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1. INTRODUCTION

Let S = (X, +) be a commutative semigroup and let M = X. Define the function
S X = {0,1,2,...} as follows: fy(x) is the number of expressions of x in the
form x = m . n, where m,ne M.

We say that M is a multiplicative basis if fy(x) > 0 for every x € X.

In [1], P. Erdds proved the following theorem.

Theorem 1. Let S = (/\/, *) be the semigroup of all positive integers with the
usual multiplication and let M = N be a multiplicative basis. Then for every
positive integer p there exists x € N such that fy(x) > p.

Erd6s’ proof of Theorem 1 was very complicated and had a purely number-
theoretical character. Thus it gave no possibility to generalize Theorem 1 to other
commutative semigroups. However, in [6], J. Ne3etfil and V. Rédl gave another
proof of Theorem 1, based on the thcorem of Ramsey, which was very simple and
provided a straightforward possibility of generalization to other structures.

In this paper we show how Theorem 1 can be generalized to other commutative
semigroups and, in particular, prove analogues of Theorem 1 for direct, cartesian
and strong product of finite simple graphs.

2. PRIME SEMIGROUPS

Nesettil and Rodl’s proof of Theorem 1 essentially uses the following property
of the set P of all prime numbers.

Property (P). For every finite set {py, p,,...,p,} S P the following holds: If

Pi-Da-----Dr = X.Y, where x, y are positive integers, then there exist sets I, J <
s {1,2,....r} such that 1v J = {1,2,..,r}, [ pi=xand []p; = y.
iel jeJ

Theorem 1 can be easily derived from property (P)and the following lemma which
is based on the theorem of Ramsey.
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Lemma 1 (Negetfil, R6dl, see [6]). Let X be an infinite set. Denote by F(X) the
set of all finite subsets of X. Let M = F(X) be a set of finite subsets of X such that
the following holds:

For every F e #(X) there are F{,F,e M
such that Fy UF, = F and F,nF, = 0.

Then for every positive integer p there is a set F which can be expressed in at
least p different ways as a union of two disjoint elements of M.

Aplying Nesetfil and RédI’s method of the proof of Theorem 1, some immediate
stronger versions of this theorem can be given. Let us state them.

Definition 1. Suppose that S = (X, +) is a commutative semigroup, M is a subset
of X and k22 is an integer. Define the function fyy;: X — {0, 1,2, ...} as follows:
Sm(x) is the number of expressions of x in the form x = m, . m, . ... . m,, where
m;eMfori=1,2,... k.

We say that M is an asymptotic multiplicative basis of order k iffM,k(x) > 0 for
all but finitely many x € X.

The following result can be obtained by the methods from [6] (see also [5]).

Theorem 2. Let k = 2 and let M be an asymptotic multiplicative basis of order k
in the semigroup (N, *). Then for every positive integer p there exists x € N such
that fy.(x) > p.

To prove Theorem 2 we use the following stronger version of Lemma 1.

Lemma 2. Let X be an infinite set and let k = 2 be an integer. Suppose that M
is a subset of F(X) such that all but finitely many sets F € #(X) can be expressed
k

in the form F = \J F; where F;e M for i = 1,2,..., k. Then for every positive
i=1
integer p there is a set F € #(X) and at least p pairwise disjoint sets {F,, F,, ..., F;}
k

such that F = \JF;, F,e M fori=1,2,...,kand F,nF; = { fori = j.
i=1
Now we show that Lemma 2 immediately enables us to generalize Theorem 2 to
the class of those commutative semigroups which contain an infinite set P with
property (P). First we give some definitions.

Definition 2. Let S = (X, ) be a commutative semigroup with the identity element
1. We say that
(i) x divides y (or x is a divisor of y), where x, y € X, if there exists z€ X such

that x . z = y. We denote this by x | y;

(i) jeXisa unitif j|1;

(iii) elements x, y € X are associated if there is a unit j such that x = y.j. We
denote this by x ~ y. (Clearly j is a unit iff j ~ 1. Remark that ~ is an equi-
valence relation on X.)
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(iv) x € X is irreducible if x is not a unit and, moreover, the following holds:
ifx=a.bthena~1lorb~1.

All notions introduced in the above definition can be transferred to the semigroups
without an identity element as follows.

Definition 3. Let S = (X, +) be a commutative semigroup without an identity
element.
(i) We say that x divides y if either x = y or there exists z € X such that x . z = y.
(i1) There is no unit in S.
(iii) x ~ y iff x = y.
(iv) x € X is irreducible if it cannot be expressed in the form x = a . b, where

a,beX.
Now, let S = (X, *) be a commutative semigroup and let F = {x,, x5, ..., X}
be a finite subset of X. We denote the product x, . x, . ... . x, of elements of F by H F.

