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Czechoslovak Mathematical Journal, 41 (116) 1991, Praha 

ON VARIETIES OF REGULAR *-SEMIGROUPS 

BEDŘiCH PoNDĚLÍČEK, Praha 

(Received March 6, 1990) 

The aim of this paper is to describe all varieties of regular *-semigroups whose 
tolerance (congruence) lattices are modular, distributive or boolean, respectively. 

1. PRELIMINARIES 

By a regular *-semigroup we shall mean (see [1]) an algebra Sř = (S, •, *) where 
(S, •) is a semigroup and * is a unary operation on S satisfying the following 

(1) (jc*)* = x , 

(2) x = xx*x , 

(3) (xy)* = J*x* . 

By W (i = j) we denote the variety of all regular *-semigroups satisfying the 
identity i = j . Terminology and notation not defined here may be found in [2] 
and [3]. 

Lemma 1. W(xx* = yy*) = W(xx* = xyy*x*) n W(xx* = x*x). 
Proof. It follows from (1), (2) and (3) that W(xx* = yy*) <= W{xx* = 

= (xy) (xy)*) = W(xx* = xyy*x*) and W(xx* = yy*) £ W(xx* = x*(x*)*) = 
= W(xx* = x*x). Let Sř є W(xx* = xyy*x*) n W(xx* = x*x). According to ( l) , 
(2) and (3), in Sř we have xx* = xy*yx* = (xy*) (xy*)* = (x^*)* (xy*) = yx*xy* = 
= yy*-

Lemma 2. W(xx* = xyx*) = W(xx* = xyy*x*) n W(x2 = x). 
Proof. It is clear that W(xx* = xyx*) s W(xx* = xyy*x*). By (2) we have 

W(xx* = xyx*) <= W(xx* = xxx*) <= PF(xx*x = xxx*x) = W(x = x2). Let ^ є 
є Pf(xx* = xyy*x*)n W(x2 = x). According to (l),.(2) and (3), in Sf we obtain 
xx* = x(xy*) (yx*)* x* = (xj;x*) (xy*x*) = (xjx*)2 (xy*x*) = 
= (xyx*) x(yx*xj*) x* = x,yx*xx* = xyx*. 

Lemma 3. Lef Sř2 = (S2, *, *) be a two-element regular *-semigroup withthe 
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tables (S2 = {0, 1}) 

• 
1 
О 

1 О 
1 О 
О О 

* 
1 
О 

1 
о 

A variety V of regular *-semigroups does not contain У2 tf and only if V = 
= W(xyy*x* = xx*). 

Proof. Clearly Sf2 Ф W(xyy*x* = xx*). 
Suppose that V J W(xyy*x* = xx*). Then there exists a regular *-semigroup 

from Fcontaining two elements u, v such that uvv*u* Ф uu*.Put a = uu*, b = vv*. 
It follows from (1), (2) and (3) that a = a2 = a*, b = b2 = b*, (ab)* = ba, 
(ab)2 = ab, (bay = ab, (ba)2 = ba and a Ф aba. Let Sf = (S, •, *) be a regular 
*-semigroup generated by a and b. Clearly Sf є V. It is easy to show that / = bS u 
u Sb u SbS is an ideal of the semigroup (S, •), S\I = {a) and the Rees' factor 
semigroup Sf\l is isomorphic to £ř2. Therefore £f2 є V. 

Lemma 4. Let e9%. = (S4 , •, *) be a four-element regular *-semigroup with the 
tables (S4 = {e,f, efJe]) 

• I e f ef fe * I 
e 
f 
ef 
fe 

e ef ef e 
fe f f fe 

e ef ef e 
fe f f fe 

e 
f 
ef 
fe 

f 
e 

ef 
fe 

A variety Vof regular *-semigroups does not contain £ť2 and У 4 if and only if 
V = W(xx* = yy*). 

