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0. INTRODUCTION

In this paper we will study existence of periodic solutions to the equation
(0.1) ulx, 1) + a(x, t) ux, 1) + b(x, ) u(x, 1) = g(x,1), (x,1)e Q< R*,
where a, band g are w-periodic in ¢ and sufficiently smooth‘). Solutions will be looked
for as the classical ones, i.e., with continuous first derivatives on the region considered.
As far as it is known to the authors, up to now the question of existence of periodic
solutions to an equation of the first order has been studied only rarely. In her thesis
[1] N. Klimperova deals with w-periodic solutions to the equation

u, + a(x, )u, = f(x,1), (x,1)eR?

with a and f w-periodic in ¢ and such that the solution x(t; x, f) to the problem
dyfdt = a(y, 1), x(t;x,1)=x

is strictly monotone in 7 and
| liin i x, )] =] lim x(t:x,1)| = 4+

for every fixed (x, ) € R%. Besides, she investigates the w-periodic solutions to the

equation
u, + au, = ef(x, 1, u, £)

with a = const.
The results of papers [2], [3] by I. M. Vulpe and G. P. Choma, respectively, when
applied to a single equation instead of systems, assert that the equation

u, + au, + bu = g(x, 1) + ¢f (x,t,u),

1y A preliminary version of this paper was published as the 31st preprint of Mathematical
Institute of the Czechoslovak Academy of Sciences.
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with the constants a % 0, b % 0, with g and f w-periodic in ¢t and f Lipschitzian in u
has an w-periodic solution in t.

Somewhat more remote is the result by H. Brézis and L. Nirenberg [4] which
asserts that there exists a solution 2n-periodic in x;, j = 1, ..., n to the equation

n

Y a; (0u)ox;) + g(x,u) =0,

with g 2n-periodic in each x; and such that g,(x, u) > 0 for all x, u.

We will make use of the method of characteristics and of the Poincaré method.
Let us recall that the characteristics are the solutions to the equation
(0.2) (d¢/dr) = a(¢, 7).

Our assumptions on a will always ensure existence of a unique local solution to
(0.2). Such a solution passing through a prescribed point (x, t) will be denoted by
&=yt x.1).

To be able to investigate existence of w-periodic solutions we have moreover
to suppose that for every point (x, t) € Q the function y(.; x, t) is defined on the
whole real axis R. Except for Sec. 4 the region Q will be R?; in that section Q will
be properly specified. As usual, the solution u is said to be w-periodic in t if

(0.3) u(x, 1) = u(x,1 + ®), teR.
In the sequel it turns out that an important role is played by characteristics called

below the periodic characteristics for which
(0.4) 1(w; x,0) = x.

Points x € R having the property (0.4) are called the singular points and the set of
all such points will be denoted by &. Characteristics without this property are called
the regular characteristics and points x € R without the property (0.4) are called
the regular points. The set of regular points will be denoted by #.

In Sec. 1 some auxiliary results are introduced. In Secs. 2 and 3 we will investigate
the cases when all the plane R* is covered by regular or periodic characteristics,
respectively. In Sec. 4 periodic solutions are looked for in a strip lying between two
neighbouring periodic characteristics. Finally, Sec. 5 is devoted to the more general
case when the plane R? is covered partly by rcgular and partly by periodic charac-
teristics.

1. AUXILIARY RESULTS

We say that the region Q has the property P if it has one of the following shapes:
either Q= R?

or Q = {(x,t)eR*|teR, xe(— o0, 1(t; x,, 0))}
or Qe{(x,1)eR*|teR, xe(x(t; xo.0), +00)}
or Qe{(x,t)eR*|1eR, xe(x(t; x;,0), x(1; X2, 0))]
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where x,, x;, X, are singular points. In the sequel we will usually deal only with
regions having this property. In particular, the property P implies that Q is invariant
under the w-shift in the direction of ¢ (see Lemma 1.3).

For regions Q with the property P let us define the assumption A(2) as follows.
A(Q): the functions a, b, g are of the class €*°(Q) and are w-periodic in t;

for every point (x, t) e Q the function x(.; x, t) is defined on the whole R.

(Let us recall that the function f(x, t) is of the class €*-°(Q) if it is continuous together
with its first derivative with respect to x on Q.)

This assumption ensures that there is a unique solution x(t; x, t) passing through
any point (x, 7). '

Except for Lemma 1.8 let us suppose that the region 2 has the property P and that
the assumption A(Q) is satisfied.

1.1. Lemma. The following assertions hold:

(1.1) x(s; 215 %, 1), 1) = x(s; x, 1),
(1.2) xs + kos x, t + ko) = x(s; x, 1),
(1.3) x(s; ., 1) is a strictly growing function for every fixed s and t.

Proof. The first proposition is evident. Denoting by y,(s) and y,(s) the left-hand
and the right-hand sides of the relation (1.2), respectively, we see that both these
functions are solutions to (0.2) and fulfil the same initial condition y(1) = x (i =
= 1, 2). Consequently, y,(s) = y,(s).

The property (1.3) follows immediately from the relation

Xds; x, 1) = exp ([} a(x(o; x, 1), 6)do) > 0.

