Czechoslovak Mathematical Journal

Ján Jakubík

Maximal antichains in a partially ordered set

Czechoslovak Mathematical Journal, Vol. 41 (1991), No. 1, 75-84

Persistent URL:
http://dml.cz/dmlcz/102435

Terms of use:

(C) Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml.cz

MAXIMAL ANTICHAINS IN A PARTIALLY ORDERED SET

JÁn Jakubík, Košice

(Received February 5, 1990)

1. INTRODUCTION

All partially ordered sets dealt with in the present paper are assumed to be finite. Antichains in a partially ordered set are also called Sperner families in the literature. A thorough investigation of combinatorial questions concerning antichains was performed in [3] (including applications in the theory of Boolean functions, data bases, and in other fields).

For a partially ordered set X we denote by $A(X)$ the system of all antichains in X. Next, let $M A(X)$ be the set of all $B \in A(X)$ having the property that for each $C \in A(X)$ with $B \subseteq C$ the relation $B=C$ is valid. The elements of $M A(X)$ are said to be maximal antichains in X.

Each nonempty subset of a partially ordered set is considered to be partially ordered by the inherited relation of partial order.

Let $B_{1}, B_{2} \in A(X)$. We put $B_{1} \leqq B_{2}$ if for each $b_{1} \in B_{1}$ there exists $b_{2} \in B_{2}$ with $b_{1} \leqq b_{2}$. Then $A(X)$ turns out to be a partially ordered set. Hence $M A(X)$ is a partially ordered set as well.

In [1] it has been proved that $M A(X)$ is a lattice and that for each lattice L there exists a partially ordered set Y such that L is isomorphic to $M A(Y)$.

The results on $M A(X)$ were applied in [2] for studying cut-sets of the partially ordered set X.

Let S and S^{\prime} be the partially ordered set in Fig. 1 and Fig. 2, respectively. It is easy to verify that the lattice $M A(S)$ is non-modular and that $M A\left(S^{\prime}\right)$ is distributive.

Fig. 1.

Fig. 2.
(These examples were given in [1].) The partially ordered set S^{\prime} possesses a subset S_{1} which is isomorphic to S, but S_{1} fails to be a convex subset of S^{\prime}.
In [1] it is also pointed out that no internal characterization is known of those partially ordered sets X for which the lattice $M A(X)$ is modular.
In view of the above examples the natural question arises what are the relations between the following conditions for a partially ordered set X :
($\alpha) M A(X)$ is non-modular.
(β) There exists a convex subsystem S_{1} of X such that S_{1} is isomorphic to S.

Fig. 3.

Let S_{2} be the partially ordered set in Fig. 3. Then S_{2} satisfies the condition (β). It can be easily verified that the lattice $M A\left(S_{2}\right)$ is distributive. (This example is due to M. Ploščica.) Hence the implication $(\beta) \Rightarrow(\alpha)$ is not valid in general.

In the present paper it will be proved that the implication $(\alpha) \Rightarrow(\beta)$ always holds.
A convex subset of X which is isomorphic to the partially ordered set in Fig. 1 will be said to be a serpentine subset of X.

Let $\mathscr{C}(X)$ be the set of all chains in X. We put $l(X)=\max \{\operatorname{card} Y: Y \in \mathscr{C}(X)\}$. Next, let $\mathscr{S}(X)$ be the system of all subsets X_{1} of X which have the following properties: (i) there exist A and B in $M A(X)$ with $A \leqq B$ such that $X_{1}=\{x \in X$: there are $a \in A$ and $b \in B$ with $a \leqq x \leqq b\}$; (ii) $l\left(X_{1}\right) \leqq 2$. The elements of $\mathscr{S}(X)$ will be called short subsets of X.

It will be shown that the following conditions are equivalent:
$\left(\gamma_{1}\right)$ The lattice $M A(X)$ is modular.
$\left(\gamma_{2}\right)$ For each short subset X_{1} of X, the lattice $M A\left(X_{1}\right)$ is modular.
Let $y \in X$ and $P \subseteq X$. We shall write $y<{ }_{1} P$ if (a) there exists $p \in P$ with $y<p$, and (b) whenever $p_{1} \in P$ and the elements p_{1}, y are comparable, then y is covered by p_{1}.

Let us denote by $\mathcal{N}(X)$ the set of all triples $\left(P_{1}, P_{2}, P_{3}\right)$ of mutually disjoint subsets of X such that
(i) $P_{2} \neq \emptyset \neq P_{3}$ and each element of P_{2} is covered by each element of P_{3};
(ii) both the sets $P_{1} \cup P_{2}$ and $P_{1} \cup P_{3}$ belong to $M A(X)$.