Proof. Clearly ^ 2 , Sri ф W(xx* = yy*). 
Suppose that V J W(xx* = yy*). It follows from Lemma 1 that V Í W(xx* = 

= xyy*x*) or V J W(xx* = x*x). If V J Pf(xx* = xyy*x*), then by Lemma 3 
we obtain У 2

 є ^ We can assume that V s£ Pf(xx* = x*x) and F c H^(xx* = 
= xyy*y*). Then there exists a regular *-semigroup ^7 = (S, •, *) from Fgenerated 
by element a such that aa* Ф a*a. We shall show that {aSa, aSa*, a*Sa, a*Sa*} 
is a decomposition of S and so ^ 4 is a homomorphic image of Sr^ hence we have 
c9̂ 4 є V. Assume by way of contradiction that aS n a*S ф 0. Then au = a*v for 
some u, v e S. By (3) and (l) we have aa* = auu*a* = au(au)* = a*y(a*t1)* = 
= a*tw*a = a*a, а contradiction. Therefore a S n a*5 = 0 and dually we have 
Sa n Sa* = 0. 

2. TOLERANCE AND CONGRUENCE LATTICES 

For any regular *-semigroup Sf = (S, •, *) by 9*~ we denote the semigroup (S, •). 
Recall that a tolerance on the semigroup <9̂ " is a reflexive and symmetric subsemi-
group of the direct product ^ " x 5^~. By T o l ( ^ " ) we denote the lattice of all 
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tolerances on Sř~ with respect to set inclusion (see [4] and [5]). Denote by v or л 
the join or meet in Tol (Sř~~\ respectively. The meet evidently coincides with the set 
intersection. For M Ç S x S we denote by T&-(M) (or simply T(M)) the least 
tolerance on Sř~ containing M. It is easy to show the following: 

(4) (x, y) e T(M) if and only if x == xtx2 . . . xm and y = yty2 • •. ym 

where either (xh Уі) e M or (yh x t) є M or xt = yt e S for 

i = 1, 2, . . . , m . 

(5) AvB=T(AuB) forany 4 , В є Т о 1 ( ^ ~ ) . 

For M c 5 x S by M* we denote the set {(x*,y*); ( x , y ) e M ) , where ^ = 
= (S, •, *) is a regular *-semigroup. Using (3) we obtain Л* є Tol (Sř~) whenever 
Л cTol (<^"). It is easy to show that for any A, B e Tol (Sř") we have 

(6) (A*)* = Л , 

(7) (A л Б)* = A* A B* , 

(8) (A v B)* = Л* v £* . 

Evidently Л = A* if and only if A is a tolerance on the regular *-semigroup Sř. It 
follows from (6), (7) and (8) that Tol (Sř) = {A = A*, A e Tol (Sř~)} is a sublattice 
ofthelatt ice Tol(Sf'). 

By Con (Sř~) we denote the lattice ofall congruences on a semigroup Sř~ = (S, •). 
Clearly Con (Sř~) is a subset of the lattice Tol (Sř~\ but it need not be a sublattice 
of T o l ( ^ " ) . For any regular *-semigroup Sř = (<S, % *) C o n ( ^ ) = C o n ( ^ ~ ) n 
n Tol (<9*) is a sublattice of the lattice Con (Sř~). Evidently Con (<9̂ ) is a lattice of 
all congruences on regular *-semigroup Sř. We have the following diagram: 

Tol(^") 
o 

sublatt ice/ \ subse t 

(9) T o l ( ^ ) o oCon(^ 7 - ) 
X 7r 

s u b s e t 4 ^ /^sublattice 
o 

Con (Sř) 

Theorem 1. Thefollowingconditionsfor a variety Vof regular *-semigroups 
are equivalent: 

1. F ç W(xx* = yy*). 
2. Con (Sř) = Tol (Sř~) for all Sř є V. 
3. Con (Sř) is a sublattice of Tol (Sř~) for all Sř e V. 
4. Con (Sř) is a sublattice of Tol (Sř) for all Sř є V. 
5. Con (Sř~) is a sublattice of Tol (Sř~) for all Sř є V. 
6. Con (Sř) is a sublattice of Tol (Sř) for all Sř e V. 
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Proof. 1 => 2 => 3, 4, 5, 6. It is clear that W(xx* = yy*) is the variety of all 
groups and it is well known that Con (<9*) = Tol (9~) for every group 9*. 