1.2. Definition. Let x, be an arbitrary regular point. Then the sequence {xk},‘f:_w,
where
Xer1 = 1(@; x,,0) for k=0,1,2,...,
X = —o;x4,0) for k=—1,-2,..

is called a determining sequence corresponding 1o X.

1.3. Lemma. If x is a singular point then y(t + kw; x.0) = x(; x, 0) for ke Z.
Proof. If suffices to prove the relation for k = 1. We have x(t + ; x, 0) = (1 + w;
205 x,0). 0) = x(t + w; x, w) = x(7; x, 0).

o0

1.4. Lemma. Let x, be an arbitrary regular point and {x,} ;- _, the corresponding
determining sequence. Then
(1.4) x, = x(kw; x0,0) for keZ.

The proof follows readily by induction.

Evidently, the set of regular points £ is an open set in R and its components are
open intervals.
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1.5. Lemma. Let (o, f) be a component of the set of regular points. Then either
1(—w; x,0) < x < y(w; x,0)
or
x(—w; x,0) > x > y(w; x,0)

for all x € (a, B). (In particular, every determining sequence is strictly monotone.)
Proof. Let there be two points x;, x, € («, f) such that x; < y(w; x;,0) and
X, > y(w; X,,0). Then the continuous function F(n) = n — x{w;n,0) is negative
for n = x, and positive for # = x,. Necessarily, there exists a point 7y € (xy, x,) for
which F(n,) = 0, i.e. #, € &, which contradicts the fact that («, ) < .
By Lemma 1.1 the inequalities x < y(w; x,0) and x > y(w; x,0) imply that
1(—w; x,0) < x and y(—w; x, 0) > x, respectively, which completes the proof.

1.6. Lemma. Let («, B) be a component of the set of regular points. Let {x,‘},f’:_w
be a determining sequence corresponding to x,, x, € (o, B). Then either
lim x, =0, lmx, =4

k> +o k= —om
or
lim x, =0, limx, =f.
k= —o k= +o
Proof. Let for instance x, < x;. As the characteristic starting at x, cannot
intersect the periodic characteristic x(s; f5, 0), by virtue of (1.4) we have x, < f.

(For f = + oo this inequality is trivial.) If we denote x* = lim x,, the relation
k—+ o0

Xp+y = 2{0; x, 0) yields x* = y(w; x*, 0) because of the continuity of y(w; ., 0).

However, this implies x* = . For k < 0 the proof proceeds similarly.

If x; < x, the proof is quite analogous.

1.7. Lemma. Let {x,};2_., be a determining sequence corresponding to x.

(i) If x €[xo, x;] then y(kw; x,0) € [X4, X415

(i) if x € [xy, X¢+1] then x(0; x, kw) € [xo, x,] for k e Z.

Proof. The relations (1.1)—(1.4) imply

(1) x¢ = x(kw; x,,0) = x(kw; x, 0) < y(kw; x4, 0) = y(kw; x(w; x,0),0) =
= 2((k + 1) ; y(w; x4, 0), w) = »((k + 1) @; X0, 0) = X444,

(i) xo = (05 x;, ko) = x(0; x, kw) = 2(0; Xp 41, k) = x;.

Further, let us recall the formula for the solution to the initial problem given by the
equation (0.1) and the initial condition
(1.5) u(x,0) = ¢(x), xel (I =R aninterval).

1.8. Lemma. Let the functions a, b, g be of the class €"-°(Q), where Q is the set

covered by characteristics starting for t = 0 from the points of a given interval
I = R. Let ¢ € 6'(I). Then there exists in Q a unique solution of (0.1), (1.5) and it
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is given by the formula
(1.6) u(x, 1) = o(x(0; x, 1)) exp (— [6 b(x(; x, 1), 6) do) +
+ §6 9(x(s; x, 1), s) exp (=[5 b(x(o: x, 1), 6) do) ds .
This formula may be verified by direct inspection. Uniqueness may be proved
by standard methods.
1.9. Lemma. The solution u € €'(Q) to (0.1) is w-periodic if and only if
(1.7) u(x,0) = u(x,w) for xe{xeR|(x,0)elntQ}.

Proof for (x, 1) € Int Q follows readily from the w-periodicity of the functions
a,b,g in t and from the fact that the solution of the equation (0.1) is uniquely
determined by its initial function. The w-periodicity on the boundary ¢Q is a con-
sequence of the continuity of a solution, since then in the equality u(x,t + ) =
= u(x, t) we can pass with (x, ) to the boundary.

2. THE CASE OF REGULAR CHARACTERISTICS

In this section we deal with the case when the set of regular points £ coincides
with R and the condition 4(R?) is fulfilled. The procedure how to construct a periodic
solution to the equation

(2.1) u, + a(x, )u, + b(x, )u = g(x,1), (x,1)eQ=R>

in this case is the following. For definitencss we will suppose that x < y(w; x, 0)
for all x. Let us choose an arbitrary point x, € R and an arbitrary initial function @,
of the class €*([xo, x,]), where x; = x(w; X, 0). The formula (1.6) defines the values
of the solution u,(x, 1) for x € [x;, x,], t = w, where x, = y{w; x, 0) .Since the
solution has to be w-periodic the initial function ¢, has to be extended onto the
interval [x,, x,] by the relation

@1(x) = uo(x, ®) = @o(x(0; x, w)) exp (— [ b(x(o; x, w), 6) do) +
+ §6 9(x(s; x, w), s) exp (— [2 b(x(0; x. ®), 0) do) ds .