A serpentine subset S of X will be said to be regular if there exist $\left(B_{1}, B_{2}, A_{2}\right)$ and $\left(B_{1}^{\prime}, B_{2}^{\prime}, A_{2}^{\prime}\right)$ in $\mathscr{N}(X)$ with $B_{1} \neq B_{1}^{\prime}$ and $B_{1} \cup B_{2}=B_{1}^{\prime} \cup B_{2}^{\prime}$ such that (under the
notation as in Fig. 1) we have
(i) $a^{1} \in A_{2}^{\prime}, a^{2}<_{1} B_{1}, a^{2}<_{1} B_{1}^{\prime}, a^{3} \in A_{2}$,
(ii) $b^{1} \in B_{1}, b^{2} \in B_{1}^{\prime}, b^{3} \in B_{1}^{\prime}$,
(iii) a^{2} is incomparable with all elements of $A_{2} \cup A_{2}^{\prime}$.

In a dual way we define the notion of a dually regular serpentine subset in X.
It will be proved that the lattice $M A(X)$ fails to be modular if and only if X possesses either a regular serpentine subset or a dually regular serpentine subset.

2. THE COVERING RELATION

Let X be a partially ordered set. If $x_{1}, x_{2} \in X$ and x_{1} si covered by x_{2}, then we write $x_{1} \prec x_{2}$. The same notation will be used for the covering relation in $M A(X)$.

In this section we shall investigate pairs (A, B) of elements of $M A(X)$ such that $A \prec B$.

Let $A_{0} \in A(X), B \in M A(X), A_{0} \leqq B$. Let us denote by $\mathscr{A}\left(A_{0}, B\right)$ the set of all $A_{1} \in A(X)$ such that $A_{0} \subseteq A_{1} \leqq B$.
2.1. Lemma. Let $C \in \mathscr{A}\left(A_{0}, B\right)$. Assume that for each $C_{1} \in \mathscr{A}\left(A_{0}, B\right)$ with $C \subseteq C_{1}$ the relation $C=C_{1}$ is valid. Then $C \in M A(X)$.

Proof. By way of contradiction, suppose that C does not belong to $M A(X)$. Then there exists $x \in X$ such that $x \notin C$ and x is incomparable with each element of C. Put $C_{1}=C \cup\{x\}$. Hence $C \subset C_{1} \in A(X)$. Thus $C_{1} \notin \mathscr{A}\left(A_{0}, B\right)$. Therefore for each element $b \in B$ the relation $x \not \leq b$ holds.

If x is incomparable with each element of B then $x \in B$ (since $B \in M A(x)$), which is a contradiction. Thus there is $b_{1} \in B$ with $b_{1}<x$. We distinguish the following cases:
(i) There exists $c \in C$ with $b_{1}<c$. Since there is $b_{2} \in B$ with $c \leqq b_{2}$, we obtain $b_{1}<b_{2}$, which is impossible.
(ii) The element b_{1} is incomparable with all elements of C. Then $b_{1} \in C$ and thus $b_{1}<x$ cannot hold.
(iii) There exists $c \in C$ with $c \leqq b_{1}$. Hence $c<x$, which is a contradiction.

The proof is complete.
Now let $A_{0} \in A(X), B_{1} \in M A(X), B_{2} \in M A(X), B_{1} \leqq A_{0} \leqq B_{2}$. We denote by $\mathscr{A}\left(A_{0}, B_{1}, B_{2}\right)$ the set of all $A_{1} \in A(X)$ such that $A_{0} \subseteq A_{1}$ and $B_{1} \leqq A_{1} \leqq B_{2}$.
The proof of the following lemma is analogous to that of 2.1 ; it will be omitted.
2.2. Lemma. Let $C \in \mathscr{A}\left(A_{0}, B_{1}, B_{2}\right)$. Assume that for each $C_{1} \in \mathscr{A}\left(A_{0}, B_{1}, B_{2}\right)$ with $C \subseteq C_{1}$ the relation $C=C_{1}$ is valid. Then $C \in \operatorname{MA}(X)$.
2.3. Lemma. (Cf. [2].) Let $A, B \in M A(X), A \leqq B, b \in B$. Then there exists $a \in A$ such that $a \leqq b$.
2.4. Lemma. Let $A, B \in M A(X), A \prec B$. Let $b \in B \backslash A$ and let a be as in 2.3. Then $a \prec b$.