Further we put [[ @ = 1, where 1 is the identity element.

Definition 4. We say that a set P < X is a prime set if it contains no unit, if no
two different elements of P are associated, and if for every finite (non-empty) set
F < P the following condition holds: if [[F = x; . x, then there exist finitc sets
F,, F,  F (possibly empty) such that F;, U F, = F, x; ~ [[ Fy and x, ~ [| F,.

Definition 5. A commutative semigroup is said to be a prime semigroup if it con-
tains an infinite prime set and has only finitely many units.

In the next theorem we show that the result stated in Theorem 2 for the semigroup
(N, +) holds for every prime commutative semigroup.

Theorem 3. Let S = (X, *) be a prime semigroup and let k = 2 be an integer.
Suppose that M is an asymptotic multiplicative basis of order k in the semigroup S.
Then for every positive integer p there exists x € X such thath,k(x) > p.

Let us prove Theorem 3. In the proof we will use the fact that every prime set is
,»productively independent” in the sense of the following proposition.

Proposition 1. Let S = (X, *) be a commutative semigroup and let P = X be
a prime set. Then for every two finite sets P, P, < P the following condition
holds: if [[ Py ~ [| P, then P, = P,.

Proof. Let Py, P, be finite subsets of P such that [[ P, ~ [[ P, and P,\ P, * 0.
Choose an arbitrary element p e P,\ P,. Since p | [[ P, and P is a prime set, there
isa set @ < P, such that p ~ [] Q. Clearly p ¢ Q and since p is not a unit, we have
that Q + 0. Let g be an arbitrary element of Q. Then g | p and therefore g ~ p
by the definition of the prime set. Thus g = p, hence p € Q, a contradiction.

Proof of Theorem 3. Denote by n the number of units in S. For x € X define [x] =
={yeX;y~x}andforY< X put [Y] = U [y]. Let P < X be an infinite prime
y=Y

set in the semigroup S. Define a set M’ = Z(P) by M’ = {F e #(P); [| F e [M]}.
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By Proposition 1, the mapping F — [ | F from #(P) to X is an injection and there-
fore for all but finitely many sets F € #(P) there exist elements my, m,, ..., mye M
such that H F =m;.m,.....m. Suppose that the equality [[F = m, . m, .

. my holds. Then, by the dcﬁmtlon of the prime set, there are sets F; for i =

=1,2,...,ksuch that F = U F;and m; ~ ]_[ F;. This further implies that F;e M’

for every i, hence the mﬁmte sct P and the set M’ fulfil the assumptions of Lemma 2.
Thus for every p there exists a set F € #(P) and at least p. n + 1 pairwise disjoint

sets {Fy, F,, .. Fk} such that F = UF,, F,eM' fori=1, 2 wkand F;n F;

=0fori=j IT{F F,, ... FJ} 1ssuchaset then [[ F = n HF) where [] F; e
€ [M] Hence there exists a unit jand a set {my, m,, ..., m;} M suchthatj.[[F =
= H1m and m; ~ [ F;. This yields by Proposition I that there exists a unit j

such that fy.(j . [ F) > p.

Clearly the proof of Theorem 3 that we have just presented provides the following
stronger result.

Corollary 1. Let S = (X, +) be a prime semigroup, k = 2 an integer and M an
asymptotic multiplicative basis of order k. Denote by (AZ) the family of all sub-
sets of M having the size k. Then for every positive integer p there exists x € X
and a family M <

(i) |-#] > p;
(ii) if Ae M then [[A = x;
(iii) if A, Be#, A+ B, then [A] n [B] = 0.

AZ) such that the following conditions hold:

Example. Let S = (Q, -) be the semigroup of all rational numbers with the usual
multiplication. Then every g € Q is a unit in S and so no non-empty prime set in S
exists. Thus Theorecm 3 cannot be applied to S. Actually, the following holds (see
[7]): if a function f: @ - N and an integer k = 2 are given, then thereisaset M <= @
such that fy; , = f.

3. PRIME SETS

We have seen that the existence of large prime sets in commutative semigroups
essentially influences the combinatorial properties of the semigroup multiplication.
Now we show some ways how large prime sets can be constructed. We begin with
some definitions.

Definition 6. Let S = (X, ) be a commutative semigroup. We say that p e X is
a prime if the following conditions hold:
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(i) p is not a unit,

(ii) if p|x.y then p|x or p|y.