Making use of the induction, we find easily that the restrictions ¢, on [x;, Xp+1]
(where x, form the determining scquence corresponding to x,) of the initial condition
¢ are given by

(2.2) (%) = 0o(1(0; x, kw)) exp (— [6° b(x(o; x, kw), o) do) +
+ 6 9(x(s; x, ko), s) exp (— [£ b(x(o; x, kw), 0)do)ds, keZ.

Thus we have got the solution u(x, ) consisting of its restrictions u, k € Z, where
is the solution in the strip between the characteristics x(.; x;, 0), x(.; X¢+1, 0) with
the initial condition u,(x, 0) = ¢,(x) for k€ Z whose values for t = 0 and t = »
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coincide. By Lemma 1.9 this guarantees that this solution is w-periodic in ¢. This
solution belongs to the class €'(R?) if ¢ € €'(R). It is easy to find that the function ¢
defined by its restriction ¢,. k € Z is continuous together with its first derivative at
the point x, if and only if the following compatibility conditions are satisfied:

(2.3) @o(x1) = @o(x0) exp (— [§ b(x(o; Xy, ®), 0) do) +
+ o g9(x(s; x,, @), s) exp (— [¢ b(x(o; x;, ®), 0) do) ds ,
(24) ?o(x1) = [@o(x0) %:(0; X1, @) — @o(x0) [§ bu(x(as x1, @), 6) .

- %05 X, @) da] exp (— [§ b(x(o; x1, ), 6) do) +

+ 6 [9:x(s5 x1, @), 8) 255 %1, @) = g(x(s5 %1, @), 5) -

2 b(x(o; X1, @), 0) 105 x4, @) do] exp (— [¢ b(x(o; x,, ), o) do) ds.
Thus we have proved the following theorem.

2.1. Theorem. Let the assumption A(R?) be fulfilled and let # = R. Then for
every point x,€ R and every function ¢,e %" ([xo, 2(®; xo,0)]) satisfying the
compatibility conditions (2.3), (2.4) there exists a unique w-periodic solution
ue@'(R?) to (2.1) such that u(x,0) = @o(x) for xe[xo, x(w; xo,0)]. This o-
periodic solution is given by the formula (1.6) with the function ¢ such that
Plixexns] = Pro Where x; = y(kw; x,, 0) and ¢, are given by the formula (2.2).

2.2. Example. Let us look for a 2n-periodic solution to the equation

u, + au, = xsint, where a + 0 isa constant.
Evidently x(t; x, t) = x + a(t — t). Then (2.2) implies

@x) = @o(x — 2mak) — 2mak , xe[x, + 2nak, x, + 2ma(k + 1)],
where ¢, € €"([xo, Xo + 2ma]) with

@o(xo + 2ma) = @o(xo) — 2ma, @o(xo) = @o(xo + 2ma).

Thanks to the simplicity of this problem, we can readily get the solution in a closed
form. Writing down the condition of the 2n-periodicity

o(x) = ¢(x — 2ma) — 2ma
or equivalently
o(x) + x = ¢(x — 2ma) + x — 2na,
we see that
o(x) = ¥(x) = x,
where Y(x)e €*(R) is an arbitrary 2ma-periodic function. This agrees with the
solution found above. Then the 2n-periodic solution is given by (1.6).

190



3. THE CASE OF PERI ODIC CHARACTERISTICS

In this section we deal with the case when the set of singular points &coincides
with R and the condition A(R?) is fulfilled. The condition of w-periodicity
@(x) = o(x(0; x, w)) exp (— [§ b(x(o; x, ), 0) do) +
+ 5 9(x(s; x, w), s) exp (— 2 b(x(o; x, w), 0) do) ds

reduces in our case to
o(x) [1 — exp (— [§ b(x(o; x, ®), 0) do] =

= [ g(x(s; x, ®), 5) exp (= [ b(x(o; x, ), 0) do) ds .
Denote

N ={xeZP|[sblx(o;x,w),0)do =0}, M =S —N.
Clearly, if x € A" then an w-periodic solution exists only if

15 9(x(s; x, w), s) exp (— [2 b(x(o; x, w), 0) do) ds = 0O
and ¢(x) remains undetermined.

On the other hand, if x € .# then the value of ¢(x) is given by ¢(x) = ¢_4(x),
where

(3.1) ou(x) =[1 — exp(— [§ b(x(o; x, ®), 6)do)] 7" .
S8 9(x(s; x, w), s) exp (= (¢ b(x(o; x, w), 0) do) ds .

The following theorem is almost evident.