Proof. By way of contradiction, assume that the relation $a<b$ does not hold. Hence there is $a_{0} \in X$ with $a<a_{0}<b$. Put $A_{0}=\left\{a_{0}\right\}$. There exists $C \in \mathscr{A}\left(A_{0}, A, B\right)$ such that, whenever $C_{1} \in \mathscr{A}\left(A_{0}, A, B\right)$ and $C \subseteq C_{1}$, then $C=C_{1}$. Thus in view of 2.2, C belongs to $M A(X)$. Since $a_{0} \notin A$ and $a_{0} \notin B$ we obtain that $C \neq A$ and $C \neq B$. Hence $A<C<B$, which is a contradiction.
2.5. Lemma. Let us apply the same assumptions and notation as in 2.4. Let $a_{1} \in A \backslash B$, then $a_{1} \prec b$.

Proof. In view of 2.4, it suffices to verify that $a_{1}<b$. Since $a_{1} \notin B$, we have $a_{1} \neq b$. Suppose that $a_{1}>b$; there exists $b_{1} \in B$ with $a_{1}<b_{1}$, and then $b<b_{1}$, which is a contradiction. Next, suppose that a_{1} is incomparable with b. Put $A_{0}=$ $=\left\{a_{1}, b\right\}$. Applying the same argument as in the proof of 2.4 we infer that A fails to be covered by B, which is a contradiction. Hence $a_{1}<b$.
2.6. Lemma. Let the same assumptions as in 2.4 be valid and let us apply the same notation. Let $b_{1} \in B \backslash A$. Then $b_{1} \succ a$.

Proof. According to 2.4 it suffices to show that $b_{1}>a$. The relation $b_{1} \leqq a$ is obviously impossible. If b_{1} is incomparable with a, then we put $A_{0}=\left\{a, b_{1}\right\}$ and proceed as in the proof of 2.4 .
2.7. Lemma. Let $A, B \in M A(X), A \neq B$. Then the following conditions are equivalent:
(i) $A \prec B$;
(ii) $a<b$ for each $a \in A \backslash B$ and each $b \in B \backslash A$.

Proof. The implication (ii) \Rightarrow (i) is obvious. From 2.4, 2.5 and 2.6 we infer that (i) \Rightarrow (ii) holds.
2.8. Corollary. Let $A, B \in M A(X), A \neq B$. Then A is covered by B if and only if $(A \cap B, A \backslash B, B \backslash A)$ belongs to the set $\mathcal{N}(X)$.

3. SHORT SUBSETS OF X

Again, let X be a partially ordered set. In this section we shall deal with elements A, A^{\prime} and B in $M A(X)$ such that $X \neq A^{\prime}, A \prec B$ and $A^{\prime} \prec B$. Let such elements A, A^{\prime} and B be fixed.

Let X_{1} be the set of all elements x_{1} of X having the property that there exists $b \in B$ with $x_{1} \leqq b$. Then we have
3.1. Lemma. $M A\left(X_{1}\right)$ is a principal ideal of the lattice $M A(X)$ with the greatest element B.

Next, since A and A^{\prime} are subsets of X_{1}, we obtain
3.2. Lemma. Assume that $A \wedge A^{\prime}$ fails to be covered by A in $M A(X)$. Then the lattice $M A\left(X_{1}\right)$ is non-modular.

Denote $B_{1}=B \backslash A, B_{2}=B \backslash B_{1}, B_{1}^{\prime}=B \backslash A^{\prime}, B_{2}^{\prime}=B \backslash B_{1}^{\prime}$. In view of 2.7, the relation $A \neq A^{\prime}$ yields that $B_{1} \neq B_{1}^{\prime}$.

Put $A_{2}=A \backslash B$ and $A_{2}^{\prime}=A^{\prime} \backslash B$.
3.3. Lemma. $A_{2} \cap A_{2}^{\prime}=\emptyset$ and $A_{2} \neq \emptyset \neq A_{2}^{\prime}$.

Proof. In view of $B_{1} \neq B_{1}^{\prime}$ we have either $B_{1} \backslash B_{1}^{\prime} \neq \emptyset$ or $B_{1}^{\prime} \backslash B_{1} \neq \emptyset$. In the first case there exists $b_{1} \in B_{1} \backslash B_{1}^{\prime}$. Assume that $a \in A_{2} \cap A_{2}^{\prime}$. Since $a \in A_{2}$, it is incomparable with b_{1}. On the other hand, b_{1} belongs to B_{2}^{\prime} and $a \in A_{2}^{\prime}$; thus $a \prec b_{1}$, which is a contradiction. The case $B_{1}^{\prime} \backslash B_{1} \neq \emptyset$ is analogous.

If we had $A_{2}=\emptyset$, then $A \subseteq B$ and thus $A=B$, which is a contradiction. Therefore $A_{2} \neq \emptyset$. Similarly we obtain $A_{2}^{\prime} \neq \emptyset$.
3.4. Lemma. Let $a_{2} \in A_{2}$ and $a_{2}^{\prime} \in A_{2}^{\prime}$. Then a_{2} and a_{2}^{\prime} are incomparable.

