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i.e. 
u,ve C(RT x [0, t0)) , ut, vt, ux, vx, uxx, vxx e C(RX x (0, t0)) 

satisfying the equations (3.1) together with (3.2) —(3.4) pointwise. 

Definition 1. A domain M c R2 is called an invariant region related to the problem 
(3.1) — (3.4) if the solution (u, v) satisfying the condition 

(3.9) [u°(x), v°(x)] e M for all xeR1 

is bound to remain in M; more specifically, 

(3.10) [u(x,t),v(x,t)]eM for all x e R1 , t e [0, t0) . 

In the present paper, our aim is to establish the following theorem while the 
applications of the result to the time-periodic solutions of a quasilinear damped wave 
equation will be given in [5]. 

Theorem 1. Let the data satisfy the following conditions: As to the function o* 
we require (2.1), (2.2), (2.16), / satisfies (2.11), (3.6), g is as in (3.7), and finally, 
the conditions (3.5), (3.8) hold for u°, v°. 

Moreover, let 

(3.H) i im g'00 = o 
M-oo ^(o')(z) 

hold. 
Then the set Mc defined in Section 2 is an invariant region of the system 

(3.1) —(3.4) whenever the number c is large. The sufficient magnitude of c does not 
depend on s > 0. 

4. THE PROOF OF THEOREM 1 

(A) To begin with, we are going to show that the function U given by (2.10) 
satisfies (3.3). 

To see this, we only have to prove 

(4.1) Jo ^(z, t) dz = 0 for all te [0, t 0 ) . 

In view of (3.2), (3.3), we are allowed to integrate (3.1)! to obtain 

-eait $l
0u(z, t )dz - 0 , t > 0 

dt 

which, combined with (3.8), yields (4.1). 
(B) Assume that Mc is not invariant. Thus, there exists a solution (u, v) of 

(3A) —(3.4) satisfying (3.9) and, for certain (xu t^), Q > 0, we have 

(4.2) [a1 , i?1] e dMc+Q with u1 = u(xu tt) , v1 = v(xt, tx) . 

Moreover, tx > 0 may be found such that (4.2) holds along with 

(4.3) . [u(x,t),v(x,t)]eMc+Q for all x e R1 , t e [0, t j . 
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