4 => 3, 5 => 3 and 6 => 3. Apply (9). 
3 => 1. Suppose that C o n ( ^ ) is a sublattice of T o l ( ^ " ) for every Sf from K 

We shall prove that <9̂ 2> ̂ 4 £ ^(see Lemmas 3 and 4). 
Assume by way of contradiction that ^ 2 є V. Then 5^2 x <^2 є У anc* so F 

contains a chain # of order 3. It is easy to verify that Con (^) is not sublattice of 
To l (*" ) . Consequently S?2 ф V. 

Now suppose that У4 є V. Thus we have £f4 x У4 e V. Put A = {((a, b), (a, v)); 
a, b, v є S4} and B = {((a, b)-, (u, b)); a, b, u є S4}. It is clear that A, B e 
є Con (Sf4 x e^4). Let us put ß = A v B in Tol ( 5 ^ x Sřl). By our assumption 
we have ß є Con (5% x a%). Evidently ((e/, e/), (e/,/e)) є Л c ß , ((e/,/e), (/*,/e)) є 
є Б c ß and so ((ef, ef), (fe,fe)) є ß . According to (5) and (4) we have ((ef, ef), 

m 

(fe,fe)) = П ( ( ^ А ) > (ui>vd) w h e r e ((<*i>bi), (uhVi))eAuB. Then a t = щ or 
i = l 

Z?! = v^. Consequently/e є eS4 or efefS4, which is impossible. Therefore Sř4 ф V. 
According to Lemma 4 we have V Ç W(xx* = yy*). 

Theorem 2. Thefollowing conditionsfor a variety Vof regular *-semigroups are 
equivalent: 

1. V^ W(xx*x*x = x*xxx*). 
2. Con ( ^ ) = Con {9>-) for all 9 є V. 
Proof, l = > 2 . Suppose that К д Ж ( х х * Л = х * т * ) . Let У є К а п а Л є 

є Con (£f~). First we shall show that 

(10) (a*,e)eA whenever (a,e)eA and e2 = e. 

Assume that (a, e) є A with e2 = e. This implies (a2, e) є Л and (a2, a) є A Ac­
cording to (2) and (1), we have a2 = (aa*a)2 = a(a*aaa*) a = a(aa*a*a) a and 
so (a2a*a*a2, e) e A. Thus we obtain (a*#aa*, e) = (aa*a*a, e) e A and so (a*, e) = 
= (a*aa*, e) eA. 

Now we shall prove the following 

(11) (a,b)eA implies ( а * , Ь * ) є Л . 

According to (2), we have (bb*)2 = bb* and so, by (10), (l) and (3), we obtain 
(a, b) e A => (ab*, bb*) e A => (ba*, bb*) є A => (ba*, ab*) є A. Analogously we can 
show that (a, b) e A implies (a*b, b*a) e A. It follows from (2) that (a, b) є A => 
=> ((a*b) a*(ba*), (b*a) a*(ab*)) є 4 => (a*, b*ab*) = (a*aa*aa*, b*aa*ab*) є А => 
=> (a*, b*) = (a*, b*fcb*) є Л. 

It follows from (11) that A = A* and so Con (У~) Ç Con ( ^ ) . According to (9), 
we get Con (У) = Con {&). 