Proof. In view of 3.3 we have $a_{2} \neq a_{2}^{\prime}$. By way of contradiction assume that, e.g., $a_{2}<a_{2}^{\prime}$. There exists $b \in B_{2}^{\prime}$ with $a_{2}^{\prime}<b$. Then $a_{2}<b$ and thus $b \in B_{2}$. Hence according to 2.7 we have $a_{2} \prec b$, which is a contradiction.

Let us denote by Y the set of all elements y of X_{1} such that the following conditions are satisfied:
(i) y is incomparable with all elements of the set $\left(B_{1} \cap B_{1}^{\prime}\right) \cup\left(A_{2} \cup A_{2}^{\prime}\right)$;
(ii) if $b \in B$ and $y \leqq b$, then $y \prec b$.

If $y \in Y$ and if A is as in (ii), then (i) yields that $b \in B_{2} \cup B_{2}^{\prime}$. From this we infer (by applying the same argument as in the proof of 3.4) that either $Y=\emptyset$ or $Y \in A\left(X_{1}\right)$. Hence $C \in A\left(X_{1}\right)$ according to (i), where $C=Y \cup\left(B_{1} \cap B_{1}^{\prime}\right) \cup\left(A_{2} \cap A_{2}^{\prime}\right)$.
3.5. Lemma. $C \in M A\left(X_{1}\right)$.

Proof. We have already observed that $C \in A\left(X_{1}\right)$. By way of contradiction, assume that C does not belong to $M A\left(X_{1}\right)$. Hence there exists $x_{1} \in X_{1} \backslash C$ such that x_{1} is incomparable with each element of C. Since $x_{1} \in X_{1}$, there is $b \in B$ with $x_{1} \leqq b$.

Since x_{1} is incomparable with all elements of $B_{1} \cap B_{1}^{\prime}$, the element b must belong to $B_{2} \cup B_{2}^{\prime}$. If $x_{1}=b$, then x_{1} is comparable with some element of A_{2} or with some element of A_{2}^{\prime}, which is a contradiction. Thus $x_{1}<b$. Hence there exists $y \in X_{2}$ such that $x_{1} \leqq y \prec b$. This implies that y satisfies both the conditions (i) and (ii). Therefore $y \in Y \subseteq C$ and so x_{1} is incomparable with y, which is a contradiction.
3.6. Lemma. $C=A \wedge A^{\prime}$ in $M A\left(X_{1}\right)$.

Proof. Denote $I(A)=\left\{x_{1} \in X_{1}:\left\{x_{1}\right\} \leqq A\right\}$ and let $I(B)$ be defined analogously. Let C_{1} be the system of all maximal elements of the partially ordered set $I(A) \cap I(B)$. In [2] it has been proved that the relation

$$
C_{1}=A \wedge A^{\prime}
$$

is valid in $M A\left(X_{1}\right)$. Thus we have to verify that $C=C_{1}$. Since both C and C_{1} are maximal chains in X_{2} it suffices to show that $C \subseteq C_{1}$.

Let $y \in Y$. We have already observed above that there is $b \in B_{2} \cup B_{2}^{\prime}$ such that $y \prec b$. If y is incomparable with all elements of B_{1}, then it is incomparable with all
elements of A, which is a contradiction (since it is clear that y cannot belong to A). Hence there is $b_{1} \in B_{1}$ such that $y \prec b_{1}$. Analogously there is $b_{1}^{\prime} \in B_{1}^{\prime}$ with $y \prec b_{1}^{\prime}$. Thus $y \in I(A) \cap I(B)$. Next, if $t \in X_{2}$ such that $y \prec t$, then either $t \notin I(A)$ or $t \notin I(B)$. Therefore $y \in C_{1}$.

It is obvious that each element of the set $B_{1} \cap B_{1}^{\prime}$ is maximal in $I(A) \cap I(B)$.
Let $a_{2} \in A_{2}$. There exists $b_{2} \in B_{2}$ with $a_{2} \leqq b_{2}$. Since $B_{2} \subseteq B_{1}^{\prime} \subseteq A^{\prime}$ we obtain that $a_{2} \in I(A) \cap I\left(A^{\prime}\right)$. Let $t \in I(A) \cap I\left(A^{\prime}\right)$ and $t \geqq a_{2}$. Then $t \in I(A)$; but a_{2} is a maximal element in $I(A)$ and hence $t=a_{2}$. Thus $a_{2} \in C_{1}$ and so $A_{2} \subseteq C_{1}$. Similarly, $A_{2}^{\prime} \subseteq C_{1}$, which completes the proof.