3.1. Theorem. Let the assumption A(R?) be fulfilled and let every point x € R
be a singular point. Further, let

(1) J& 9(x(s; x, @), s)exp (— [ b(x(o; x, ), 6) do)ds = 0 for xe N,

(ii) @ € €'(cl M) (this extension will be denoted by Pc1.4)-
If cl # = R then there exists a unique solution, and it is given by the formula
(1.6) with ¢ = @14

If cl M * R then for an arbitrary ¢ € ¢'(R) such that ¢ = Q¢4 on cl M there
exists a unique w-periodic solution u € €*(R?) such that u(x, 0) = ¢(x).

3.2. Corollary. Let the assumptions of Theorem 3.1 be satisfied, let & = R
and let

15 9(x(s; x, w), s)exp (— [¢ b(x(o; x, ), 0)do) ds = 0.

Then the initial function ¢ is an arbitrary function from the class '(R).

3.3. Remark. In the preceding theorem it need not be always clear whether the
function ¢ with the required properties exists. The situation is more lucid under
more restrictive assumptions on .#. Namely, we can suppose that

(3.2) the boundary of 4 has not finite points of accumulation .
If . %0, let us write # = {J J;, J, = (% ), where the union is the nonvoid union
k
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of at most countably many disjoint open intervals. Then the problem of the possibility
of the %!-extension of ¢, onto cl .# reduces to the existence of the finite limits

lim @ (x), lim @(x), lim ¢/, (x) and lim ¢/y(x) and, if & = y4y, to the
x=yt x=0K~ x>yt X0k~

equality of the limits from the left and from the right at this point.

3.4. Example. Let the equation

u, + xcos tt, + xu = x’
be given. .
Evidently x(t; x, 1) = x %" ™, [3¥ b(x(o; x, 21), 6) do = [§" x """ do = Ax,
where A = [2" ¢ do > 0 so that & = R, A" = {0}, .# = R — {0]. Further,

?.u(x) =
= [1 — e ]! [3" x? exp (2 sin 5) exp (— 2% x exp (sin 0) do) ds .

We find easily that lime(x) =0 and lim ¢/y(x) = 47! 3" exp (2sins) ds.
x=0 x—0

Hence cl.# = R and the function ¢4 € %'(R) defines the unique 2r-periodic
solution to the given equation.

4. PERIODIC SOLUTIONS ON REGULAR COMPONENTS

In this section we study the existence of w-periodic solutions to the equation
(4.1) u, + a(x, 1) u, + b(x, 1) u = g(x,1)

on a set covered by characteristics starting for t+ = 0 from a component of regular
points. We suppose that the set of regular points is not the whole set R (this case
was investigated in Sec. 2). Evidently, components of the set of regular points are
open intervals. At most two of them may be infinite, say («, + o) and/or (— 0, f8),
whereas the other must be finite, say (oz, B). Let I be one of these intervals. Let us
denotc

Q) = {(x,t)eR*|teR, xe(x(t;2,0), +o0)} if I= (o +x),

QI) = {(x,t)eR*|teR, xe(—ow,x(1; B,0)} if I=(-00,p),

AI) = {(x,1)eR*|1eR, xe(x(t; 0, 0), x(t; B, 0))} if I=(a,p).
We will investigate the existence of w-periodic solutions on the open set Q(I) and,
under rather strong conditions, also on its closure cl Q(I) Under the assumption
A(8(T)), let us perform on I the same construction as in Sec. 2. Choosing arbitrarily
xo €I and the function ¢, € €"([xo, x,]), x; = x(®; X, 0) satisfying the compati-
bility conditions (2.3), (2.4), we obtain for k — + co monotone sequences of points x;

and of functions ¢, as in Sec. 2. The following statement can be proved analogously
as Theorem 2.1.

4.1. Theorem. Let the assumption A((I)) be fulfilled. Then for every point
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xo €1 and every function @qe €'([xo, x(w; X0, 0)]) satisfying the compatibility
conditions (2.3), (2.4) there exists a unique w-periodic solution ue €' (I)) to
(4.1) such that u(x,0) = @o(x) for x e [xo, x(w; X0, 0)]. This solution is defined
by the formula (1.6) with the function ¢ such that ¢ |ix, x.,.1 = @k @ being defined
by the formula (2.2).

Disregarding the intermediate cases when u is looked for on the union of Q(I)
only with its left or right boundary characteristic, let us look for w-periodic solutions
on the whole cl (7).

By Lemma 1.6,

either lim x, = o and lim x, = §,
k= —o0 k= + o0

or limx,=f and Ilim x, =«.
k—— o0 k= + o

For the sake of simplicity we will use the symbol ]lm which will mean one of the
limits llm or lim . By (2.2) we have

ou(x1) = 0o(2(0; x(kw; x,, 0), kw)) .
.exp (= [§ b(x(o; x(kw; x,, 0), kw), 6) do) +

+ 16" 9(x(s; 2(ke; xo, 0), k), s) .
cexp (= [+ b(x(o3 1(ke; xo, 0), ko), 0) do) ds =
= wo(xo) exp (— j""“’ b(x(0; Xo, 0), ) do) +
. 15 g(x(s: Xo. 0), 5) exp (= [** b(x(0; xo, 0), ) do) ds .
(42) Po(x0) = ¢u(xe) exp ([6° b(x(0; X0, 0), 0) do) —
— J6” 9(x(s: X0, 0), 5) exp ({5 b(x(: X0, 0), 0) do) ds .