2=> 1. Suppose that Con(<?7) = C o n ( ^ ' ) for all &eV. Assume by way of 
contradiction that there is a regular *-semigroup from V such that (aa*) (a*a) Ф 
Ф (a*a) (aa*) for some its element a. Let us put e = aa* and / = a*a. It follows 
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from (2) and (3) that e = e2 = e*, f = p = /* ? ef = <>/(<?/)* ef = ef(fe) ef = 
= (effJe = {fe)2 and e/ Ф fe. By ^ = (s , % *) we denote the regular *-semigroup 
generated by e and / . Clearly £f є V. 

Now, we shall show that eSnfS = 0. Assume by way of contradiction that 
eS n fS ф 0. Then we have b = eu = fv for some u, v є S. Hence b = eb = / ò and 
so ЬЬ* = еЬЬ* = fbb*. By (3) and (l) we have ЬЬ* = (ЬЬ*)* = bb*e = bfr*/. 
Therefore ЬЬ* = сЬЬ* = bb*c for every c є S. Then we have e/ = (eff є Sbb*S = 
= {feb*} for some positive integer n and so e/ = bò* = (ЬЬ*)* = fe, a contradiction. 

We have eS n / 5 = 0. Let us put (u, v) є A if and only if either w, v є eS or u, y e 
efS. It is clear that A є Con (5^"). By our assumption we have A e Con (Sř) and 
so (e, ef) e A implies (e,fe) = (e*, (ef)*) e A, which is a contradiction. 

Hence we get V £ W(xx*x*x = x*xxx*). 

Theorem 3. The following conditions for a variety V of regular *-semigroups 
areequivalent: 

1. V^ W(xx* = yy*) or V £ W(x* = x")for some positive integer n. 

2. Tol (6r) = Tol ( ^~) /o r a// ^ є V. 
Proof. 1 => 2. Apply Theorem 1. 
2 => 1. Suppose that Tol ($r) = Tol (Sř~) for all 9> e V. Then clearly Con (6r) = 

— Con (<^") for all <^ є V. According to Theorem 2, we have 

(12) V Я W(xx*x*x = x*xxx*) . 

Assume by way of contradiction that V J W(xx* = yy*) and F J W(x* = xn) 
for all positive integer n. It follows from Lemma 4 that either ^г є V or <9% є V. 
Clearly ^ 4 ^ ^ ( x x * x * x = x*xxx*) and so, by (12), we have У2

Є У- Therefore 
£f2 x ^2 є V and so <^3 є K, where Уъ = (S3 , % *) is a three-element regular 
*-semigroup with the tables (S3 = {e,/ , 0}) 

* 
e 
/ 
0 

e 
f 
0 

• 
e 
f 
0 

e / 
e 0 
0 / 
0 0 

0 
0 
0 
0 

For any positive integer n there exists a regular *-semigroup 0>n = (P,„ •, *) such 
that 0>n є V and 0>n ф W(x* = хи). Therefore a* Ф a£ for some element an e Pn. 

GO 

It is easy to show that the direct product &> = X 0>n belongs to Fand a* Ф an for 
W = 1 

all positive integer w, where я = (a,, a2, •••» ^n •••)• Tet Л = T((a, e), (a*,f)) be 
the tolerance on ^ " x ^ 3 " generated by ((a,e), {a*,f)). Evidently 0> x <?ъе V 
and so by our assumption we have AeTol(^^ x 5^J) = T o l ( ^ x ^ 3 ) . Hence 
Л* = Л and (1), (4) imply ((a*, e), (a , / ) ) = ((a, e), (a*,/))*" = (( a , e ) , (a* , / ) )* 
for some positive integer m. Consequently a* = am, which is а contradiction. 
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3. MODULARITY 

Theorem 4. The following conditions for a variety V of regular *-semigroups 
are equivalent: , l ; 

1. V^ W(xyy*x* = xx*). 
2. The lattice Tol(<9^") is modularfor all £fe V. 
3. The lattice Tol (У) is modularfor all £f є v. 
Before the proof we formulate two lemmas. Recall that an idempotente ofa řegular 

*-semigroup £f is said to be a projection if e* = e. It follows f rom( l ) , ( 2 ) and (3 ) 
that xx* is a projection for every element x of Sf. 