The following assertion which was shown to be valid in the above proof will be applied in the next section.
3.6.1. Lemma. Let $y \in Y$. Then there are elements $b_{1} \in B_{1}$ and $b_{1}^{\prime} \in B_{1}^{\prime}$ such that $y \prec b_{1}$ and $y \prec b_{1}^{\prime}$.
3.7. Lemma. $C=A \wedge A^{\prime}$ in $M A(X)$.

Proof. This is a consequence of 3.6 and 3.1.
Let X_{2} be the set of all elements $x_{1} \in X_{1}$ such that there is $c \in C$ with $x_{1} \geqq c$. Then we have
3.8. Lemma. $M A\left(X_{2}\right)$ is a principal filter of $M A\left(X_{1}\right)$ with the least element c.

From 3.8 and 3.2 we infer
3.9. Lemma. Assume that $A \wedge A^{\prime}$ fails to be covered by A in $M A(X)$. Then the lattice $M A\left(X_{2}\right)$ is non-modular.

Also, the construction of C yields
3.10. Lemma. Let P be a chain in X_{2}. Then card $P \leqq 2$.
3.11. Theorem. Let X be a partially ordered set. Then the following conditions are equivalent:
(i) $M A(X)$ is a modular lattice.
(ii) For each short subsystem Z of X, the lattice $M A(Z)$ is modular.

Proof. The implication (i) \Rightarrow (ii) is obvious. Next, (ii) \Rightarrow (i) is a consequence of 3.9, 3.10 and of the corresponding dual results.

4. FURTHER RESULTS ON A, A^{\prime} AND B

Let A, A^{\prime} and B be as in the previous section. Also, the other notation introduced above will be applied here.

Most of the results of the present section have an auxiliary character; they will be used in Section 5 below.

Let us consider the following condition:
(c) Both A and A^{\prime} cover $A \wedge A^{\prime}$ in the lattice $M A\left(X_{1}\right)$.

It is obvious that (c) is equivalent to the condition which we obtain from (c) if X_{1} is replaced by X.
4.1. Lemma. Let $Y=\emptyset$. Then the condition (c) holds.

Proof. We have

$$
C=Y \cup\left(B_{1} \cap B_{1}^{\prime}\right) \cup\left(A_{2} \cup A_{2}^{\prime}\right)
$$

and $C=A \wedge A^{\prime}$ (cf. 3.6).
The relation $Y=\emptyset$ yields that $C=\left(B_{1} \cap B_{1}^{\prime}\right) \cup\left(A_{2} \cup A_{2}^{\prime}\right)$. Hence by 2.7 we infer that $C \prec A$ and $C \prec A^{\prime}$.
4.2. Lemma. $B_{2} \neq \emptyset \neq B_{2}^{\prime}$.

Proof. By way of contradiction, assume that $B_{2}=\emptyset$. Hence $B_{1}=B$ and thus $A=B$, which is impossible. Therefore $B_{2} \neq \emptyset$. Similarly, $B_{2}^{\prime} \neq \emptyset$.

Put $X_{3}=X_{2} \backslash\left(B_{1} \cap B_{1}^{\prime}\right)$. Then X_{3} is a convex subset of X_{2} and $X_{3} \neq \emptyset$. For each $D \in M A\left(X_{2}\right)$ let $p(D)=D \cap X_{3}$. Next, for each $D_{1} \in M A\left(X_{3}\right)$ put $p^{\prime}\left(D_{1}\right)=$ $=\left(B_{1} \cap B_{1}^{\prime}\right) \cup D_{1}$. The following result is easy to verify.
4.3. Lemma. For each $D \in M A\left(X_{2}\right)$ and each $D_{1} \in M A\left(X_{3}\right)$ we have $p(D) \in M A\left(X_{3}\right)$ and $p^{\prime}\left(D_{1}\right) \in M A\left(X_{2}\right)$. Next, p is an isomorphism of $M A\left(X_{2}\right)$ onto $M A\left(X_{3}\right)$, and p^{\prime} is an isomorphism of $M A\left(X_{3}\right)$ onto $M A\left(X_{2}\right)$ which is inverse to p.

The above lemma shows that, when investigating the lattice-theoretic properties of $M A\left(X_{2}\right)$, it suffices to assume that the relation

$$
B_{1} \cap B_{1}^{\prime}=\emptyset
$$

is valid. In the present section this relation will be always supposed to hold.
4.4. Lemma. $B_{1} \neq \emptyset \neq B_{1}^{\prime}$.