Here the values ¢,(x,) are almost arbitrary, say y(x,) with the function  such that
the limit of the right-hand side exists (due to the independence of the left-hand side
of k) and such that the resulting function ¢ is smooth enough. This leads us to
looking for a fuction /(x) such that the limit

(4.3) o(x) = li,:n {(x(kw; x, 0)) exp (f5° b(x(o; x, 0), 0) do) —

— §6” g(x(s; x, 0), s) exp ([} b(x(o; x, 0), o) do) ds}

exists. Then this limit gives an initial condition defining a periodic solution as the
following theorem shows.

4.2. Theorem. Let the assumption A((I)) be satisfied and let there exist a func-
tion v defined on I such that the function ¢ defined by (4.3) for x € I (for at least
one choice of orientation k — +c0 or k » —o0) can be extended to I as a con-
tinuously differentiable function (this extension is denoted by the same symbol
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@(x)). Then there exists an w-periodic solution ue €'(cl (I)). This solution is
given by the formula (1.6) with the initial function ¢(x).
Proof. By (1.6) we have for x e

u(x, w) = lim {¥(x(kw; 1(0; x, w), 0)) .

.exp ({6 ¥{(x(o; 1(0; x, w), 0), ¢) do) —

— J67 g(x(s; 2(0; x, w), 0), 5) exp ([§ b(x(c; x(0; x, ), 0), 0) do) ds} .
.exp (— [§ b(x(o; x, w), 0) do) +

+ 15 9(x(s; x, w), s) exp (= [¢ b(x(o; x, ), 6) do) ds .

Using the properties of the characteristics from Sec. 1 and the w-periodicity of the
functions b and g we obtain

u(x, o) = lim {Y(x((k — 1) w; x, 0)) exp ([~ b(x(s; x, 0), o) do) —
k
— J§7D2g(x(s; x, 0), s) exp ([ b(x(c; x, 0), 6) do) ds} = ¢(x).
By Lemma 1.9 this proves the w-periodicity on the closure Q.

4.3. Remark. If { from Theorem 4.2 happens to determine an initial condition of
an o-periodic solution then the function ¢ defined by the formula (4.3) equals V.
Indeed, if u is the w-periodic solution with the initial condition y, then

(1) Y(x) = u(x, —kw), keZ.
Using (1.6) and (1.2) we get
u(x, —ko) = Y(x(ko; x, 0)) exp ([§° b(x(s; x, 0), o) do) —
— J6 9(x(s; x, 0), s) exp (5 b(x(; x, 0), 6) do) ds .
This, together with (1) implies
¥(x) = Y(x(kw; x, 0)) exp ([6” b(x(c; x, 0), 0) do) —
— [62 a(x(s; x, 0), s) exp ([5 b(x(o; x, 0), 0) do) ds
which after passing to the limit yields ¥ = ¢.

4.4. Remark. If the function ¥ and the corresponding limit in (4.3) exist for one
of the orientation k - + 00 or k = — o0 in Theorem 4.2, then there exists a function
¥, such that the corresponding limit exists for the other orientation of k and is
also of the class €'(I).

Proof. Let ¢ be the initial condition defined by the limit (4.3), ¢ € ¢*(I). Choosing
Y = ¢ we get similarly as in Remark 4.3 that

o(x) = o(x(kw; x, 0)) exp (6 b(x(o; x, 0) 6), do) —
— J62 9(x(s; x, 0), 5) exp ({3 b(x(o; x, 0), 6) do) ds
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for an arbitrary k € Z. The independence of k of the left-hand side of this relation
implies that the limits lim and lim exist in (4.3) if we put ¥ = ¢. Obviously it suffices

k= + k——
to take ¥/, = ¢ and the formula (4.3) defines the same function ¢ again.

4.5. Remark. If ye /" n {«, B} then the necessary condition for the existence
of a function ¥ from Theorem 4.2 is that

§5 9(x(s; v, @), 5) exp (= |2 b(x(0; 7, w), 6) do) ds = 0.
On the other hand, if y € # n {a, B} then ¢(y) = @eru(y)-
4.6. Example. Let an equation
u, + xu, + bu = x p(t)
with a constant b and an w-periodic function p € ¥'(R) be given. Here x(t; x, t) =
= xexp (t — t) and the points x, = x(21k; xo, 0) = x, exp (2nk) converge to the
singular point x = 0 for k > — o0 on both components of regular points (— o0, 0)

and (0, 4+ o). Hence let k - — o0.
If b # 0 then 0 € ./ and the value of ¢(0) is given by ¢(0) = ¢_4(0) = 0. Further,

(1) o(x) =kiir_nw{|p(x exp (kw)) exp (bkw) —

— J6° x exp (s) p(s) exp (bs) ds} .
(i) If b < —1, then in general the integral in (1) is divergent for k - — oo and
due to the relation