Let S = (X, +) be a commutative semigroup. A decomposition x = x; .....x,
of an element x € X is said to be irreducible if all x;’s are irreducible. Two irreducible
decompositions x = a; .....a, = b, ..... b, of x are associated if there is a one-

to-onc mapping ¢: {1, ..., k} = {1,..., I} such that a; ~ b, fori =1, ..., k.
19y ! g o(i)

Definition 7. We say that a commutative semigroup S = (X, -) has the unique
factorization property if every element x € X, which is not a unit, has an irreducible
decomposition, and every two irreducible decompositions of x are associated.

The following proposition follows immediately from the definition of the prime set.

Proposition 2. Let S = (X, *) be a commutative semigroup with the unique
factorization property. Then every set of pairwise non-associated irreducible
elements of S is a prime set.

In semigroups without the unique factorization property, prime sets can be
constructed from primes as follows.

Proposition 3. Let S = (X, *) be a commutative semigroup fulfilling the following
condition (U):
(U) if x.y ~ x then y ~ 1, where 1 is the identity element.
Then every set of pairwise non-associated primes of S is a prime set.

In the proof of Proposition 3 we will use the following proposition.

Proposition 4. Suppose that S = (X, +) is a commutative semigroup fulfilling
condition (U), and that py, p,, ..., p,, where k = 1, are pairwise non-associated
primes. Then the following holds: if p; | xfori=1,2,....,kthenpy.py.....px I X.

Proof. We proceed by induction on k. For k = 1 the proposition holds trivially.
So, let us suppose that k = 2 and that p; | x for i = 1,2,..., k. By the induction

hypothesis p;..... Pi—1y | x, thus x = py.....pi—1.y, y€X. Since, moreover,
P | x and p, is a prime, we infer that either py | py..... pe—; or p|y. We show
that p, | py . .... px—; leads to a contradiction.

Indeed, suppose that p, | Pi- ... DPk—y- Since p; is a prime, we obtain that p, | D;

for some i = 1,....,k — 1, i.e. p; = p,.u, veX. This implies that cither p; | p;
or p; ] u. In the first case, p, = p;. v, ve X, hence p;, = p; . u.t. According to (U),
this implies that u . v ~ 1. Thus u ~ | and p; ~ p,, which is a contradiction. In the
latter case, u = p;.v, v€ X, and thus p; = p, . p; . v. This yields that p, . v ~ 1 and
so px ~ 1, which is a contradiction, too.

Hence, necessarily py | y, and consequently py . .... pr—q - Dk | X.

Proof of Proposition 3. Let P < X be a set of pairwise non-associated primes of S
and let F be a finite subset of P. Suppose that [[ F = x, . x,. Then p | Xy . X, for
every pe F, and so either p|x, or p|x, for every pe F. Let us denote F; =
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={peF; p|x,} and F, = F\F,. By Proposition 4, [TF,|x, and [T F,|x,.
Thus x, = y, . [[ F; and x, = y,.[] F,, where yy, y, € X, which gives [ F =
= X,.X, = y;.Y,.]] F. By condition (U), y; . y, ~ 1, hence y; ~ 1 and y, ~ 1.
Thus we find that x;, ~ [[ F; and x, ~ [ F.

Remark 1. It can be easily shown that in semigroups fulfilling condition (U),
every prime is irreducible. Moreover, it is well known that in every semigroup having
the unique factorization property, x is a prime if and only if x is irreducible.

Now we show that Proposition 3 can be applied to the cardinal multiplication in
locally finite categories.

Definition 8. Let " be a category and let X, Y be two objects of . The set of all
morphisms from X to Y is denoted by Hom (X, Y).

The category o is said to be locally finite if Hom (X, Y) is finite for every pair X, Y
of objects of A .

A is said to be connected if Hom (X, Y) is non-empty for every pair X, Y of objects.

Remark 2. A very important property of locally finite categories is the following
one (see [2]): Assume that there are monomorphisms f from X to Yand g from Yto X.
Then both f and g are isomorphisms.

Definition 9. Let £ bec a category with finite products, where the product of
objects X and Yis denoted by X x Y. For an object X of # denote by [X] the class
of all objects isomorphic to X and put || = {[X]; X is an object of #'}. Then it is
correct to define a binary operation x on the class || as follows:

[X] x [¥] = [X x Y].

Thus we obtain a commutative semigroup (||, x), where || may possibly be
a proper class. Let us remark that often we will not distinguish objects of # and of
(|1, x).