Proof. In view of the symetry it suffices to verify that $B_{1} \neq \emptyset$. By way of contradiction, assume that $B_{1}=\emptyset$. Then $B_{1}^{\prime} \neq \emptyset$. Next, $B_{2}=B$ and thus $A_{2}=A$.

According to 4.2 and 3.3 we have $B_{2}^{\prime} \neq \emptyset$ and $A_{2}^{\prime} \neq \emptyset$, thus there are $a_{2}^{\prime} \in A_{2}^{\prime}$ and $b_{2}^{\prime} \in B_{2}^{\prime}$ with $a_{2}^{\prime} \prec b_{2}^{\prime}$. If $a \in A$, then $a \prec b_{2}^{\prime}$, hence the elements a_{2}^{\prime} and a are either equal or incomparable. Lemma 3.3 yields that $a \neq a_{2}^{\prime}$; therefore a_{2}^{\prime} is incomparable with each element of A. Hence A fails to be a maximal antichain in X_{2}, which is a contradiction.

Now, 4.2 and 4.4 yield

4.5. Corollary. card $B \geqq 2$.

4.6. Proposition. Let card $B=2$. Then the condition (c) holds.

Proof. Let $B=\left\{b_{1}, b_{2}\right\}$. In view of 4.2 and 4.4 we can assume that $B_{1}=\left\{b_{1}\right\}$ and $B_{2}=\left\{b_{2}\right\}$. Similarly, both B_{1}^{\prime} and B_{2}^{\prime} are one-element sets. If $B_{1}^{\prime}=B_{1}$, then $A=A^{\prime}$, which is a contradiction. Hence $B_{1}^{\prime}=\left\{b_{2}\right\}$ and $B_{2}^{\prime}=\left\{b_{1}\right\}$.

The set A_{2} consists of all elements of X_{2} which are covered by b_{2} and are incomparable with b_{1}; the set A_{2}^{\prime} has analogous properties (with b_{1} and b_{2} interchanged).

Next, Y is the set of all elements of X_{2} which are covered by both b_{1} and b_{2} (cf. 3.6.1). By 3.6,

$$
A \wedge A^{\prime}=Y \cup A_{2} \cup A_{2}^{\prime}
$$

Now from 2.7 it follows that $C \prec A$ and $C \prec B$, which completes the proof.
By applying a dual argument we obtain the following result.
4.7. Lemma. Let $A_{1}, A_{1}^{\prime}, B_{1}$ be elements of $M A(X)$ such that $A_{1} \neq A_{1}^{\prime}, B_{1} \prec A_{1}$ and $B_{1} \prec A_{1}^{\prime}$. Assume that $\operatorname{card} B=2$. Then both A_{1} and A_{1}^{\prime} are covered by $A_{1} \vee A_{1}^{\prime}$ in $M A(X)$.

Let C be as in Section 2; i.e., $C=A \wedge A^{\prime}$. Since A and A^{\prime} are incomparable, there exist A_{1} and A_{1}^{\prime} in $M A\left(X_{2}\right)$ such that $C \prec A_{1} \leqq A$ and $C \prec A_{1}^{\prime} \leqq A^{\prime}$. Let such A_{1} and A_{1}^{\prime} be fixed.
4.9. Lemma. card $C \geqq 2$.

Proof. This can be obtained from 4.5 by applying duality (if we consider the elements A_{1}, A_{1}^{\prime} and C instead of A, A^{\prime} and B).
4.9. Proposition. Let card $C=2$. Then (c) holds.

Proof. Clearly $Y \cap A_{2}=Y \cap A_{2}^{\prime}=\emptyset$. Hence according to 3.3 we have also $A_{2} \cap A_{2}^{\prime}=\emptyset$. Thus 4.2 and 3.3 yield that card $A_{2}=\operatorname{card} A_{2}^{\prime}=1$. Therefore $Y=\emptyset$ and by 4.1, the condition (c) is valid.

5. NON-MODULARITY

Assume that A, A^{\prime} and B are as above. We also suppose that the relation $B_{1} \cap B_{1}^{\prime}=$ $=0$ is valid.
5.1. Lemma. Assume that $y<b_{1}$ for each $y \in Y$ and each $b_{1} \in B_{1}$. Then $C \prec A$.

Proof. Let $C_{1} \in M A(X), C<C_{1} \leqq A$. Let $a_{2} \in A_{2}$. Hence $a_{2} \in C$ and thus there exists $c_{1} \in C_{1}$ with $a_{2} \leqq c_{1}$. Next, there is $a \in A$ with $c_{1} \leqq a$. Hence $a_{2} \leqq a$, which implies that $a_{2}=a$. Therefore $A_{2} \subseteq C_{1}$.