Lemma 5. Let 9* є W(xyy*x* = xx*). Thenfor every element x ofšřqndevery 
projection e of 9 we have 

xex* = xx* . : : 

Lemma 6. Let SfeW(xyy*x* = xx*) and Л , В є Т о 1 ( ^ ~ ) . Thenfôrevery 
projectioneofčťwehave 

(i)AB = A(e,e)B, ^ Ч j 

(ii) (e, e) A(e, e) = (e, e) A*(e, e), 
(iii) (e, e) AB(e, e) = (e, e) £Л(е, e). , , '".* 
Proof, (i) Assume that (a, c) є A and (b, d) є Б. Then by (l), (2) and Ьещта 5 we; 

have (а, с) (Ь, d) = (a, c) (bb*c*c, bb*c*c) (e, e) (c*c, c*c) (b, d) e A(e, e) B. Therefore, 
AB c A(e,e)B £ ЛБ. 

(ii) and (iii). First we shall show the following l 

(13) (e,e)AB(e,e) = (e,e)B*A*(e,e). 

Suppose that (a, c) є A and (b, d) є Б. According to (l), (2) and Lçmma 5, 
we obtain (e, e) (a, c) (b, d) (e, e) = (e, e) (ecde, ecde) (d*, b*) (c*, a*) (eabe,eabe) . 
. (e, e) є (e, e) В*Л*(е, e). Thus we have (e, e) AB(e, e) Ç (e, e) B*A*(e, e). Analo­
gously we can show that (e, e) B*A*(e, e) c (e, e) AB(e, e). 

If we put B = id = B* then (13) yields (e, e) A(e, e) £ (e, e) AB(e, e) = 
= (e, e) B*A*(e, e) Ç {e, e) A*(e, e). Analogously we can get (e, e) A*(e,e) £ 
£ (e, e) Л(е, è). 

Finally, using (13) and (i) and (ii) of Lemma 6 we have (e, e) AB(e, e) = (e, e) . 
. B*(e, e) A*(e, e) = (e, e) B(e, e) A(e, e) = (e9 e) BA(e, e). 

Proof of T h e o r e m 4. 1 =>2. Suppose that SfeW(xyy*x* = х х * ) , ^ £ , € є 
eTol (c^" ) and A <= C. 

First, we shall show that ! 

(14) ABAB с Л Б . . v 

Indeed, by Lemma 6, we have ABAB = ѵ4(е,е)ВЛ(е,е)В = A(e,e)AB{e,e)B^ 
Ç ЛБ. 
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Now, we shall prove the following inclusions: 

(15) AB n C s A(B n C) , 

(16) BA n C <= (B n С) Л , 

(17) ABA n С с Л(Б n С) Л and 

(18) БЛБ n C <= (B n С) А(Б n C) . 

Inclusion (15). Let (x, у) є AB n C. Then by Lemma 6, we have (x, >y = 
= (a, c) (eb, ed), where (a, c) є A, (eb, ed) є Б and e is a projection of У. It follows 
from (1), (2), Lemma 5 and Lemma 6 that (eb,ed) = (ea*e,ec*e)(x,y)e(e,e). 
. A*(e, e) C = (e, e) A(e, e) C ç C. 

Inclusion (16), This is dual to (15). 

Inclusion (17). Let (x, y) e ABA n C. According to Lemma 6, we obtain (x, y) = 
= (ue, ve) (a, c), where (ue, ve) e AB, (a, c) e A and e is a projection of У . It follows 
from (1), (2), Lemma 5 and Lemma 6 that (ue, ve) = (x, y) (ea*e, ec*e) є C(e, e) . 
.A*(e,e) = C(e,e)A(e,e)^C. From (15) we have (ue,ve)eA(BnC) and so 
(x, у) є A(B n C) A. 