— &2 x exp (s) p(s) exp (bs) ds =
=x .ZO J2i e p(s)exp ((b + 1) s)ds =

ji=
—k-

x [o p(s)exp ((b + 1) (s — w)) J;Olexp (—j(b + 1) w)ds =

1 —exp ((b + 1) ko)
1—exp(—(b+1)w)

x o p(s)exp (b + 1) (s — w)) ds

we can put A
x) = x J5 p(s) exp((b + 1) (s — o)) ds MEY
¥(x) e (-6 + Do) + Clx|?.
Then
o) = x BRI (b2 D) ds | oo e

exp ((b + 1)) — 1

on both components of regular points with lim ¢(x) = 0, which agrees with the
value of ¢ 4(0). x=0

(i) If b= —1 and [§ p(s)ds = 0, then putting Y(x) = Cx we get ¢(x) = Cx,
which makes the desired extension on each of the both regular components possible.
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(i) If b = —1 and [§ p(s) ds + 0 we should have to put
Y(x) = ]—J p(s)ds x In |x|
Jo
in order to cancel the terms tending to infinity, which leads to
o(x) = -I—J p(s)ds xIn x|,
@ Jo

but this is not a function from %' on the closure of any of the two investigated
components.
(iv) If be(—1,0), the integral has a finite limit for k - —oc and we may put
Y(x) = C|x|_b. Then
o(x) = C|x|7® + x [° , p(s)exp ((b + 1) s5)ds .
This function is of class ¥ on the closure of each of the regular componcnts with
lim ¢(x) = 0, but it is of class ' on them only for C = 0. Thus ¢(x) =

x—-0
=x [, p(s)exp (b + 1) s)ds.

(v) If b = 0 then the singular point O belongs to /" and the value ¢(0) is not
defined. Further, for x + 0 we have

o(x) =kli111w {Y(x exp (kw)) — [6” x p(s) exp (s) ds} =

=(0) + x |2, p(s)exp(s)ds = C + x [°, p(s) exp (s) ds
with an arbitrary constant C.

(vi) If b > 0 then putting y(x) = 1 we get
o(x) = lim — [¢° x exp (s) p(s) exp (bs) ds =
k= —o

=x 2, p(s)exp (b + 1) s)ds.
(The choice Y(x) = C|x|~" which would cancel the asymptotic behaviour of
exp (bkw) in (1) is not possible since it leads to the function which cannot be smoothly

extended at x = 0.)
Now let us state an existence and ““‘uniqueness” theorem under some more restric-

tive conditions than in Theorem 4.2.

4.7. Theorem. Let the assumption A((I)) be fulfilled. Further, let there exist

limits
B(x) = lim [§” b(x(o; x,0), 0)do, xel
k

and
G(x) = lim [§° g{x(s; x, 0), s) exp ([} b(x(c; x,0), 6) do)ds, xel,
k

which can be extended onto I as functions from €'(I) (the notation B and G will
be preserved also for the extended functions).
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Then there exists a one-parameter family of w-periodic solutions of the class
€'(cl QI)). These solutions are given by the formula (1.6) with initial conditions
of the form ) ‘

(4.4) ¢(x) = Cexp (B(x)) — G(x), xel,
where C € R is an arbitrary parameter.

Moreover, this one-parameter family includes all w-periodic solutions of the
class ¢*(cl (I)).

Proof. Putting y(x) = C we see that the function ¢(x).= Cexp (B(x)) — G(x)
satisfies all assumptions of Theorem 4.2. Thus every function (4.4) determines an
w-periodic solution. It remains to prove that there are no other w-periodic solutions
than those determined by the initial conditions (4.4).

Let u, be an arbitrary w-periodic solution and let «, be a solution belonging to the
family (4.4), then the function v = u; — u, satisfies the equalities

(1) v+ av, +bo=0, vo(x,1)—v(x,t+w)=0.
Let us continue in two steps.

First let us show that the equation
(2 w, + aw, =0

can have only a constant as an w-periodic solution. Indeed, constructing an -
periodic solution as indicated at the beginning of this section, we see that if the
function @, on [xo, x,] has a range [ry, r,] then the functions ¢, have the same
range for all ke Z. Evidently ¢ may have limits for x - o and x — f§ only if the
interval [ry, r,] reduces to one point, which means that ¢ is a constant. Now, let us
show that the problem (1) has only solutions determined by the initial functions
C exp (B(x)). In fact, by the assertion of the theorem one solution of this problem is

uo(x, 1) = exp (B(x(0; x, 1)) exp (— [§ b(x(o; x. 1), 6) do) > 0.

Looking for other solutions to (1) in the form z(x, t) uo(x, t) we readily find that =
solves the equation (2), which completes the proof.

