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1. INTRODUCTION

It is well-known that a great number of the existence results related to nonlinear
evolution equations leans heavily on certain a priori estimates resulting from the
constraints represented by the equation itself as well as by some boundary or initial
conditions.

The classical maximum principle for linear parabolic problems found its generaliza-
tion in the concept of invariant regions connected with nonlinear parabolic systems
arising frequently as singular perturbations of strictly hyperbolic conservation laws
(see Chueh, Conley, Smoller [1]).

While the many applications in themselves justified the widespread interest in
L -bounds for solutions of parabolic problems, the advantage of the method became
even more transparent in conjunction with the successful treatment of certain non-
linear hyperbolic systems via the compensated compactness method (cf. DiPerna
[3], Serre [7], Rascle [6] etc.).

The present paper attempts to answer similar questions associated with a non-
homogeneous weakly damped wave equation of the form

(1.1) U, +dU, — o(U,), + g(U) = f(x,1), d>0,

the unknown function U = U(x, t) of x€[0,[], tel = R' obeying the Dirichlet
boundary conditions

(1.2) U(0,1) =U(Lt)=0, tel.

The need of L-estimates arises, for instance, when looking for time-periodic or,
more generally, bounded global solutions of (1.1), (1.2) with help of the method
of vanishing viscosity (see [4], [5]).

Let us remark that the existence of invariant regions for the corresponding para-
bolic regularization provides the desired estimates which are uniform in tel = R!.

Note in passing that the results of Dafermos [2] ensure similar bounds on the
compact time-intervals I only.

612



2. GENERAL CONSIDERATIONS

As to the function o: R — R', we suppose that
(2.1) o'(u) 2 6, >0 forall ueR',
(2:2) o"(u)u >0 forall u =0,

o having all prerequisite properties concerning smoothness for the analysis to be
valid.

Strangely enough, even the simplest case g = 0 brings forth unexpectable dif-
ficulties. Indeed, setting (as usual)

U=v, U,=u
we are led to the system
(2.3); U, — v, =0,
(2.3), v, —o(u), + dv — f(x,1) =0

with the parabolic regularization

(2.4), Up = Uy = Elyy,
(2.4), v, —o(u), + dv — f(x, 1) = ev,,, €>0.
Following the line of ideas from [2] we consider a general system
(2.5), u, — vy + o(u, v, x, 1) = u,,
(2.5), v, — o(u), + Y(u, v, x, 1) = ev,,

along with the Riemann invariants
r=r(uv)=0v+ [5(¢')(z)dz,
s =s(u,v) =v— [§ /(") (z)dz.
Now, the results of Chueh, Conley, Smoller [1] imply that the set
M, = {(u, v)l —c < r(u,v), s(u,) <c}, ¢>0

forms an invariant region for the system (2.5) (for the precise definition see Section 3)
whenever the inequality

(2.6) sgn (u) /(0") (u) @(u, v, x, 1) + sgn (v) Y(u, v, x, 1) > 0

holds for all x, t, [u, v] € dM, (cf. Dafermos [2, Formula (1.4)].

Due to the fact that ¢ = 0 in (2.4),, the condition (2.6) does not hold for the
system (2.4) no matter how large the number ¢ may be chosen.

Another choice

U, +dU=v, U, =u
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gives rise to the system
(2.7), u, — v, + du = eu,,,
(2.7), v, — o(u), — f(x, 1) = ev,, .
One observes easily that (2.6) is not satisfied again.
Fortunately, the third possibility seems to guarantee the desirable result. At this
point, we pause in our rigour to make the main ideas clear. The exact proof of a more

general assertion will be given in Section 4.
For 6 > 0 small, constants a,, a,, 0 < a; < a, can be found such that

d=a, +a,, 0=aa,.
Adding the term 6U to both sides of (1.1) and letting

(2.8) U+aU=v, U, =u

we get the regularized system of the form

(2.9), Uy — Uy + AU = gy,

(2.9), v, — o(u), + ap — 6U — f(x, 1) = ev,,

where, according to (1.2),
(2.10) U(x, t) = [gu(z, t)dz .
If we assume
(2.11) [f(x, t)l <fo forall x,t,
the condition (2.6) takes the form
(2.12) a,|u| /(o) (w) + as|v| > 8|f5 u(z, t) dz| + fo
for u, v e M., [u(x, 1), v(x, t)] € M, for all x, 1.
In view of (2.2) we immediately obtain

Lemma 1. Let o satisfy (2.1), (2.2).
Then
(2.13) |u| V(o) (u) + [o] 2 ¢
whenever [u,v] e dM..
Taking Lemma 1 into account we have
as|u| /(0') (w) + azlo| = az¢
for any [u, v] € OM,.
On the other hand, if [u(x, ), o(x, t)] € M, we deduce

IF Y (—c) < [su(z,)dz < I F7(c)
where

@14)  F@W) = f2 (o) ().
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Thus (2.12) reduces to
(2.15) ajc > dlmax {—F (=c), F'(c)} + fo.
Suppose, for example, that

(2.16) llliT V(@) (z) = 0.

Then F~! is sublinear and, consequently, (2.15) holds for ¢ > 0 sufficiently large.
In other words, the set M, is an invariant region for the system (2.9).