Inclusion (18). Let (x, у) є BAB n C. Then, by Lemma 6, we have (xx*e, ^y*e) є 
є CC*(e, e) = C(e, e) C*(e, e) = C(e, e) C(e, e) Ç C. Further we obtain (x, y) e 
є (b, d) AB, where (b, d) є В and so, by (3), Lemma 5 and Lemma 6, we get 
(xx*e, yy *e) = (bb*e, dd*e) є BB*(e, e) £ Б. According to Lemma 5, (l) and (14), 
we have (x, y) = (xx*e, yy*e) (e, e) (x, j ) є (xx*e, yy*e) ABAB ç (xx*e, yy*e) AB. 
Consequently (x, y) = (xx*e, yy*e) (eu, e^), where (eu, ev) є ЛБ. It follows from 
Lemma 5 that (eu, ev) = (ex, ey) є C and so, by (15), we get (eu, ev) є A(B n C). 
Therefore (x, y) = (xx*e, yy*e) (eu, ev) є (Б n С) Л(Б n С). 

Finally, it follows from (4), (5), (14), (15), (16), (17) and (18) that (A v Б) л C = 
= (A u Б u AB u BA u ЛБЛ u BAB) n C ^ Л и (Б n C) u A(B n C) u 
u (Б n С) Л u A(B n С) Л u (Б n С) Л(Б n C) = A v (Б л С) с (Л v Б) л С. 

Therefore the lattice Tol (Sř~) is modular. 
2 => 3. This follows from (9). 
3=>1 . Suppose that Tol(<9^) is modular for all SfeV. We shall show that 

^2 ф V (see Lemma 3). It is easy to show that Tol (£f2
 x ^г) is not modular (see 

Corollary 1.1 of [6]). Consequently ^ 2 ^ ^ a n d so, by Lemma 3, we have V^ 
Ç W(xx* = xyy*x*). 

Theorem 5. The following conditions for a variety V of regular *-semigroups 
are equivalent: 

1. F<= W(xx* = yy*). 
2. The lattice Con (£?~) is modularfor all У є V. 
3. The lattice Con (Sf) is modularfor all У є V. 
Proof. 1 => 2. It is well known. 
2 => 3. This follows from (9). 
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3 => 1. Suppose that Con (<99) is modular for all Sf є V. We shall show that 
<9*2, Sř± $ V (see Lemmas 3 and 4). It is easy to show that Con {£f2 x 92) is not 
modular (see Theorem 6 of [7]). Consequently Sř2 Ф V-

Now, we shall prove that Con (<9%. x <9%) is not modular. By A we denote the 
congruence on <9*4 x <9*4 which is associated with the following partition of S 4 x S4 

{ ( e , A M e / , / e ) , ( / e , / e ) , ( / , / e ) } , 
{(e, e), (ef, e)}, {{fe, e), (f, e)} , 

{(e,f),(fe,f)],{(ef,f),(f,f)}, 

{(e,ef)),{(ef,ef)],{(f,ef)],{(fe,ef)). 

Let us put B = {((a, fr), (a, c)); a, b, c eS4) and C = {((a, Z>), (c, b)); a, b, c є S4}. 
It is clear that A, B, C є Con (У4 x У 4 ) , Л s C and В л С = id. We have 
((e, e), (/, e)) ф A = A v (В л С) and ((e, e), (f, e)) є C. Evidently 

{{e,e),(e,f))eB, 
((eJ),(fe,f))eA, 
((feJ),(fe,e))eB, 
((fe,e),(f,e))eA 

and so ((e, e), (f, e)) є Л v B. Therefore ((e, e), (/, e)) є (Л v В) л С. We have 
A v (В л С) ф (A v В) л С and so Con (5^4 x if^) is not modular. Consequently 
SřA ф V. 

It follows from Lemma 4 that V ^ FK(xx* = yj*). 

