: L L,
and

Wz = sop (' W) [y e Lo Iy = 1} = 1L = 9).

Proof. Let Q be an subspace in R” orthogonal to Lsuch that @ + L= R". If
dim (L, n Q) 2 1, then there exists g € @ N Lo, |[q|| = 1. Since IT,(q) = 0 it follows
that o = 1. This contradicts with the assumption « < 1. We proved that Ly~ @ =
= {0}. For given y e L since dim L+ dim Q = dim L, + dim Q = n there exists
exactly one x € L, such that IT;(x) = y. From the definition of « follows that
[7Tu(x)] = (1 = «) |x|| and therefore [IT7*| < 1/(1 — a). O

Lemma 7. Let Ly:={xeR"|x; =..=x=0}, K:={xeR"|x,; = ...
.. = x, = 0}, L be a linear subspace in R", dim (L) = dim (Lo) and o : = oL, Lo) <
<1, ¢>0. Let

k
Z:={xeR"|Y x} < c?
i=1

[T x)] < ¢} .
Then for every y € Z the following holds

3¢(n + 2 — a)
Iyl = IR

Proof. Let y € Z. Due to lemma 6 there exists only oné x¥ € L, such that
c
(<) = Tyy) and @] £ —.
Let Q be an subspace in R” orthogonal to Lsuch that @ + L= R". Let a!, ..., a*
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be an orthonormal basis of the space Q such that

1 X —y

e =y

For every x e R"
k

II(x) =x = Y {x,a’y a°.

s=1
Let
a—1

o=

«—n-—2
We prove

k
Y (aly 2 5.
i=1

Let us suppose that

(1) iémy<y.

Let
bii=al, i=1,...k
bj:=0, i=k+1,...n
and
f£i=a'—bel,.
It follows '
Ib] <6, |¢] >1-%,
k
HL(X) = —b + Z (b,a*ya’.
s=1
Since
M) < (n + 1)0
then
ole—“—HL@JE>1_("_"'_1_)_5.
2] 1-0
Since
P (S VL
1-6

we get the contradiction with the assumption (1). It follows

k
Y (alf 2 .
i=1
Since
y =x’ + ta!
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then
k
Y+l 5 ¢
i=

and consequently

|t| < Vi (X)) + ¢ < 2c .
Vi@ (-0

It follows
2c 3¢ 3c(n +2 -«
s ol + 2 s - derios 0
1-a)é (1—a)s (1 —a)
Proof of lemma 5. By translation and unitary transformation we can achieve
xo=0and K = {xeR"| x4y = ... = x, = 0} where n — k = dim (L). Let
Ly:={xeR"|x, =...=x,=0}.
From the assumptions we get
oule) Z oraule) = ou(ITi(e)) Z oI (e)] -
Moreover (see [4] and e€ S)
R = oy.k(e) = inf {oy(e') + (") | & + ¢ = ¢} =
2 inf {8|1T ()] | € + ¢ =e, e €L} .
We get
[1T(e')| < R[5 whenever e — €' € L, .
Since
k
Yeir=0
i=1
then
k
Yel<1.
i=1
From lemma 7 follows
ounk(e) = inf {oy(e') + ox(e”) | e + e =e, |e]| + |e|| = r}.
Vee S,
where
r:=6R(”+2_—)+1. 0

o1 — a)?

Proof of theorem 2. A) Let dim (aff H(z,)) = 0, i.e. H(ty) = {xo}. Then for
barycentric selection holds

b(H(to) + B) = X, _ v
Therefore we may define due to theorem 1 an absolutely continuous selection
r(t) := b(H(t) + B).
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B) Let x,eri(H(t,)), dim aff H(tq) = n — k 2 1 and K be a linear subspace

such that K = N,pro))(Xo). By translation and unitary transformation we can
achieve x, = 0 and

K:={xeR'|xy =..=x,=0}.

From Carathéodory theorem (see [1]) follows that there exist points a; e H(to),
i=1,...,n — k + 1 such that
n—k+1 n—k+1

Xo= 3y Aa;, Y A=1, 14;>0.
i=1 i=1
Let 14, 1, > 0 be such that
B(xq, 1y) 0 aff(by, ..., byogsq)

n—k+1 n—k+1
c{xeR|x = i; Hib;, i; =1, u; 2 0}
forevery |b; — a;| <mi=1,...,n—k+ L
Since H(+) is a continuous map then for 7, > 0 there exists , > 0 such that
H(t) n B(a;, n5/2) = 0 for |t — 15| <5,
Let b,(t) € H(t) n B(a;, 1,/2) and
Lo:=aff{ay,...,a,_44,} = {xeR"|x; = ... = x, =0},
L(t) := aff{by(1), ..., by—r+1(t)} .
Let R > 0 be such that H(t) = B(0, R) for t € [, t, + ) and
G(f):= Hi) N K.
We find 8, > 0 such that «(L(t), L,) < 1/2 for t€[t,, 1, + 8,), & := min (8, §,).
For t € [to, ty + 0) are fulfilled the assumptions of lemma 5, where x, stands for
x(t) € L(t) n K, Lstands for L(t). Therefore there exists r > 0 such that
ole) = nf fouale) | & + ¢ = e, &' Lo, [e] + '] 57}
We prove that
o6ue) — ogufe) < r|h(t) — h(z)|, Vi, teft,,ty+ ), VeeS.
Since oy ,(*) is lower semicontinuous function (see [4]) it follows that for every