There exists $c_{2} \in C_{1} \backslash C$. Thus we rust have $c_{2} \in B$. Next, c_{2} must be incomparable with all clements of A_{2} and hence $c_{2} \in B_{1}$. This implies that $\left.c_{2}\right\rangle y$ for each $y \in Y$; therefore $Y \cap C_{1}=\emptyset$.

Assume that $C_{1}<A$. Thus thicre exists $a \in A \backslash C_{1}$. Hence $a \in B_{1}$. There exists $c_{1}^{\prime} \in C_{1}$ with $c_{1}^{\prime} \prec a$. The clement c_{1}^{\prime} cannot belong to $Y \cup A_{2}$, thus $c_{1}^{\prime} \in A_{2}^{\prime}$. Then c_{1}^{\prime} is covered by each element of B_{2}^{\prime}. In particular, c_{1}^{\prime} is covered by c_{2}, which is a contradiction. Therefore $C \prec A$.

For each $y \in Y$ let $B_{1}(y)$ be the set of all elements $b_{1} \in B_{1}$ such that y is not covered by b_{1}. Let $B_{1}^{\prime}(y)$ be defined analogously.
5.2. Lemma. Assume that (c) does not hold. Then there exists $y \in Y$ such that either $B_{1}(y) \neq \emptyset$ or $B_{1}^{\prime}(y) \neq \emptyset$.

Proof. According to 4.1 we have $Y \neq \emptyset$. If $B_{1}(y)=B_{1}^{\prime}(y)=\emptyset$ for each $y \in Y$, then from 5.1 we infer that (c) holds, which is a contradiction.
In 5.3 and 5.4 we suppose that the condition (c) does not hold. Hence in view of 5.2 we can assume without loss of generality that $B_{1}^{\prime}\left(y_{1}\right) \neq \emptyset$ for some $y_{1} \in Y$.
5.3. Lemma. There exist distinct elements $a^{1} \in A_{2}^{\prime}, a^{2} \in Y, a^{3} \in A_{2}, b^{1} \in B_{1}^{\prime}$ and $b^{3} \in B_{1}^{\prime}$ such that the relations

$$
\begin{equation*}
a^{1} \prec b^{1} \succ a^{2} \prec b^{2} \succ a^{3} \prec b^{3} \tag{*}
\end{equation*}
$$

are valid.
Proof. As we already mentioned above we assume that there is $a^{2} \in Y$ such that $B_{1}^{\prime}\left(a^{2}\right) \neq \emptyset$; thus there is $b^{3} \in B_{1}^{\prime}\left(a^{2}\right)$. In view of 3.6.1 there are $b^{1} \in B_{1}$ and $b^{2} \in B_{1}^{\prime}$ with $a^{2} \prec b^{1}$ and $a^{2} \prec b^{2}$. Thus $b^{2} \neq b^{3}$. Next, the relation $B_{1} \cap B_{1}^{\prime}=\emptyset$ yields that $b^{2} \neq b^{1} \neq b^{3}$.

From 3.3 we infer that $A_{2} \neq \emptyset \neq A_{2}^{\prime}$. Hence there are $a^{1} \in A_{2}$ and $a^{3} \in A_{2}^{\prime}$. Then the elements a^{1}, a^{2}, a^{3} are distinct. It is clear that $a^{i} \neq b^{j}$ for each $i, j \in$ $\in\{1,2,3\}$.

Since $B_{1} \cap B_{1}^{\prime}=\emptyset$, we have $B_{1} \subseteq B_{2}^{\prime}$ and thus $a^{1} \prec b^{1}$. Similarly $B_{1}^{\prime} \subseteq B_{2}$ and hence $a^{3} \prec b^{2}, a^{3}<b^{3}$. Therefore the relations (*) hold.
If u and v are incomparable elements of X, then we write $u \| v$.
5.4. Lemma. Let a^{i} and $b^{i}(i=1,2,3)$ be as in 5.3 and let S be the set consisting of these elements. Then S is a regular serpentine set in X.

Proof. It is obvious that S is a convex subset of X. From $b^{3} \in B_{1}^{\prime}\left(a^{2}\right)$ we obtain that $a^{2} \| b^{3}$. Next, from $a^{1} \in A_{2}^{\prime}$ and $b^{2} \in B_{1}^{\prime}$ it follows that $a^{1} \| b^{2}$ holds. Hence S is a serpentine subset of X. Thus by 5.3 and 3.6.1, S is a regular serpentine subset of X.
5.5. Corollary. Assume that the condition (c) does not hold. Then X possesses a regular serpentine subset.