4. DISTRIBUTIVITY 

Theorem 6. 77ie following conditions for a variety V of regular *-semigroups 
are equivalent: 

1. V £ W(xyx* = xx*). 
2. T&e lattice Tol (<^ -) /s distibutivefor all £f є K 
3. Tfte lattice Tol(<9*) Í5 distributivefor all 6^e V. 
4. Tfre lattice Tol (<^") /s boolean for all 9 є К 
5. The lattice Tol (5^) is boolean for all У є V. 
Before the proof we formulate two lemmas. 

Lemma 7. Let У e W(xyx* = xx*). Thenfor all elements u, v, w of £f andevery 
projection e of £f we have 

(i) u = ueu, 
(ii) uvw = uew. 
Proof. Suppose that SfeW(xyx* = xx*). Then we have eye = e for every 

element y of c957 and for projection e of Sř. 
(i) It follows from (l), (2) and Lemma 5 that ueu = ueu*eu = uu*u = u. 

(ii) We have uvw = ueuvwew = uew. 
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Lemma8. Let Sř e W(xyx* = xx*) and A, Б, C e Tol (Sř~). Then we have 
(i) ABC = AC, 

(ii) AB n C = (4 n C) (Б n C). 
Proof, (i) According to Lemma 6 and Lemma 7 we have ABC = 

= у4(е,е)Б(е, e) C = A(e, e) C = AC for some projection e of ^ . 
(ii) Assume that (u, v) e AB n C. Then by Lemma 6 we obtain (u, v) = (a, c) . 

. (e, e) (b, d) where (a, c) e A and (b, d) e B. We have (ae, ce) = (aebe, cede) = 
= (ue, ve) e A n C and analogously (efr, ed) = (eu, ev) є Б n C. Therefore (w, t;) = 
= (ae, ce) (eb, ed) є (A n С) (Б n C). Consequently ЛБ n C ç (Л n C) (B n C) £ 
c AB n C. 

P r o o f of T h e o r e m 6. 1 => 4. Suppose that Sř e W(xyx* = xx*). First, we shaJl 
show thát the lattice Tol (Sř~) is distributive. 

Let A9 B, C є Tol (Sř~). According to Lemma 8 and (5) we get (A v В) л C = 
= (A u Б u ЛБ u BA) n C = (A n C) u (Б n C) u (A n С) (Б n C) u 
u (B n С) (Л n C) = (Л л C) v (Б л C). 

Now we shal show that Tol (Sř~) is boolean. Let A є T o l ( ^ " ) . Choose a projec­
tion e of ^ = (S, -, *) and put B = T((Se x Se) u (eS x eS) \ A). 

Let u, f є S. It follows from Lemma 7 that (u, ü) = (ue, ye) (eu, ey). Clearly 
(ue, ve), (eu, ev) є A u Б. According to (4) and (5) we get (u, v) e A v B. Therefore 
A v B = S x S. 

Suppose that A л Б Ф id. Then there exist u,veS such that (u,v)eAnB 
and u Ф y. By (4), (5) and Lemma 7 we get (u, i>) = (a, c) (e, e) (b, d), where either 
a = c or (a, c) e (Se x Se) u (eS x eS) \ Л and either b = J or(b, d) є (Se x Se) u 
u (eS x eS) \ A. If(o, c) є (Se x Se) \ Л, then by our assumption we obtain (a, c) = 
= (ae, ce) = (aeb, ced) (e, e) = (u, ^)(e, e) є A, which is a contradiction. Therefore 
(a, с) ф (Se x Se) \ Л. Dually we obtain that (b, d) ф (eS x eS) \ A. Consequently 
we have the following possibilities: 

Case 1. a = c. Then b Ф d and so (b, d) є (Se x Se) \ A. Hence by our assumpt-
tion we have (u, v) = (aebe, aede) = (ae, ae), a contradiction. 

Case 2. b = d. Then dually we obtain a contradiction. 

Case 3. a Ф c and b Ф J. Then (a, c) є eS x eS and (fr, d) є Se x Se. According 
to our assumption we get u = aeb = e = ced = v, a contradiction. 