te[ty, 1, + &) and every e € S there exists e R", || < r such that e — e L,

Oue8) = Ogw(e) = inf {oye)| €+ e =e e €Ly, €] +]e] =r}.
It follows

sewle) = oawl(e) = ouef@|e) o] — oucle/le]) o] =

< rlh(t) = h(z)| .
From lemma 4 and the first part of this proof it follows that there exists an absolutely
continuous selection r(+): [t,, to + &) R" from the set valued map G(-),

r(to) = xo .
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C) Let x, € bd(H(t,)). Let us suppose that dim aff H(to) = 1. Take y € ri(H(t,)) and
let 2, R, n =1, ... be a decreasing sequence such that 1 = 4;, 4, = 0. Let

o i = xO(l - A’u) + y)'n .

Since y, € ri(H(t,)) there exists an absolutely continuous selection x,(+) defined on
the interval 1, < t < t, + 7, such that

xn(to) = Vn-
There exists 6, < min (1/n,1,), n = 1, ... such that 6,, < J,,

var x, < 1/n?

[to,to+dn]
var X, < 1/n?
[to,to+dn+1]
Let

A= 2 A — A

x(t, 2) 1= T2 x (1) + ——"— x,44(t)
A'n - '1"+1 An - An+1

for A,y SAS A, to <t =ty + 0ppy

x(to, 0) = Xp .

Since x,(+), n = 1, ... are absolutely continuous and H(*) has convex values there
exists an increasing continuously differentiable function & € C'[0, 1], 8(A) < 8¢+ 1.
5(2) > 0for1 = A > 0, 5(0) = 0 such that

x(t, A)e H(t) for to <t =<to+ 8(1).

Let the function A(f) be the inverse function for ¢, + 3(1). We prove that
2(1) == x(t, A(t))

is absolutely continuous on the interval [t,, t, + 6(1)].

We prove that for every ¢ > 0 there exists k € N such that £(-) has variation on
the interval [t,, t, + 8(4;)] less then &. Let ¢ > 0. We choose k € N such that

Mlxo — ¥ +4Y 1/n* < ¢f2.
n2k
There exist points 1, € (to, to + 8(4)], i = 1,..., M + 1 such that 1; < t;4,

ar %= 3 [(0s0) - #0)] | < o2

[t0,t0+8(Ax)]
We add the points t, + §(4,) for s = k if t; < to + 8(4,) to the points ;. Let A, ; <
< At;) £ Xt;4+) £ A, Then

Rtivs) = 2(t:) = =(Ativ 1) — A1) (x0 = ¥) +

l(t) Ant1 (xultiv 1) = xu(t:)) +

l )“n+l
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A’n - i(ti+ 1)

4+ - vy X, ti - .)‘C,, ti +
}m - ln-i—l ( +1( +1) +1( ))
j. ti - }: ti
+ _(iL(__) (%ult:) = Yu = Xpa1(ts) + Y1) -
n — fnt+1

It follows that
ii [£(t;s 1) — 2(23)] éiili(tm) — A1) % — ¥] +

+ 3 ) }||x,,(t,-+1) = x,(t)] +

nzk {ie{1,....M}|An+ 12 2(t)SA(ti+1)SAn

+ Z Z len+1(ti+l) - xn+1(ti)” +
nZk (i1, M} | An s 1 SA(E) SA(T14 1) S An} .

+Y Y M) = A1) A(ti)( var  x, +
nZk {ie{l, e, M} A+ 1 SAID S+ DS} Ay — Agi1 [to.to+8(in)]

+ ovar ox) S A fxo -y + X ( var x, +
[to.t0+3(2n)] nZk [to,to+5(in)]

+ var X,y +  var  x,+  var  X,4q) <
[to,t0+8(2n)] [t0,t0+8(2n)] [to,to+8(2n)1

S lxo =y +4X 10 <2,
nxk
We proved that

var X <e.
[to,t0+5(4x)]
We prove that £(+) is an absolutely continuous function on the interval [t, + (4;),
to + 0(1)]. Since x,(+) is an absolutely continuous function on the interval [0, §,]
then for Ve > 0, 3n > 0 such that for every system of intervals

[t [t Tl s (o + (k) St St .. St

3
A
2}
3
A
<

the following holds

m m

Y1) <n =>j;1 [xut;) = xu(z))]| < l(4k), n < k.

j=1

It follows that for every system of intervals

] [t ] (o +6(4) Sty St <. =1, £ 1, £ 3(1))
holds

Y(i—t)<n=} Z u(t:) = x(zs)|| < &/4.

j=1 n=k (ie{!,,my| n+ 1 S A1) S A1) S An}

We proved that %(+) is an absolutely continuous on the interval [t + 3(4,), to + 8(1)]
and since varg,, . .50, — 0 for k — oo, then it is absolutely continuous on the
interval [1o, 1, + &(1)]. O
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