4.8. Remark. In Theorem 4.7 let there exist
lim [§° b(x(c; x, 0), 0) do = B.,(x)
k= +»

or

lim [§° b(x(o; x,0), 0) do = B_(x) .
k= —o0

Then there exists also
lim [§° b(x(c; x, 0), 0) do = B_(x)
k= — o0
or

lim {§° b(x(o; x, 0), 0) do = B,(x),
k—++ o

197



respectively, and
B_(x) = Bi(x) — B,( lim x;) if lim x, % +o0
k= —o

k= —o

and
B_(x) = B4(x) + B_( lim x;) if lim x, + + 0.
k= + o

k= + o0
An analogous assertion may be formulated for functions G, and G_.
Proof. For definiteness let there exist

B.(x) = lim [§° b(x(o; x,0), 6) do
k- + o0
(the proof for the other orientation is quite similar).
Using (1.1) and (1.2) we get
) —[** b(x(o; x,0), 0) do =
= (42 b(x(o; x_4,0), 6)do — [§79° b(x(o; x, 0), 0) do

for a determining sequence {xk}ﬁ:fi and arbitrary k, he Z. Passing to the limit for
h — + 0 in (1) we obtain

— 5% b(x(o; x,0), 0) do = B,(x_,) — B.(x) .
Now letting k - 4+ o0 we have

—B_(x) = B+(kliinwx_,‘) — B.(x).

4.9. Remark. Let the assumptions of Theorem 4.7 be satisfied. Let y e {a, f},
9 % +oo. Then ye A and [§ g(x(s; 7, ), s)exp (—[¢ b(x(o; 7, ), 6) do) ds = 0O,

Proof. Let for example y = «. Let for definiteness lim x, = a for every deter-

k= —o
mining sequence. By Remark 4.8 we can suppose without loss of generality that
B(x) = lim [§° b(x(o; x,0), o) do .
k= —o0

(The other cases of orientation of limits can be handled similarly.) If on the contrary «
were from /, i.e.

J6 b(x(o; o, w), 0)da + 0, say [ b(x(o; o, ®),0)do >0,
then there should exist ¢ > 0 and ¢ > 0 such that
o b(x(o; x, w),0)de =2 ¢ >0 for xe(x,a+¢).

Taking x € (a, & + &) we would have (for k < 0)
(V]
{62 b(x(o; x,0),0)do = — Y 1 Jeo_1y0 (x(03 x,0), 0) do =
n=k+

== ilféfb(x(a+(n— 1) ®; x,0), 0) do =

n=k+
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Il

- i 16 b(x(c — @; x,,0), 0) do =

n=k+1
0
== z .[8) b(x(a’ Xns (D), G) dO' § kC 5
n=k+1

note that x, — a for n - — 00 monotonicaly and thus x, € (a, o+ s) foreveryn < 0.
This would imply B(x) = lim [¢° b(x(o; x, 0), 6) do = — oo, which is a contra-
k- —o

diction. Necessarily y € #". The proof that
15 a(x(s; v, ), s) exp (= [ b(x(o3 7, @), ) do) ds = 0
proceeds along the same lines.
4.10. Example. Let the equation
u, + cos’ x u, + costu = exp (—tg>x — sint),
xe(—4in + hn, in + hn),
u, +costu=0, x= +in+ hn,
h e Z be given.

Here y(t;x,1) = arctg(tgx + 1t — t) + hn for xe(—4n + hr, In + hn),
x(t; £in + hn,t) = £3n + hr. Evidently B(x) = 0 for x e [—4n + hr, 4n + hx],

2kn

G(x) = lim [g*"exp (—tg’*(arctg (tg x + s) + hn) — sins).
k= +o0

2kn

.exp ([5 cos o do)ds = lim [g"exp (—(tg x + s)*)ds for
k—+ o

x€(—1in + hn, in + hr)
and thus
G(x) = 3 /r(l —erf(tgx)) for xe(—%n + hm, in + hm),
G(—in + hn) =
G(in + hn) = 0.
Obviously B, G e €'([—4n + hr, in + hn)).
According to Theorem 4.7 the system of functions
o(x)=C—tyn+ tymerf(tgx), xe(—%in + hn, in + hr),
o(— It + hn) = C — m,
¢(3n + hn) = C
with a parameter C is the system of all initial conditions generating periodic solutions
to the given equation. The corresponding periodic solutions are

u(x,1) = [C — 3 Jn + § Jnerf(tg x)] exp (—sint),
xe(—4n + hn, in + hr),

u(—in + hn, 1) = (C — /n)exp (—sin1),

u(3n + hn,t) = Cexp (—sint).
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5. THE GENERAL CASE

In this section we investigate the existence of w-periodic solutions to the equation
(5.1 u, + a(x, Nu, + b(x, Nu = g(x, 1)
on the whole plane R2. The cases # = R and & = R were investigated in Secs.2 and 3

and thus we will assume that Z + 0, & #+ 0. The set £ of regular points is an open
set and hence we can write it as a union of disjoint open intervals:

(52) ‘UZ:Uqu Iq=(all’ﬁII)’
qeQ

where the set @ = Z of indices is either finite or countable. If Q is not finite, we will
suppose in addition that

(5.3) the points a,, B, have no finite point of accumulation .

Then the intervals I, can be ordered so that
(5.4) oy < By = tgyy for gq,q +1€Q.

We look for the initial function ¢ which gives rise to an w-periodic solution. The
restrictions @y, 5,1 Will be simply denoted by ¢,.

First we suppose that on every I,, g € Q the assumptions of Theorem 4.7 are
fulfilled. Then the w-periodic solutions on ¢l Q(I,) form a one-parameter family
determined by initial functions

(5.5) @x) = Cpexp (B(x)) — G(x), xel,, C,eR.