Proposition 5. If A is a connected, locally finite category with finite products,
then the semigroup (||, x) fulfils condition (U).

Before proving Proposition 5, we give some auxiliary statements. Let us suppose
that A" is a connected, locally finite category with finite products. The notation
X = Y means that X and Y are isomorphic objects of .

Lemma 3. The following conditions concerning an object Y of the category A
are equivalent:
(i) there is an object X of A such that X x Y~ X,
(1) Yis a terminal object of A,
(i) [Y] is the identity element of the semigroup (||, x), i.e. X x Y = X for
every object X of A'.
Proof. (i) = (ii). Choose X such that X x Y = X and let Z be an arbitrary object

274



of A. Then |Hom (Z,X)|=|Hom(Z, X x Y)| = |[Hom(Z, X)| . [Hom (Z, Y)|,
hence [Hom (Z, Y)| = 1 since [Hom (Z, X)| # 0 by the assumption.

(i1) = (iii). Let Y be a terminal object and X an arbitrary object of 2#". We show
that the projection 7x: X x Y — X is a monomorphism (since, moreover, there is a
monomorphism (ly,f): X - X x Y, we get by Remark 2 that X x Y = X). So,
suppose that r,s: Z - X x Y are arbitrary morphisms such that nyor = nxos.
Since Yis a terminal object, we also have that ny o ¥ = Ty o 5. Thus r = s.

(iii) = (i). Obvious.

Proof of Proposition 5. Since every connected category contains, up to isomorphism,
at most one terminal object, the equivalence (ii) <> (iii) implies that the only unit
in ([%l, x) is the identity element. Thus the relation X 2 Y concerning objects of
category " is equivalent to the relation [X]| ~ [Y] concerning objects of the semi-
group (||, x). We conclude that condition (U) is equivalent to the implication
(i) = (iii) in Lemma 3.

We say that an element X of & is a prime if [X] is a prime in (||, x). Now,
Propositions 3 and 5 immediately imply the following statement.

Corollary 2. If A" is a connected, locally finite category containing an infinite
set of pairwise non-isomorphic primes, then the semigroup (||, x) is prime.

4. PRODUCTS OF GRAPHS

The graphs we consider are simple, i.e. undirected and without loops and multiple
edges. If G is a graph, then V(G) is the set of verticcs and E(G) the set of edges of G.
Denote by ¢ the class of all finite simple graphs. For G € 4 denote by [G] the set
of all graphs jsomorphic to G and put |%| = {[G]; Ge ¥].

Now suppose that * is a binary operation on % fulfilling the following condition:
if G =G and H = H', then G* H = G' = H'. Then we can define [G] *[H] =
=[G * H] and thus obtain a grupoid (||, *). Notice that |9| is a proper class.

There are many natural ways how to define products of simple graphs. We shall
concentrate our attention only on three well-known products, namely on the direct,
cartesian and strong products. Let us give the definitions of these products. Let G
and H be simple graphs. We denote the direct product of G and H by G x H, the
cartesian product by G [0 H and the strong product by G[x]H. All products have
the set of vertices equal to V(G) x V(H) while the sets of edges are defined as follows:
{(x,x), (¥, y')} belongs to

E(G x H) iff {x,y} €eE(G) and {x',y'}€E(H),
E(GOH) iffeither x =y and {x,y}€E(H)
or {x,y}€E(G) and x' =}y,

E(GX]H) = E(G x H)UE(GO H) .
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Obvicusly, the operations x, [J and [x| are commutative and associative, i.e.
(19], ), (|9|. O) and (|9].X]) are commutative semigroups. Algebraic properties
of these semigroups have been studied by many authors. In particular, in [8], G.
Sabidussi proved that the semigroup (|.‘4 | O) has the unique factorization property,
and in paper [3] R. McKenzie proved the same result for the semigroup (|9],[X]).
These results have, by virtue of Proposition 2, the following corollary.

Proposition 5. The semigroups (|%|, ) and (|%|,[XI) are prime.

We are going to show that the semigroup (||, x) is prime, too. In this case,
irreducible elements cannot be used for the construction of an infinite prime set,
because the semigroup (|%|, x ) does not possess the unique factorization property.
Namely, it is well known that in commutative semigroups with the unique factoriza-
tion property, every irreducible element is prime. But D. J. Miller proved in [4] that
the emigroup (|ﬁ[, X ) contains no prime except the trivial graph with one vertex.
So, Proposition 3 also cannot be used to construct an infinite prime set. In spite
of this, the semigroup (|%|. x) is prime and an infinite prime set can be constructed
for example as follows.