Therefore A л Б = id. Consequently, the lattice Tol (<^") is boolean. 
4 => 2 and 5 => 3. Trivially. 
2 => 3. This follows from (9). 
4 => 5. According to (9), (7) and (8), Tol (S?) is a boolean subalgebra of Tol (£ř~) 

for every Sř є V. 
3 => 1. Suppose that Tol {Sf) is distributive for all У є K It follows from Theorem 4 

that 

(19) V £ *F(xyj*x* = xx*). 

U8 



First we shall show that 

(20) Vn W(xx* = x*x) <= W(x = xx*). 

Assume by way of contradiction that there is a regular *-semigroup from V such 
that aa* = a*a, a Ф aa* for some its element a. Therefore Fcontains a non-trivial 
group and so 01 є V, where ^ is a finite cyclic group of a prime order. Clearly 0t x 01 є 
є Fand so, by Theorem 1, the lattice Tol (0t x £ř) = Con (01 x ^ ) is distributive. 
By Ore's Theorem [8] the group 01 x 0t is locally cyclic. Since 01 x 01 is finite, we 
obtain that ^ x ^ is cyclic, which is a contradiction. 

Now we shall prove that 

(21) V <= йфс = x 2 ) . 

Assume by way of contradiction that there is a regular *-semigroup $f from V 
containing non-idempotent element a. Let us put b = a2a*. According to (19), (1), 
(2) and (3), we have bb* = a2a*a(a*)2 = a(aa*)a* = aa* — (aa*)(aa*) = 
= (aa*) a*a(aa*)* = a(a*)2 a2a* = b*b. It follows from (20) that b = bb*. This 
and (19), (1), (2) and (3) imply a2a* = a2a*(a2a*)* = a2a*a(a*)2 = a\a*)2 and 
so a2 — aa*(a2fl*) a = aa*(a2a*a*) a = aa*a = a. 

From (19), (21) and Lemma 2 it follows that V £ W(xyx* = xx*). 

Theorem 7. The following conditions for a variety V of regular *-semigroups 
are equivalent'. 

1. Vis trivial. 
2. The lattice Con(<5^-) is distributivefor all £f є V. 
3. The lattice Con (£f) is distributivefor all £f є V. 
Proof, l = > 2 . Trivially. 
2 => 3. This follows from (9). 
3 => 1. Suppose that Con (Sf) is distributive for all £f є V. It follows from Theorem 

5 that V £ W(xx* = yy*). Theorem 1 and Theorem 6 imply V £ W(xyx* = xx*). 
According to (2) and (l), we get x = xx*x = xxx* = xx* = yy* = yyy* = 
= УУ*У = У-

References 

[11 Nordahl, T. E., Scheiblich, H. E.: Regular *-semigroups. Semigroup Forum 16 (1978), 
369-377. 

[2] Clifford, A. H., Preston, G. B.: The algebraic theory of semigroups. Vol. I. Am. Math. Soc., 
1961. 

[3] Petrich, M.: Introduction to Semigroups. Merill Publishing Company, 1973. 
[4] Chajda, I.: Lattices ofcompatible relations. Arch. Math. (Brno) 13 (1977), 89—96. 
[5] Chajda, I., Zelinka, B.: Lattices of tolerances. Čas. pěst. mat. 102 (1977), 10—24. 
[6] Pondělíček, B.: Modularity and distributivity of tolerance lattices of commutative inverse 

semigroups. Czech. Math. J., 35 (110), 1985, 146-157. 
[7] Papert, D.: Congruence relations in semilattices. J. London Math. Soc. 39 (1964), 723—729. 
[8] Ore, O.: Structure and group theory II. Duke Math. J. 4 (1938), 247—269. 

Author's address: 166 27 Praha 6, Technická 2, Czechoslovakia (FEL ČVUT). 

119 


		webmaster@dml.cz
	2020-07-03T07:59:57+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