We will use the symbols ., A", ¢ 4 and ¢, introduced in Sec. 3. The value of ¢(x)
for x € A is not determined from the w-periodicity condition, whereas for x € .4
necessarily @(x) = ¢ 4(x), the function ¢ being uniquely defined on the set ..

5.1. Theorem. In addition to the assumptions A(R*), Z + 0, & % 0 let the
following assumptions be satisfied:
(i) 2 = UQIq’ Ip= (24 B,), QS Z, 0y < By < %g4y
ge
for q,q + 1€ Q, and the set of points a,, B, has no finite point of accumula-
tion (the first and last intervals, provided they exist, may be infinite);
(ii) for all g € Q and all x € I, there exist limits

B/(x) = likm 162 b(x(o; x, 0), o) do,
G,(x) = likm J6 a(x(s; x, 0), 5) exp (J5 b(x(c; x, 0), 0) do) ds

and they can be extended onto I, as functions from €'(I,);

(iii) §& g(x(s; x, @), s) exp (= [ b(x(o; x, ), 6) do) ds = 0 for X€ A7,

(iv) if there exists a subset Q' = Q such that B; = o, for j»J + 1€ Q' then
there exist constants C;, j € Q' such that the function ¢ = Pjfor x e (“,-, ﬁj)
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with @ (x) = C;exp (B/(x)) — G/(x), j€ Q" is of the class (gl(iq') where
Iy = [ag, Bo:]: agr = I:anaj Bor = 1(12P Bj;
JjeQ’ eQ’

J

(v) the boundary of M has no finite point of accumulation and @cr.u € €*(cl M);

(vi) 0 " OR = 0.

Then there exists an w-periodic solution ue ¢'(R?) to (5.1). The initial function ¢
corresponding to the w-periodic solution is given by (5.5) on each I,. In the case
of ,,adjacent’” intervals I;, j € Q' the constants C; are determined by the assumption
(iv), and in the opposite case C, is arbitrary; further, ¢ is equal to ¢ 4 on cl M
and finally, @4 is an arbitrary function such that the resulting function ¢ is of
the class €'(R).

Proof. By theassumption(ii),on eachinterval I, the initial function ¢y, of the sought
periodic solution is determined according to Theorem 4.7 by the formula (5.5). If
there is a sequence of ,,adjacent” intervals I; then the %' continuity on the union of
these intervals is guaranteed by the condition (iv).

On a bounded component [}, o;4,], B; < a;,, of & there exists at most a finite
number of intervals of points from .# on the closure of which the function @« =
= @14 18 defined uniquely by (v). Since by the assumption (vi) the set ./# is separated
from the points §;, «; ., by intervals of points from A" ,it is always possible to extend
the initial function to the whole interval [«;, ;. ,] as a function from €' due to
the arbitrariness of ¢ on A .

The construction of ¢ on the unbounded components of & (if there are any) is
quite similar.

5.2. Remark. It is clear from the proof which assumptions of the theorem can be
altered. For example, if the intervals from £ are separated by intervals of points
from A" then the existence Theorem 4.2 may be used instead of Theorem 4.7.

5.3. Remark. In the case of at most two “adjacent” intervals, say I; = (a;, f;)
and I, = (41, B;j+,), of regular points the condition (iv) can be replaced by the
assumption of solvability of the system of equations

C;exp (Bj(B))) — Cjv1exp (B;11(B) = G{(B)) — Gjus(B)) »
C;Bj(B;) exp (B(B;) — Cj+1Bj+1(B;) exp (B;+1(B)) =
= Gi(B;) - Gj+1(B)) -
5.4. Example. Let the equation
u, + cos>xu, +costu =exp(—tg’x —sinx), x* It + hn

u,+costu=0, x=4n+hn, heZ
be given.
Here I, = (=in + qn, in + qn), Q =2, S =N ={in+ hn|heZ' .y =9,
and according to Example 4.10 the limits B,(x), G,(x) exist, are of the class (I,) for
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every q € Z and the resulting function is given by

@ (x)=C,—+yn + tymerf(tgx), xe(—in+ gm in + qn),

¢ (=31 + gn) =C, — m,

o (in + gn) =C,, C,eR.
Thus the conditions (i)—(iii), (v) and (vi) of Theorem 5.1 are satisfied. It remains
to find constants C; from the condition (iv). In our case Q' = Q. Let us fix the
constant C, on the interval I, = (—1n, in), say C, = C. Then the constants C,
are given by the relation C, = C 4 g /7 and the sought initial conditions defining
periodic solutions are functions

o(x) =C+(q — i) Jn + + Jmerf(tg x),

xe(—4n + gn, in + gn),

o(—in +gqn) =C+(q — 1) Jm,

o(4m + qn) = C + q 7,
q € Z and C € R arbitrary, and the periodic solutions are

u(x,1) = [C + (g — })n + 3 Jmwerf(tg x)] exp (—sin 1),

xe(—4n 4+ qm, In 4+ gn), teR,

w(—in + gm, t) = (C + (¢ — 1) /m)exp(—sint), teR,

u(im + gm, t) = (C + g /m)exp (—sint), teR,
C € R arbitrary.
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