As usual, let K, ,, denote the complete bipartite graph. Put S, = K, , and call this
graph a star.

Proposition 6. The set of all stars S,, where p is a prime number, is a prime set
in the semigroup (|%], x).
Proof. By []G; and ) G, respectively, we shall denote the direct product
iel iel
and the disjoint sum of the collection {G;: i € I} of graphs. The disjoint sum of two
graphs G and H is denoted by G + H. The obvious equality K, ,, X K, = K, ., +
+ K5 mr Will be used.
Let S, x ... x §, = H; X Hy, where 2 < p; < ... < p, are prime numbers.
The graph S,, x ... x S, will be denoted by G. It can be easily shown that
G= ) Knomr>
{Q.R}
where {Q, R} runs through the set of all disjoint partitions of the set {py, ..., p,}-
It follows from this that components of H; and H, arec complecte bipartite graphs.
Indeed, let us suppose that one of the graphs H, and H, is non-bipartite. Then it
contains a circuit C, of odd length ¢ = 3 as a full subgraph, and so H, x H, contains
a circuit C, x K, = C,, of length 2¢ = 6 as a full subgraph. But G does not contain
any circuit of length greater then 4 as a full subgraph, a contradiction. Thus both H,
and H, are bipartite graphs. Further, since every product of connected non-complete
bipartite graphs has non-complete components, the components of H; and H, are
complete. Moreover, one of the components of G is isomorphic to the starS,, .
hence there are components of graphs H; and H, isomorphic respectively to
k

S, and S,, where m.n = [] p;. Let {Q, R} be the partition of the set {py, ..., pi}
i=1
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such that m = [] @ and n = [] R. Denote by g and r the sizes of Q and R, respec-
tively. We shall show that H; = [[ S, and H, = []S,.

qeQ reR
So, let K, , be an arbitrary component of H;. Since K, , x S, = K, ., + K, n»
k

we find that K, ,, and K, ,,, are components in G. Consequently, n.u.v = [[ p; =

i=1
=n.m and so u.v = m. Hence K,, = Kng, no, Where {Q;, Q,} is a partition
of Q. Moreover, the components of the graph H; are pairwise non-isomorphic be-
cause the graph G has this property. Analogous statements about the components
of H, can be deduced.

To complete the proof it suffices to show that H; (and H,) contain as a component
the graph Ko, ne, for every partition {Qy, Q,} of Q (and R, respectively). Let us
suppose the contrary. Then H, or H,, respectively, has less then 2¢7* or 2"~! (= the
number of partitions of Q or R) components, and so H, x H, hasless then2.277" .
. 2771 = 29"7"1 components. On the other hand, it can be easily seen that S,, x ...

. x §,, has exactly 2k=1 components, thus k < q + r = k, a contradiction.

Corollary 3. Let k = 2 be a positive integer and let * be some of the operations
%, [ and[X]. Suppose that # < ¥ is a set of finite graphs such that all but finitely
many Ge Y can be expressed in the form G = G, ... * G, where G,e M for
i=1,....,k. Then for every positive integer p there is a graph G which can be
expressed as a product of k, not necessarily distinct, graphs of A in at least p
different ways.

Proof. Immediate corollary of Theorem 3, Lemma 3, Proposition 5 and Proposi-
tion 6.

References

[1] P. Erdés: On the multiplicative representation of integers, Israel J. Math. 2 (1964), 251—261.

[2] L. Lovdsz: Direct product in locally finite categories, Acta Sci. Math., 33 (1972), 319—322.

[3] R. McKenzie: Cardinal multiplication of structures with a reflexive relation, Fund. Math.,
70 (1971), 59—101.

[4] D. J. Miller: The categorical product of graphs, Canad. J. Math., 20 (1968), 1511—1521.

[5]1 M. B. Nathanson: Multiplicative representation of integers, Israel J. Math., 57 (1987),
129—136.

[6] J. Nesettil, V. Rodl: Two proofs in combinatorial number theory, Proc. Amer. Math. Soc.
93 (1985), 185—188.

[7] V. Pus: On multiplicative bases in Abelian groups, Czechoslovak Math. J. 41 (1991),
282—287.

[8] G. Sabidussi: Graph multiplication, Math. Zeitschr. 72 (1960), 446—457.

Author’s address: 150 00 Praha 5, Lov&enska 11, Czechoslovakia.

2717



		webmaster@dml.cz
	2020-07-03T08:09:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