Let (c^{\prime}) be the condition dual to (c). From 5.5 we obtain by duality:
5.6. Corollary. Assume that the condition (c^{\prime}) does not hold. Then X possesses a dually regular serpentine subset.
5.7. Corollary. Assume that the lattice $M A(X)$ is not modular. Then X possesses either a regular serpentine subset or a dually regular serpentine subset.
5.8. Lemma. Let S be a regular serpentine subset of X. Under the notation as in Section 1, let $B=B_{1} \cup B_{2}, A=B_{1} \cup A_{2}$ and $A^{\prime}=B_{1}^{\prime} \cup A_{2}^{\prime}$. Then the condition (c) fails to be valid in $M A(X)$.

Prooif. Let us apply the notation from the definition of the regular serpentine subset. We also the other notation concerning A, A^{\prime} and B which was introduced above. According to 1.7 , the relations $A \prec B$ and $A^{\prime} \prec B$ hold. We have to verify that (c) fails to be valid in the lattice $M A\left(X_{2}\right)$. Similarly as in the above investigation it suffices to assume that $B_{1} \cap B_{1}^{\prime}=\emptyset$.

Let Y_{1} be the set of all $y \in Y$ such that y is incomparable with all elements belonging to $B_{1}^{\prime}\left(a^{2}\right)$. Denote

$$
C_{1}=A_{2}^{\prime} \cup Y_{1} \cup B_{1}^{\prime}\left(a^{2}\right) .
$$

Then $Y_{1} \neq \emptyset\left(\right.$ since $\left.a^{2} \in Y_{1}\right)$, and also $B_{1}^{\prime}\left(a^{2}\right) \neq \emptyset\left(\right.$ since $\left.b^{3} \in B_{1}^{\prime}\left(a^{2}\right)\right)$. Next, $C_{1} \in A(X)$ and $C \leqq C_{1} \leqq A^{\prime}$. Finally, each element of c_{1} belongs either to C or to A^{\prime}.

Suppose that $C_{1} \notin M A\left(X_{2}\right)$. Thus there exists $z \in X_{2} \backslash C_{1}$ such that z is incomparable with all elements of C_{1}, and there are $z_{1} \in C, z_{2} \in A^{\prime}$ with $z_{1} \leqq z \leqq z_{2}$.

First suppose that $z_{1}=z_{2}$. Then $z \in B_{1}^{\prime}$. The case $z \in B_{1}^{\prime}\left(a^{2}\right)$ is impossible, since $B_{1}^{\prime}\left(a^{2}\right) \subseteq C_{1}$. Thus $z \in B_{1}^{\prime} \backslash B_{1}^{\prime}\left(a^{2}\right)$ and hence $z \succ a^{2} \in C_{1}$, which is a contradiction.

Hence $z_{1}<z_{2}$. Thus $z_{1} \prec z_{2}, z_{2} \in B_{1}^{\prime}$ and $z_{1} \in Y \cup A_{2}$. Next, either $z=z_{1}$ or $z=z_{2}$. We have already observed that $z \in B_{1}^{\prime}$, hence $z \neq z_{2}$. Thus $z=z_{1}$. If $z \in A_{2}$, then $z \prec b^{3} \in B_{1}^{\prime} \subseteq A_{2}$, which is impossible, since $b^{3} \in C_{1}$. Therefore $z \in Y \backslash Y_{1}$. But in this case z is covered by some element belonging to $B_{1}^{\prime}\left(a^{2}\right) \subseteq C_{1}$, which is a contradiction. Thus $C_{1} \in M A(X)$. Now, since $C \neq C_{1} \neq A^{\prime}$, we obtain that $C<C_{1}<A^{\prime}$. Hence the condition (c) fails to be valid.

The following result can be proved by a dual investigation.
5.9. Lemma. Let S be a dually regular serpentine subset of X. Then (under the notation analogous to those in 5.8) the condition (c') fails to be valid in $M A(X)$.
Summarizing 5.7, 5.8 and 5.9 we conclude:
5.10. Theorem. Let X be a finite partially ordered set. Then the following conditions are equivalent:
(i) The lattice $M A(X)$ fails to be modular.
(ii) X possesses either a regular serpentine subset or a dually regular ser pentine subset.

References

[1] G. Behrendt: Maximal antichains in partially ordered sets. Ars combinatoria 25C, 1988, 149-157.
[2] G. Behrendt: The cutset lattice of a partially ordered set. Preprint.
[3] K. Engel, H. D. O. F. Gronau: Sperner Theory in Partially Ordered Sets, Teubner Verlag, Leipzig 1985.

Author's address: 04001 Košice, Grešákova 6, Czechoslovakia (Matematický ústav SAV, dislokované pracovisko).