3. MAIN RESULTS

Repeating the procedure from Section 2 we can transform the equation (1 .1) to the
system

(3.1), u, — v, + au = gu,,
(3.1), v, — o(u), + ap — U + g(U) — f(x. 1) = v,
where the function U is determined by (2.10).

For later purposes, it seems convenient to work with the functions u, v defined
(and smooth) on the whole real line. With the boundary conditions (1.2) in mind, the
suitable way to achieve this is to consider periodic functions belonging to certain
symmetry classes, namely, we postulate

(3.2) u(x + 2L t) = u(x, 1), u(—x,1)=u(x1),
(3.3) o(x + 2L 1) = v(x, 1), o(—x,1) = —v(x,1)

for all xe R, tel = [0, t,).
The Cauchy data

(3.4) u(x,0) = u%(x), uv(x,0) =0%x), xeR
where (of course)
(3.35) u¥(x + 21) = u®(x), u(—x)=u%x),

Ox +21) = 0%x), v%(=x) = —v%(—x), xeR!
complete the problem (3.1)—(3.4) to be well posed on condition that
(3.6) f(x +2Lt) = f(x, 1), f(=x,1)=—f(x,1),

(3.7) g:R' - R' is smooth with ¢g(—-U) = —g(U),
and, since U(I, t) = 0, :
(3.8) fou®(z)dz =0

(cf. [5]).

As to the solution pair (u, v), we will be interested exclusively in classical solutions,
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u,ve C(R' x [0,10)), 1y, Uy, Uy, Uy, Uy, Ve € C(R' % (0, 15))
satisfying the equations (3.1) together with (3.2)—(3.4) pointwise.

Definition 1. A domain M = R?is called an invariant region related to the problem
(3.1)—(3.4) if the solution (u, v) satisfying the condition

(3.9) [4%(x), v°(x)] e M forall xeR'
is bound to remain in M; more specifically,
(3.10) [u(x, 1).v(x,t)]e M forall xeR', te[0,1,).

In the present paper, our aim is to establish the following theorem while the
applications of the result to the time-periodic solutions of a quasilinear damped wave
equation will be given in [5].

Theorem 1. Let the data satisfy the following conditions: As to the function o
we require (2.1), (2.2), (2.16), f satisfies (2.11), (3.6), g is as in (3.7), and finally,
the conditions (3.5), (3.8) hold for u®, v°.

Moreover, let
(3.11) im 9@ _

Iz1= +/(0")(2)

hold.

Then the set M, defined in Section 2 is an invariant region of the system
(3.1)—(3.4) whenever the number c is large. The sufficient magnitude of ¢ does not
depend on ¢ > 0.

4. THE PROOF OF THEOREM 1

(A) To begin with, we are going to show that the function U given by (2.10)
satisfies (3.3).
To see this, we only have to prove
(4.1) fou(z,t)dz =0 forall te[0,1,).
In view of (3.2), (3.3), we are allowed to integrate (3.1), to obtain
(;ie"l'ﬁ,u(z, 1)dz=0, t>0
t

which, combined with (3.8), yields (4.1).
(B) Assume that M, is not invariant. Thus, there exists a solution (u, v) of
(3.1)—(3.4) satisfying (3.9) and, for certain (x,, t,), ¢ > 0, we have

(4.2) [u', v']eoM, ,, with u' =u(xy, 1), o' =0(xy,tg).
Moreover, ¢; > 0 may be found such that (4.2) holds along with
(4.3 [u(x, 1), v(x,1)]e M ,, forall xeR', te[0,1t].
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Seeing that the situation exhibits certain symmetry we are allowed to restrict
ourselves to the case u!, ! = 0. Consequently,

ru', o'y =c+ o
and, according to (4.3),
(4.4) "xlm.m =0, rxxl(x;,t,) <0,
(4.5) Felery 2 0
r = r(u, v) being viewed as a function of x, t.
Our goal is to show that (4.5) is not possible provided ¢ > 0 is large enough.
Since (u, v) solves (3.1), one obtains
re=rg, + ro, = (o) (u) (v, + (o') () u,) +
+ e(vgy + V(0') () tygy) — azv — ay (o) (u) u +
+ 60U — g(U) + f(x,1).

Now, the relation (4.4) may be rewritten as

re = v+ V(0) () ey = 0,
1 ",
Fax = Uyxx + \/(GI) (u) Uy + 5_, \/Za'()u()u) uil(xl"l) =0

Hence, by virtue of (2.2), we conclude

(4.6) rrlm,n) < —ay' — a; (o) (u') u' + 6U(xy, ty) — g(U(xy, t,)) + fo -
Lemma 1 together with (4.2) imply
(4.7) a' + a, /(o) (u')u' 2 as(c + o).

As a consequence of (4.1), (4.3), we have
IF"'(—c — o) S U(xy, t;) £ IF Y c + o)
(F is determined by (2.14)).

With the desirable relation r,Im‘,,,’< 0 in mind, we only need to estimate the

term g(U(xy, t,)), the sum 6U(x,, 1;) + fo being treated analogously as in Section 2.
We get

lg(U(xy, 1,))| < max {|g(1 F7'(z))| | ze[—c — 0, ¢ + o]} .
Taking (4.7) into account we need to show
(4.8) lim glF71(2) _ 0
|z| = z

With help of the standard L’Hospital rule, the relation (4.8) follows from (3.11).
Thus, we have completed the proof of Theorem 1.
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